JP2898462B2 - High frequency filter - Google Patents

High frequency filter

Info

Publication number
JP2898462B2
JP2898462B2 JP9192692A JP9192692A JP2898462B2 JP 2898462 B2 JP2898462 B2 JP 2898462B2 JP 9192692 A JP9192692 A JP 9192692A JP 9192692 A JP9192692 A JP 9192692A JP 2898462 B2 JP2898462 B2 JP 2898462B2
Authority
JP
Japan
Prior art keywords
dielectric substrate
frequency
frequency filter
filter
blocking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9192692A
Other languages
Japanese (ja)
Other versions
JPH05267908A (en
Inventor
靖浩 永井
圭一郎 伊藤
尚文 鈴木
修 道上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP9192692A priority Critical patent/JP2898462B2/en
Publication of JPH05267908A publication Critical patent/JPH05267908A/en
Application granted granted Critical
Publication of JP2898462B2 publication Critical patent/JP2898462B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、マイクロ波領域の互い
に異なる複数の周波数帯域の通過阻止(帯域除去)作用
の阻止特性を選択的に設定可能にする操作機能を備えた
デバイス構成の高周波フィルタに関するものである。
BACKGROUND OF THE INVENTION This invention is, each other in the microwave region
The present invention relates to a high-frequency filter having a device configuration provided with an operation function for selectively setting a rejection characteristic of a pass rejection (band rejection) operation for a plurality of different frequency bands.

【0002】[0002]

【従来の技術】従来、マイクロ波領域で使用される受動
部品たる各種フィルタ(低域通過フィルタ、帯域通過フ
ィルタ、高域通過フィルタ、通過阻止フィルタ等)は、
無酸素銅あるいは金等の表面抵抗の低い常伝導金属によ
り構成されていた。
2. Description of the Related Art Conventionally, various filters (low-pass filter, band-pass filter, high-pass filter, pass-rejection filter, etc.) used as passive components in the microwave region,
It was composed of a normal metal having low surface resistance such as oxygen-free copper or gold.

【0003】一方、近年、Y系、Bi系、Tl系等の酸
化物超伝導材料が発見され、また、これらの材料の薄膜
化技術が飛躍的に向上したことから、該超伝導材料によ
り前記フィルタを構成させる技術の研究開発が進められ
ている。
On the other hand, in recent years, oxide superconducting materials such as Y-based, Bi-based, and Tl-based materials have been discovered, and the technology for thinning these materials has been dramatically improved. Research and development of technology for constructing filters is under way.

【0004】他方、マイクロ波領域では、基本的には中
心導体たる共振器を中核としてフィルタ動作が行なわれ
るので、前記超伝導材料によりフィルタの共振器を構成
した場合、該共振器は、常伝導薄膜で構成する場合に比
べて著しく大きなQ値を有する(換言すれば表面抵抗が
小さい)ために、著しく低い挿入損失、狭い帯域幅、良
好なスカート特性を実現できる。
On the other hand, in the microwave region, basically, a filter operation is performed with a resonator serving as a center conductor as a core. Therefore, when a resonator of a filter is formed of the superconducting material, the resonator has a normal conduction. Since it has an extremely large Q value (in other words, a small surface resistance) as compared with the case where it is constituted by a thin film, an extremely low insertion loss, a narrow bandwidth and good skirt characteristics can be realized.

【0005】図5は、上記観点から構成された従来の通
過阻止型の高周波フィルタの中心導体のパターン例を示
すものである。本構成例では、同一の基板l上に、中心
導体たる信号伝搬線路2及び半波長共振器3が支持さ
れ、該基板1の裏面側には図示省略のグランドプレーン
が設けられている。
FIG. 5 shows an example of a pattern of a center conductor of a conventional high-pass filter of the pass blocking type constructed from the above viewpoint. In the present configuration example, the signal propagation line 2 serving as a central conductor and the half-wavelength resonator 3 are supported on the same substrate 1, and a ground plane (not shown) is provided on the back side of the substrate 1.

【0006】図6は、図6に示す構成の通過阻止型フィ
ルタの特性を示すものであり、77K雰囲気下で測定し
たものである。これによると、フィルタの共振器3が常
伝導薄膜(Au)又は超伝導薄膜(Tl系)のいずれか
ら成る場合も、周波数が9.55[GHz]付近の信号
のみを阻止する機能を有している。
FIG. 6 shows the characteristics of the pass-blocking filter having the structure shown in FIG. 6, which was measured under a 77K atmosphere. According to this, regardless of whether the resonator 3 of the filter is made of a normal-conducting thin film (Au) or a superconducting thin film (Tl-based), the filter 3 has a function of blocking only a signal whose frequency is around 9.55 [GHz]. ing.

【0007】ただし、常伝導薄膜から成る共振器を有す
るフィルタにおいては、Q値が低いために9.55[G
Hz]の信号減衰量が−20[dB]であり、かつ、阻
止帯域も広がっているのに対し、超伝導薄膜から成る共
振器を有する場合は、Q値が大きいため、信号減衰量が
−45[dB]であり、阻止帯域も狭く、良好な通過阻
止特性となることが理解できる。
However, in a filter having a resonator made of a normal conducting thin film, 9.55 [G]
Hz] is -20 [dB] and the stop band is widened. On the other hand, when a resonator made of a superconducting thin film is provided, the Q value is large, so the signal attenuation is-. It is 45 [dB], and it can be understood that the stop band is narrow and good pass blocking characteristics are obtained.

【0008】かかる特性を有するフィルタは、例えばパ
ーソナル通信や衛星通信において、増幅器などの信号処
理系に流入する不要な大振幅信号を抑制するために用い
られており、単独で用いられることもあるが、一般に
は、周波数の異なる複数の不要な信号の各々の流入抑制
を図るために、複数の周波数に対応した通過阻止作用を
有するフィルタバンクの構成部品として重用されてい
る。
A filter having such characteristics is used, for example, in personal communication and satellite communication to suppress unnecessary large amplitude signals flowing into a signal processing system such as an amplifier, and may be used alone. In general, in order to suppress the inflow of each of a plurality of unnecessary signals having different frequencies, the filter is frequently used as a component of a filter bank having a passage blocking action corresponding to a plurality of frequencies.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記従
来の通過阻止型フィルタの構成では、単なる通過阻止作
用を発揮できるに過ぎないので、例えば上記フィルタバ
ンクとして用いられた場合、無線信号の環境によって
は、限られた周波数帯域に極めて多くのチャネルが必要
なことがあると共に、特定周波数の不要信号は別の時点
では必要信号となる可能性があり、この場合、外部信号
により通過阻止作用を選択的に維持又は停止させること
が必要となるが、かかる選択的な通過阻止作用の実現の
問題に対処することはできない。
However, in the above-described configuration of the conventional pass blocking filter, only the pass blocking effect can be exhibited. Therefore, when the filter is used as the filter bank, for example, depending on the environment of the radio signal, However, a very large number of channels may be required in a limited frequency band, and an unnecessary signal of a specific frequency may become a required signal at another time. In this case, an external signal selectively prevents passage. However, it is not possible to address the problem of realizing such selective passage blocking action.

【0010】すなわち、図5に示すような従来技術の構
成では、信号伝搬用線路2と半波長共振器3とを同一基
板上に形成させていたため、通過阻止周波数を選択させ
ることはできなかった。
That is, in the configuration of the prior art as shown in FIG. 5, since the signal transmission line 2 and the half-wavelength resonator 3 are formed on the same substrate, it is not possible to select the pass blocking frequency. .

【0011】本発明は、大きなQ値の帯有等良好な通過
阻止特性を発揮し得ると共に、簡単な操作で阻止特性
(通過阻止周波数、阻止域減衰量、阻止域周波数幅等)
を選択的に設定し得る高周波フィルタを提供することを
目的とする。
The present invention can exhibit good pass rejection characteristics such as a band having a large Q value, and rejection characteristics (pass rejection frequency, stopband attenuation, stopband frequency width, etc.) by simple operation.
It is an object of the present invention to provide a high-frequency filter which can selectively set the high-frequency filter.

【0012】[0012]

【課題を解決するための手段】本発明は、上記従来技術
の課題を解決するべくなされたものであり、高周波信号
の伝搬線路と、夫々が互いに異なる特定の周波数に対し
て通過阻止作用を有する複数の半波長共振器とを超伝導
材料により形成して成る高周波フィルタにおいて、フィ
ルタ機能の中核的構成要素であって夫々超伝導材料から
成る信号伝搬線路と半波長共振器とを各別の誘電基板上
に設け、さらに、これら誘電基板を対向するように重ね
合わせると共に、該対向する誘電基板との相対位置関係
を、信号伝搬線路と半波長共振器とが離接するように、
外部信号により制御する駆動手段を設けた特徴とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, and has a high frequency signal.
Transmission line and a specific frequency
Through multiple half-wave resonators with blocking function
In a high-frequency filter formed of a material, a signal transmission line and a half-wavelength resonator, each of which is a core component of the filter function and each made of a superconducting material, are provided on separate dielectric substrates. Are overlapped so as to face each other, and the relative positional relationship with the facing dielectric substrate is set so that the signal propagation line and the half-wavelength resonator are separated from each other.
It is characterized in that a driving means controlled by an external signal is provided.

【0013】[0013]

【作用】外部信号により駆動手段を制御すると、側結合
の状態、即ち、伝搬線路と共振器との隙間が変化するの
で、該隙間量に応じて通過阻止特性(通過阻止周波数、
阻止域動作減衰量、阻止域周波数幅等)を任意に選択で
きる。
When the driving means is controlled by an external signal, the state of side coupling, that is, the gap between the propagation line and the resonator changes, so that the pass blocking characteristics (pass blocking frequency,
Stopband operation attenuation, stopband frequency width, etc.) can be arbitrarily selected.

【0014】[0014]

【実施例】図1は、本発明の第1実施例に係るものであ
り、ストリップライン構造で構成されたものである。本
実施例では、同図(a)に示す第1の誘電基板4と、同
図(b)に示す第2の誘電基板5とから大略構成されて
おり、該第1の誘電基板4の一面側には超伝導薄膜から
成る信号伝搬線路6が設けられ、第2の誘電基板5の一
面側には第1の阻止周波数を有し酸化物超伝導薄膜から
成る半波長共振器8と、第2の阻止周波数を有し酸化物
超伝導薄膜から成る半波長共振器9が設けられている。
FIG. 1 shows a first embodiment of the present invention, which has a strip line structure. In this embodiment, the first dielectric substrate 4 is roughly constituted by a first dielectric substrate 4 shown in FIG. 3A and a second dielectric substrate 5 shown in FIG. A signal propagation line 6 made of a superconducting thin film is provided on one side, and a half-wavelength resonator 8 made of an oxide superconducting thin film having a first stop frequency is provided on one surface side of the second dielectric substrate 5, A half-wave resonator 9 having a stop frequency of 2 and made of an oxide superconducting thin film is provided.

【0015】前記半波長共振器8は線路長が3.3[c
m]であり、周波数が1.5[GHz]に共振点を持つ
ものであり、また、前記半波長共振器9は線路長が5
[cm]であり、l[GHz]に共振点を持つものであ
る。なお、半波長共振器は少なくとも2個以上設ける。
The half-wave resonator 8 has a line length of 3.3 [c].
m], and has a resonance point at a frequency of 1.5 GHz, and the half-wavelength resonator 9 has a line length of 5
[Cm] and has a resonance point at 1 [GHz]. Note that at least two or more half-wave resonators are provided.

【0016】そして、第1の誘電基板4と第2の誘電基
板5の各他面側には、常伝導金属薄膜、あるいは超伝導
薄膜から成るグランドプレーン7、10が設けられ、前
記誘電基板4、5は前記一面側同士が対向するように重
ね合わされる(同図の孤状実線矢印参照)。
On the other surface of each of the first dielectric substrate 4 and the second dielectric substrate 5, ground planes 7, 10 made of a normal conductive metal thin film or a superconductive thin film are provided. 5 are superimposed so that the one surface sides are opposed to each other (see the solid-line arrow in the figure).

【0017】前記誘電基板4、5としては、誘電損失の
少ない、MgO、LaAlO3等から成る基板が用いら
れる。ここでは、比誘電率が9.4で厚みが0.5[m
m]であるMgOを用いた場合につき説明する。
As the dielectric substrates 4 and 5, substrates made of MgO, LaAlO 3 or the like having a small dielectric loss are used. Here, the relative dielectric constant is 9.4 and the thickness is 0.5 [m
[m] is used.

【0018】かかるMgO基板を用いた場合、特性イン
ピーダンス50[Ω]を得るためには、線路幅を約0.
16[mm]に設定するが、この線路を超伝導薄膜にて
形成すると、l[GHz]、77[K]の動作で、挿入
損失は0.l[dB/m]以下という極めて低いものと
なる。
When such an MgO substrate is used, in order to obtain a characteristic impedance of 50 [Ω], the line width must be set to about 0.1 [Ω].
Although this is set to 16 [mm], when this line is formed of a superconducting thin film, the insertion loss is 0.1 [0 GHz] at 1 [GHz] and 77 [K]. 1 [dB / m], which is extremely low.

【0019】なお、LaAlO3から成る基板(比誘電
率は約25)を用いても、特性インピーダンスの観点か
ら線路幅などが異なる以外は、基本的には前記MgO基
板と同様の効果が得られる。
Even if a substrate made of LaAlO 3 (having a relative dielectric constant of about 25) is used, basically the same effect as that of the MgO substrate can be obtained except that the line width and the like are different from the viewpoint of characteristic impedance. .

【0020】他方、図1(c)、(d)に示すように、
信号伝搬線路6の両端部には高周波信号の入出力コネク
タ11が設けられるようになっている。また、前記第1
の誘電基板4は所定の部材(ケース等)に固定されてお
り、前記第2の誘電基板5には図示省略のアクチュエー
タが連結され、該アクチュエータは外部信号により制御
されるようになっている。
On the other hand, as shown in FIGS. 1 (c) and 1 (d),
At both ends of the signal propagation line 6, input / output connectors 11 for high-frequency signals are provided. In addition, the first
The dielectric substrate 4 is fixed to a predetermined member (a case or the like), and an actuator (not shown) is connected to the second dielectric substrate 5, and the actuator is controlled by an external signal.

【0021】次に、上記のように構成された本実施例の
作動につき説明する。
Next, the operation of the embodiment constructed as described above will be described.

【0022】図1(c)に示す状態はアクチュエータの
駆動により第2の誘電基板5を第1の誘電基板4とは平
行方向(図1(c)の矢印方向)に移動させた場合を示
すものであり、該移動による伝搬線路6への半波長共振
器9の近接に基づき、第2の阻止周波数(半波長共振器
9の共振周波数に相当)についての通過阻止が行なえ
る。
The state shown in FIG. 1C shows a case where the second dielectric substrate 5 is moved in a direction parallel to the first dielectric substrate 4 (the direction of the arrow in FIG. 1C) by driving the actuator. The second blocking frequency (corresponding to the resonance frequency of the half-wavelength resonator 9) can be blocked based on the proximity of the half-wavelength resonator 9 to the propagation line 6 due to the movement.

【0023】また、図1(d)に示す状態は第2の誘電
基板5を図1(c)とは反対方向(図1(d)の矢印方
向)に移動させた場合を示すものであり、該移動による
伝搬線路6への半波長共振器8の近接に基づき、第1の
阻止周波数(半波長共振器8の共振周波数に相当)につ
いての通過阻止が行なえる。
The state shown in FIG. 1D shows a case where the second dielectric substrate 5 is moved in the direction opposite to that of FIG. 1C (the direction of the arrow in FIG. 1D). Based on the proximity of the half-wavelength resonator 8 to the propagation line 6 due to the movement, the passage of the first blocking frequency (corresponding to the resonance frequency of the half-wavelength resonator 8) can be blocked.

【0024】図2は、図1(c)及び(d)に示す状態
における信号の透過係数の周波数依存性を示すものであ
る。
FIG. 2 shows the frequency dependence of the signal transmission coefficient in the states shown in FIGS. 1 (c) and 1 (d).

【0025】図2(a)は、図1(c)に対応するもの
であり、信号伝搬線路6と半波長共振器9とが近接して
いるため、前記線路6を伝搬する第2の阻止周波数たる
l[GHz]の信号のみが側結合により共振器9に吸収
され、このため、該1[GHz]の周波数の信号につい
ては透過係数S21が鋭くかつ大きく落込み通過すること
ができない。
FIG. 2A corresponds to FIG. 1C. Since the signal propagation line 6 and the half-wavelength resonator 9 are close to each other, the second blocking that propagates through the line 6 is performed. only the signal of the frequency serving l [GHz] is absorbed in the resonator 9 by the side coupling, this makes it impossible to and sharp transmission coefficient S 21 larger落Komi pass the frequency of the signal of the 1 [GHz].

【0026】一方、図2(b)は、図1(d)に対応す
るものであり、信号伝搬線路6と半波長共振器8とが近
接しているため、第1の阻止周波数たるl.5[GH
z](半波長共振器8の共振周波数に相当)の信号の通
過が阻止される。
On the other hand, FIG. 2B corresponds to FIG. 1D, and since the signal propagation line 6 and the half-wavelength resonator 8 are close to each other, the first stop frequency l. 5 [GH
z] (corresponding to the resonance frequency of the half-wave resonator 8) is blocked.

【0027】上記のような信号の通過阻止特性(阻止域
動作減衰量、阻止域周波数幅)は、側結合の状態、即
ち、伝搬線路6と共振器8、9との隙間によって決定さ
れるため、本発明の構成では阻止周波数の選択のみなら
ず、他の通過阻止特性も選択できる。従って、前記アク
チュエータの駆動による第2の誘電基板5の機械的駆動
により、当該フィルタバンクが適用される各電磁環境に
応じた阻止特性の選択を行うことができる。
The above-described signal blocking characteristics (blocking band operation attenuation and blocking band frequency width) are determined by the state of side coupling, that is, the gap between the propagation line 6 and the resonators 8 and 9. According to the configuration of the present invention, not only the selection of the stop frequency but also other pass blocking characteristics can be selected. Therefore, by mechanically driving the second dielectric substrate 5 by driving the actuator, it is possible to select a blocking characteristic according to each electromagnetic environment to which the filter bank is applied.

【0028】図3は、第2実施例に係るものであり、マ
イクロストリップ構造で構成されたものであり、上記第
1実施例に係るストリップライン構造の場合との構成上
の主な違いは次の通りである。すなわち、第一に、第2
の誘電基板5にはグランドプレーンが省略されているこ
と、第二に、伝搬線路6は所定の特性インピーダンスを
得るために線幅を広くしていること、第三に、実効誘電
率が小さくなるために共振器長が若干長くなることであ
る。
FIG. 3 relates to the second embodiment and is constituted by a microstrip structure. The main difference in the structure from the case of the strip line structure according to the first embodiment is as follows. It is as follows. That is, first, the second
The ground plane is omitted from the dielectric substrate 5, the second is that the line width of the propagation line 6 is widened in order to obtain a predetermined characteristic impedance, and the third is that the effective permittivity becomes small. Therefore, the length of the resonator becomes slightly longer.

【0029】ただし、かかる構成上の相違点は上記阻止
特性の選択という作用には何等影響を与えないので、マ
イクロストリップ構造で構成しても基本的には上記スト
リップライン構造の場合と同様な効果を奏することとな
る。
However, such a difference in configuration does not have any effect on the operation of selecting the above-described blocking characteristics. Therefore, even if a microstrip structure is used, basically the same effect as in the above-described strip line structure is obtained. Will be played.

【0030】図4は、第3実施例に係るものであり、上
記第1及び第2実施例とは、第2の誘電基板を二つの分
離基板5a、5bにて形成した点が大きく異なる。この
場合において、該分離基板5a、5bには夫々半波長共
振器(図示省略)が設けられている一方、図示省略のア
クチュエータの駆動により伝搬線路(図示省略)を有す
る誘電基板4に対して垂直方向にかつ互い反対方向(同
図矢印方向参照)に移動させるようになっている。
FIG. 4 relates to the third embodiment, and is largely different from the first and second embodiments in that the second dielectric substrate is formed by two separation substrates 5a and 5b. In this case, a half-wavelength resonator (not shown) is provided on each of the separation substrates 5a and 5b, and the separation substrate 5a and 5b are driven perpendicularly to a dielectric substrate 4 having a propagation line (not shown) by driving an actuator (not shown). In the directions opposite to each other (see the direction of the arrow in the figure).

【0031】かかる構成とすることにより、図4(a)
に示す場合を、例えば第2の阻止周波数の通過阻止状態
とし、図4(b)に示す場合を、第1の阻止周波数の通
過阻止状態とすることができる。すなわち、例えば分離
基板5b上の半波長共振器の第1の誘電基板4の伝搬線
路への近接に基づき、第2の阻止周波数の通過阻止を行
う一方、分離基板5a上の半波長共振器の第1の誘電基
板4の伝搬線路への近接に基づき、第1の阻止周波数の
通過阻止を行うことができる。
By adopting such a configuration, FIG.
The case shown in FIG. 4 can be set to, for example, the passage blocking state of the second stop frequency, and the case shown in FIG. 4B can be set to the passage stop state of the first stop frequency. That is, for example, based on the proximity of the half-wavelength resonator on the separation substrate 5b to the propagation path of the first dielectric substrate 4, the passage of the second stop frequency is blocked, while the half-wavelength resonator on the separation substrate 5a is blocked. Based on the proximity of the first dielectric substrate 4 to the propagation line, the passage of the first stop frequency can be blocked.

【0032】このように、信号伝搬線路と複数の半波長
共振器とを別個の誘電基板上に形成し、さらに、両基板
の位置関係を外部信号を介して制御するという簡単な操
作により、通過阻止周波数のみならず、阻止域減衰量、
阻止域周波数幅等の阻止特性を当該フィルタバンクの電
磁環境に応じて選択できることになる。
As described above, the signal propagation line and the plurality of half-wavelength resonators are formed on separate dielectric substrates, and the positional relationship between the two substrates is controlled by an external signal. Not only the stop frequency, but also the stop band attenuation,
The rejection characteristics such as the rejection band frequency width can be selected according to the electromagnetic environment of the filter bank.

【0033】[0033]

【発明の効果】以上説明したように、本発明の構成によ
り、大きなQ値の保有により伝搬損失が少ない等、従来
技術に比べてより理想的な阻止能力を有する一方、フィ
ルタやフィルタバンクにおける通過阻止周波数のみなら
ず、阻止域減衰量、阻止域周波数幅を電磁環境に応じて
選択できるため、信号処理系の負荷を軽減でき、特定の
周波数帯に複数方式の信号処理の共存を可能にする。従
って、信号品質を劣化させることなく信号処理を行うこ
とができ、今後のチヤネルの増加や帯域の有効利用に対
処できる通信システムを提供できるという優れた効果を
奏する。
As described above, the configuration of the present invention has a more ideal blocking capability than the prior art, such as having a large Q value and a small propagation loss. Not only the stop frequency, but also the stop band attenuation and stop band frequency width can be selected according to the electromagnetic environment, so the load on the signal processing system can be reduced and multiple types of signal processing can coexist in a specific frequency band. . Therefore, there is an excellent effect that a signal processing can be performed without deteriorating signal quality, and a communication system capable of coping with an increase in channels and effective use of a band in the future can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を示すストリップライン構
造の場合の概略斜視図であり、(a)は第1の誘電基板
側を、(b)は第2の誘電基板側を示し、(c)は誘電
基板の第1の移動例を示す平面図、(d)は第2の移動
例を示す平面図である。
FIG. 1 is a schematic perspective view of a strip line structure showing a first embodiment of the present invention, wherein (a) shows a first dielectric substrate side, (b) shows a second dielectric substrate side, (C) is a plan view showing a first movement example of the dielectric substrate, and (d) is a plan view showing a second movement example.

【図2】図1に示す実施例に係る高周波フィルタにおけ
る信号透過特性を示すグラフであり、(a)は第1の移
動例に対応するもの、(b)は第2の移動例に対応する
ものである。
FIGS. 2A and 2B are graphs showing signal transmission characteristics of the high-frequency filter according to the embodiment shown in FIG. 1, wherein FIG. 2A corresponds to a first movement example and FIG. 2B corresponds to a second movement example; Things.

【図3】第2実施例を示すマイクロストリップ構造の場
合の概略斜視図であり、(a)は第1の誘電基板側を、
(b)は第2の誘電基板側を示している。
FIGS. 3A and 3B are schematic perspective views of a microstrip structure showing a second embodiment, in which FIG.
(B) shows the second dielectric substrate side.

【図4】第3実施例を示す側面図であり、(a)は第1
の移動例を、(b)は第2の移動例を示すものである。
FIGS. 4A and 4B are side views showing a third embodiment, in which FIG.
(B) shows a second movement example.

【図5】従来の通過阻止フィルタの構成を示す平面図で
ある。
FIG. 5 is a plan view showing a configuration of a conventional pass blocking filter.

【図6】図5に示す構成のフィルタの特性を示すグラフ
である。
FIG. 6 is a graph showing characteristics of the filter having the configuration shown in FIG. 5;

【符号の説明】[Explanation of symbols]

4 第1の誘電基板、 5、5a、5b 第2の誘電基板、 6 信号伝搬線路、 7 グランドプレーン、 8 半波長共振器、 9 半波長共振器、 10 グランドプレーン、 11 入出力コネクタ。 4 First dielectric substrate, 5, 5a, 5b Second dielectric substrate, 6 Signal propagation line, 7 Ground plane, 8 Half-wave resonator, 9 Half-wave resonator, 10 Ground plane, 11 I / O connector.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 道上 修 東京都千代田区内幸町1丁目1番6号日 本電信電話株式会社内 (56)参考文献 特開 昭62−160801(JP,A) 実開 平3−101004(JP,U) 特表 平6−509684(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01P 1/203 WPI(DIALOG)──────────────────────────────────────────────────続 き Continuing on the front page (72) Osamu Michigami, Inventor 1-6-1 Uchisaiwai-cho, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation (56) References JP-A-62-160801 (JP, A) Hei 3-101004 (JP, U) Special table Hei 6-509684 (JP, A) (58) Fields investigated (Int.Cl. 6 , DB name) H01P 1/203 WPI (DIALOG)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高周波信号の伝搬線路と、夫々が互いに
異なる特定の周波数に対して通過阻止作用を有する複数
の半波長共振器とを超伝導材料により形成して成る高周
波フィルタにおいて、前記伝搬線路が配置される第1の
誘電基板と、該第1の誘電基板に対向するように位置
し、かつ、前記複数の半波長共振器が配置される分離さ
れた又は一体的の第2の誘電基板と、前記複数の半波長
共振器のうちの少なくとも1つと前記伝搬線路とが離接
するように、当該前記第1の誘電基板と前記第2の誘電
基板とを相対的に移動させる駆動手段と、を設けたこと
を特徴とする高周波フィルタ。
1. A a propagation path of the radio frequency signals respectively to each other
In a high frequency filter including a plurality of half-wavelength resonators having a blocking function for different specific frequencies made of a superconducting material, a first dielectric substrate on which the propagation line is disposed; A separated or integral second dielectric substrate positioned opposite the dielectric substrate and on which the plurality of half-wave resonators are disposed, and at least one of the plurality of half-wave resonators; A high-frequency filter comprising: a driving unit that relatively moves the first dielectric substrate and the second dielectric substrate so that the propagation line is separated from and connected to the first dielectric substrate.
【請求項2】 前記駆動手段は、外部信号により駆動す
るアクチュエータから成り、前記離接する第1の誘電基
板と第2の誘電基板は、いずれか一方が前記アクチュエ
ータに連結され、他方は所定の部材に固定されることを
特徴とする請求項1に記載の高周波フィルタ。
2. The driving unit comprises an actuator driven by an external signal, and one of the first and second dielectric substrates which are separated from and connected to each other is connected to the actuator, and the other is a predetermined member. The high-frequency filter according to claim 1, wherein the high-frequency filter is fixed to a high-frequency filter.
JP9192692A 1992-03-17 1992-03-17 High frequency filter Expired - Fee Related JP2898462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9192692A JP2898462B2 (en) 1992-03-17 1992-03-17 High frequency filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9192692A JP2898462B2 (en) 1992-03-17 1992-03-17 High frequency filter

Publications (2)

Publication Number Publication Date
JPH05267908A JPH05267908A (en) 1993-10-15
JP2898462B2 true JP2898462B2 (en) 1999-06-02

Family

ID=14040194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9192692A Expired - Fee Related JP2898462B2 (en) 1992-03-17 1992-03-17 High frequency filter

Country Status (1)

Country Link
JP (1) JP2898462B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69529985T2 (en) 1994-06-17 2004-01-29 Matsushita Electric Ind Co Ltd SWITCHING ELEMENT FOR HIGH FREQUENCY
US5496796A (en) * 1994-09-20 1996-03-05 Das; Satyendranath High Tc superconducting band reject ferroelectric filter (TFF)
US7639987B2 (en) 2002-08-20 2009-12-29 Lockheed Martin Corporation Method and apparatus for modifying a radio frequency response
DE10325595B3 (en) * 2003-06-05 2004-12-09 Kathrein-Werke Kg High-frequency filter, especially in the manner of a duplex filter
JP2016039540A (en) * 2014-08-08 2016-03-22 日本電業工作株式会社 Antenna controller and antenna
IT202000025753A1 (en) * 2020-10-29 2022-04-29 Commscope Italy Srl FILTERS WITH MOBILE RADIOFREQUENCY TRANSMISSION LINE

Also Published As

Publication number Publication date
JPH05267908A (en) 1993-10-15

Similar Documents

Publication Publication Date Title
US6122533A (en) Superconductive planar radio frequency filter having resonators with folded legs
US5750473A (en) Planar high temperature superconductor filters with backside coupling
EP1026772B1 (en) High-frequency circuit element
US6216020B1 (en) Localized electrical fine tuning of passive microwave and radio frequency devices
WO1998000880A9 (en) Planar radio frequency filter
US6823201B2 (en) Superconducting microstrip filter having current density reduction parts
US4980657A (en) Coplanar waveguide frequency selective limiter
JP2898462B2 (en) High frequency filter
JP3048509B2 (en) High frequency circuit element
US10707547B2 (en) Biplanar tapered line frequency selective limiter
US6381478B2 (en) Superconductive high-frequency circuit element with smooth contour
JPH07202507A (en) Micro strip line filter
US6111485A (en) Arrangement and method relating to filtering of signals
US5309127A (en) Planar tunable YIG filter
KR100303464B1 (en) High frequency circuit device
KR100335108B1 (en) microwave filter
KR100313893B1 (en) narrow band superconducting band pass filter
JPH05206705A (en) High-frequency filter
EP1533862B1 (en) Signal switching device
JPH05160616A (en) Thin film resonator
JP4125842B2 (en) High frequency filter
JP2000502231A (en) Apparatus for filtering a signal and associated method
JPH07336106A (en) Terminal coupling filter packaging structure
JPH07147501A (en) Superconducting termination coupling filter
WO1997050144A1 (en) Planar high temperature superconductor filters or multiplexers with backside coupling

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees