JP2893741B2 - Electrostrictive effect element - Google Patents

Electrostrictive effect element

Info

Publication number
JP2893741B2
JP2893741B2 JP1201642A JP20164289A JP2893741B2 JP 2893741 B2 JP2893741 B2 JP 2893741B2 JP 1201642 A JP1201642 A JP 1201642A JP 20164289 A JP20164289 A JP 20164289A JP 2893741 B2 JP2893741 B2 JP 2893741B2
Authority
JP
Japan
Prior art keywords
electrostrictive
internal electrode
layer
electrostrictive effect
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1201642A
Other languages
Japanese (ja)
Other versions
JPH0364979A (en
Inventor
正博 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP1201642A priority Critical patent/JP2893741B2/en
Publication of JPH0364979A publication Critical patent/JPH0364979A/en
Application granted granted Critical
Publication of JP2893741B2 publication Critical patent/JP2893741B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電歪縦効果を利用した電歪効果素子に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an electrostrictive element using an electrostrictive longitudinal effect.

〔従来の技術〕[Conventional technology]

従来、この種の電歪効果素子は、第7図に示すよう
に、電歪セラミック材料からなる電歪効果層2と銀パラ
ジウム合金または白金を用いた内部電極導体1とを交互
に重ね合せ両端に電歪セラミック材料の厚いシートより
なる保護層3a,3bを設けた積層焼結体と、内部電極導体
1を交互に一層おきに絶縁するためのガラス等の絶縁物
4と、内部電極導体1を交互に一層おきに電気的に接続
するために被着された一対の外部電極導体5a,5bと、外
部電極導体5a,5bに電気的に接続されたリード線6a,6bと
で構成されていた。
Conventionally, as shown in FIG. 7, this type of electrostrictive element has an electrostrictive effect layer 2 made of an electrostrictive ceramic material and an internal electrode conductor 1 made of a silver-palladium alloy or platinum alternately overlapped with each other. A laminated sintered body provided with protective layers 3a and 3b made of a thick sheet of an electrostrictive ceramic material, an insulator 4 such as glass for alternately insulating the internal electrode conductors 1 every other layer, and an internal electrode conductor 1 And a pair of external electrode conductors 5a and 5b attached to alternately electrically connect every other layer, and lead wires 6a and 6b electrically connected to the external electrode conductors 5a and 5b. Was.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上述した従来の電歪効果素子は、電界が印加され電歪
縦効果により長手方向に変位を生じる電歪効果層2と、
電界が印加されず電歪不活性な保護層3a,3bとが内部電
極導体11,1n+1をはさんで直接接触している。
The above-described conventional electrostrictive effect element includes an electrostrictive effect layer 2 in which an electric field is applied and a displacement occurs in a longitudinal direction due to an electrostrictive longitudinal effect;
The protective layers 3a, 3b to which no electric field is applied and which are electrostriction inactive are in direct contact with each other across the internal electrode conductors 11 , 1n + 1 .

このような電歪効果素子は電圧を印加した場合、電歪
効果層2の部分は電歪横効果により断面積が縮小するの
に対し、保護層3a,3bの部分の断面積が縮小しないため
に、第8図のように保護層3a,3bの電歪効果層2に接す
る面が扇状にすぼめられる変形をおこし、電歪効果層2
と保護層3a,3bの界面に剪断及び引張り応力を生じる。
特に実用面で、接着剤を介して素子を使用機器の取り付
け金具等に固定した場合、第5図の電歪効果素子の両端
に自由変形を拘束してしまうので、保護層−電歪効果層
間の応力はさらに増大する。
When a voltage is applied to such an electrostrictive effect element, the cross-sectional area of the electrostrictive effect layer 2 is reduced by the electrostrictive transverse effect, but the cross-sectional area of the protective layers 3a and 3b is not reduced. Next, as shown in FIG. 8, the surfaces of the protective layers 3a and 3b in contact with the electrostrictive effect layer 2 are deformed so as to be fan-shaped, and the electrostrictive effect layer 2 is deformed.
Shear and tensile stress are generated at the interface between the protective layers 3a and 3b.
Particularly, in practical use, when the element is fixed to the mounting bracket of the equipment to be used via an adhesive, free deformation is restricted at both ends of the electrostrictive effect element shown in FIG. Further increases.

また、電歪効果層21,2nと保護層3a,3bとは内部電極導
体11,1n+1を全面に介して接着されているが、この界面
の機械的強度は、同一断面積のセラミック母材の機械的
強度と比較して著しく低い。
Furthermore, the electrostrictive effect layers 2 1, 2 n and the protective layer 3a, has been adhered to the inner electrode conductor 1 1, 1 n + 1 through the entire surface and 3b, the mechanical strength of the interface is the same cross-sectional Significantly lower than the mechanical strength of the area ceramic matrix.

この結果、1kV/mmを越える電界で本電歪効果素子を駆
動した場合、電歪効果層21,2nと保護層3a,3bとの界面に
働く応力は、界面の機械的強度を越え電歪効果素子が破
断してしまうという欠点がある。
As a result, when driving the present electrostrictive effect element in the electric field exceeding 1 kV / mm, the stress acting electrostrictive effect layers 2 1, 2 n and the protective layer 3a, the interface with the 3b may exceed the mechanical strength of the interface There is a disadvantage that the electrostrictive effect element is broken.

実際に電歪効果層2の厚さt=115μm,保護層3a,3bの
厚さh=2mmの電歪効果素子1000個を試作し、150V200Hz
の矩形波を印加したところ、第7図の通り104回の電圧
印加が38%,105回で76%,108回でほぼ全数の電歪効果素
子が電歪効果層21,2nと保護層3a,3bとの界面で破断し不
良となった。
Actually, 1000 electrostrictive effect elements having a thickness t = 115 μm of the electrostrictive effect layer 2 and a thickness h = 2 mm of the protective layers 3a and 3b were prototyped, and 150V 200Hz
Of was applied a rectangular wave, Figure 7 as 10 4 times the voltage applied 38% of, 10 5 times with 76%, the electrostrictive effect element electrostrictive effect layers 2 1 substantially all of 10 8 times, 2 It broke at the interface between n and the protective layers 3a and 3b and became defective.

本発明の目的は、素子全体としての発生変位をさほど
損わずに、電圧を印加した場合に生ずる電歪効果層と保
護層の界面に働く応力を低下させ、かつ機械的強度を向
上でき、その結果素子の破断を防ぐことができ、くり返
し駆動に対する寿命を延びし信頼性を向上させることが
できる電歪効果素子を提供することにある。
The object of the present invention is to reduce the stress acting on the interface between the electrostrictive effect layer and the protective layer generated when a voltage is applied without significantly impairing the displacement generated as a whole element, and improve the mechanical strength, As a result, an object of the present invention is to provide an electrostrictive element capable of preventing breakage of the element, extending the life for repeated driving and improving reliability.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の電歪効果素子は、同じ厚さの電歪セラミック
部材と同じ厚さの内部電極導体とを複数交互に積層した
電歪効果層と該電歪効果層の両端に電歪セラミック部材
よりなる電歪不活性な保護層とを有する電歪効果素子に
おいて、前記内部電極導体が導体非形成部を有し、前記
複数の内部電極導体の導体非形成部の密度が保護層側か
ら電歪効果素子中央部に向って漸減していることを特徴
として構成される。
The electrostrictive effect element of the present invention comprises an electrostrictive effect layer in which a plurality of electrostrictive ceramic members having the same thickness and internal electrode conductors having the same thickness are alternately laminated, and an electrostrictive ceramic member at both ends of the electrostrictive effect layer. Wherein the internal electrode conductor has a conductor non-forming portion, and the density of the conductor non-forming portion of the plurality of internal electrode conductors increases from the protective layer side to the electrostriction. It is characterized in that it gradually decreases toward the center of the effect element.

本発明は上述したように、保護層付近の内部電極導体
に導体非形成部が設けられているので一電歪効果素子中
に電歪活性部と電歪不活性部を混在させることにより、
この電歪効果層の電歪縦効果および電歪横効果を押え
て、電歪効果層と保護層との界面に働く応力を低下させ
ることができ、特に、導体形成部の密度を保護層側から
電歪効果素子中央部に向って漸減させることにより素子
全体として発生変位をさほど損なうことなくすることが
できる。さらに電歪効果層と保護層とが一部電歪セラミ
ック母材で直接接合されているため機械的強度を向上さ
せることができ、その結果素子の破断を防ぎ、くり返し
駆動に対する寿命を延ばし信頼性を向上させることがで
きる。
The present invention, as described above, since the conductor non-forming portion is provided in the internal electrode conductor near the protective layer, by mixing the electrostriction active portion and the electrostriction inactive portion in one electrostriction effect element,
By suppressing the electrostrictive longitudinal effect and the electrostrictive lateral effect of the electrostrictive effect layer, it is possible to reduce the stress acting on the interface between the electrostrictive effect layer and the protective layer. , The displacement gradually decreases toward the central portion of the electrostrictive effect element, so that the displacement generated in the entire element can be prevented from being significantly impaired. Furthermore, since the electrostrictive effect layer and the protective layer are partially joined directly by the electrostrictive ceramic base material, the mechanical strength can be improved, thereby preventing the element from breaking, prolonging the life for repeated driving and improving reliability. Can be improved.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の電歪効果素子の縦断面図
である。第2図(a)〜(c)は本発明の電歪効果素子
に用いる内部電極パターンを示していて、図中の円は内
部電極導体11〜16,1n-4〜1n+1にあけた導体非形成部を
示している。
FIG. 1 is a longitudinal sectional view of an electrostrictive element according to one embodiment of the present invention. 2 (a) to 2 (c) show internal electrode patterns used in the electrostrictive effect element of the present invention, and circles in the figures indicate internal electrode conductors 11 to 16 and 1n -4 to 1n +. 1 shows a conductor non-formed portion opened in FIG.

先ず、例えばニッケル・ニオブ酸鉛Pb(Ni1/3Nb2/3)
O3やチタン酸鉛PbTiO3等を主成分とする電歪材料の予焼
粉末に、少量の有機バインダを添加し、この混合物を有
機溶媒中に分散させて泥漿を準備し、この泥漿でスリッ
プキャスティング成膜法等により層厚約100μmの電歪
セラミック部材を形成する。次にこの電歪セラミック部
材の片面に重量比7:3の銀粉末とパラジウム粉末との混
合粉末、または白金粉末を主成分とする導体ペーストを
スクリーン印刷等で約10μm被着させて内部電極導体2
を形成する。この際、第2図(a)〜(c)のような電
極パターンのものも印刷する。内部電極導体の導体非形
成部は直径d=0.4mmで、数はaが49,bは25,cが9であ
った。
First, for example, lead nickel / niobate Pb (Ni1 / 3Nb2 / 3)
A small amount of an organic binder is added to a pre-fired powder of an electrostrictive material mainly composed of O 3 or lead titanate PbTiO 3 and the like, and this mixture is dispersed in an organic solvent to prepare a slurry, which is then slipped with the slurry. An electrostrictive ceramic member having a layer thickness of about 100 μm is formed by a casting film forming method or the like. Next, a conductive powder containing a mixture of silver powder and palladium powder at a weight ratio of 7: 3 or a platinum powder as a main component is applied to one side of the electrostrictive ceramic member by screen printing or the like by about 10 μm to form an internal electrode conductor. 2
To form At this time, the electrode patterns shown in FIGS. 2A to 2C are also printed. The portion of the internal electrode conductor where the conductor was not formed had a diameter d = 0.4 mm, and the numbers a were 49, b was 25, and c was 9.

次に、導体非形成部のない電極を印刷したシートを15
0枚積層し、さらに両端部に第2図(a)〜(c)の内
部電極パターンのシートを(a),(b),(c)の順
に各々2枚づつ第1図のように積層した後、プレス,脱
バインダを行い、その後約1100℃,2時間の条件で焼成し
た後側面を切断して、内部電極導体11〜1n+1の端面が外
部に露出した状態の角柱状の積層焼結体を作成する。次
に、この積層焼結体の対向する一対の側面に露出した内
部電極導体11〜1n+1の端部に該側面において交互に電気
泳動法等によりガラス粉末の塗布および焼結を施して絶
縁層41〜4n+1を形成する。続いて内部電極導体11〜1n+1
を一層おきに電気的に接続するために、銀粉末を主成分
とする導電ペーストを印刷塗布して焼成することによ
り、一対の外部電極導体5a,5bを形成する。さらに、外
部電極導体5a,5bと電気的に接続されたリード線6a,6bを
設置し、完成する。
Next, a sheet on which electrodes without a conductor-free portion were printed was
In FIG. 1, two sheets of the internal electrode pattern shown in FIGS. 2 (a) to 2 (c) are laminated at both ends in the order of (a), (b) and (c). After pressing, removing the binder, firing at about 1100 ° C for 2 hours, and cutting the side surface, the prismatic shape with the end faces of the internal electrode conductors 11 to 1n + 1 exposed to the outside To produce a laminated sintered body. Next, the end portions of the internal electrode conductors 11 to 1n + 1 exposed on a pair of opposed side surfaces of the laminated sintered body are alternately subjected to application and sintering of glass powder by electrophoresis or the like on the side surfaces. Te to form an insulating layer 4 1 ~4 n + 1. Then, the internal electrode conductors 1 1 to 1 n + 1
In order to electrically connect every other layer, a pair of external electrode conductors 5a and 5b are formed by printing and applying a conductive paste containing silver powder as a main component and baking. Further, lead wires 6a and 6b electrically connected to the external electrode conductors 5a and 5b are installed and completed.

本電歪効果素子に150Vの直流電圧を印加した場合、電
歪効果層の両面にある内部電極導体に導体非形成部があ
るために、電歪効果層21〜26,2n-5〜2nでは同一電歪効
果中に電歪活性部と電歪不活性部が混在しているために
電歪横効果による平面方向の収縮ひずみが押えられる。
また内部電極導体中の導体非形成部の密度が保護層3a,3
bから電歪効果素子中央に向って漸次減少しているため
に、電歪効果層の水平方向の収縮ひずみが、全くひずま
ない保護層から素子中央部に向って徐々に大きくなって
いき、保護層3a,3bと電歪効果層21,2nとの界面への応力
集中を緩和している。さらに電歪効果層と保護層とが一
部電歪セラミック母材で直接接合されているために、界
面の機械的強度が向上している。本実施例の場合、内部
電極導体中の導体非形成部のパターンが細かいため、混
在した電歪活性部と電歪不活性部との境界に働く応力が
比較的小さく、不均一で、導体非形成部のある内部電極
導体にはさまれた電歪効果層を変形量を均一に、しかも
微妙にコントロールできるという利点をもつ。
When applying a DC voltage of 150V to the electrostrictive effect element, to the internal electrode conductor on both surfaces of the electrostrictive effect layers is nonconductive portion, the electrostrictive effect layers 2 1 ~2 6, 2 n- 5 ~ 2 for electrostrictive active portion in the same electrostrictive effect in n electrostrictive inactive portion are mixed planar direction of shrinkage strain electrostrictive transverse effect is pressed.
In addition, the density of the non-conductor portion in the internal electrode conductor is lower than that of the protective layer 3a, 3
Since b gradually decreases toward the center of the electrostrictive effect element, the horizontal shrinkage strain of the electrostrictive effect layer gradually increases from the protective layer, which is not distorted at all, toward the center of the element. layer 3a, which relaxes the stress concentration in the interface between 3b and the electrostrictive effect layers 2 1, 2 n. Further, since the electrostrictive effect layer and the protective layer are partially joined directly with the electrostrictive ceramic base material, the mechanical strength at the interface is improved. In the case of the present embodiment, since the pattern of the conductor non-formed portion in the internal electrode conductor is fine, the stress acting on the boundary between the mixed electrostrictive active portion and the electrostrictive inactive portion is relatively small, uneven, This has the advantage that the amount of deformation of the electrostrictive effect layer sandwiched between the internal electrode conductors having the formed portions can be uniformly and finely controlled.

第3図は本発明の他の実施例の縦断面図である。第4
図(a)〜(c)は本発明の第3図に示す第2の実施例
に用いる内部電極パターンを示していて、図中の円は内
部電極導体11〜16,1n-4〜1n+1にあけた導体非形成部を
示している。
FIG. 3 is a longitudinal sectional view of another embodiment of the present invention. 4th
FIGS. 7A to 7C show internal electrode patterns used in the second embodiment shown in FIG. 3 of the present invention, and circles in the figures denote internal electrode conductors 11 to 16 and 1 n-4. 2 shows a non-conductor-formed portion opened to 11 n + 1 .

先ず、第1の実施例と同様の方法を用いて厚さ約100
μmの電歪セラミック部材を形成する。次に第1の実施
例と同様に導体ペーストをスクリーン印刷等で約10μm
被着させて内部電極導体2を形成する。この際、第4図
(a)〜(c)のような電極パターンのものも印刷す
る。内部電極導体の導体非形成部数は全て9個で、直径
は(a),(b),(c)それぞれ1mm,0.7mm,0.3mmで
あった。
First, using the same method as in the first embodiment, a thickness of about 100
A μm electrostrictive ceramic member is formed. Next, as in the first embodiment, the conductor paste is applied to a thickness of about 10 μm by screen printing or the like.
The internal electrode conductor 2 is formed by being attached. At this time, the electrode patterns shown in FIGS. 4A to 4C are also printed. The number of conductor-free portions of the internal electrode conductors was all nine, and the diameters were 1 mm, 0.7 mm, and 0.3 mm, respectively, for (a), (b), and (c).

次に、空孔のない電極を印刷したシートを150枚積層
し、さらに両端部に第4図(a)〜(c)の内部電極パ
ターンのシートを(a),(b),(c)の順に各々2
枚づつ第3図のように積層した後、第1図の実施例と全
く同様の工程を経て完成する。
Next, 150 sheets on which electrodes without holes are printed are laminated, and the sheets of the internal electrode patterns shown in FIGS. 4 (a) to 4 (c) are further provided at both ends with the sheets (a), (b) and (c). 2 in the order of
After the sheets are stacked one by one as shown in FIG. 3, the process is completed through exactly the same steps as in the embodiment of FIG.

本第2の実施例の電歪効果素子の場合も第1の実施例
と同様に、電圧を印加した場合、電歪効果層21〜26,2
n-5〜2nでは電歪横効果による平面方向のひずみが押え
られる。
Similar to the first embodiment in the case of the electrostrictive effect element according to the second embodiment, when a voltage is applied, the electrostrictive effect layers 2 1 to 2 6, 2
In n-5 to 2n , the strain in the plane direction due to the electrostrictive transverse effect is suppressed.

また、内部電極導体中の面積が保護層3a,3bから電歪
効果素子中央に向って漸次減少しているために、導体非
形成部電歪効果層の水平方向の収縮ひずみが、全くひず
まない保護層から素子中央部に向って徐々に大きくなっ
ていき、保護層3a,3bと電歪効果層21,2nとの界面への応
力集中を緩和している。また、電歪セラミック母材同士
の接合による界面の機械的強度の向上も第1の実施例と
同様である。
In addition, since the area in the internal electrode conductor is gradually reduced from the protective layers 3a and 3b toward the center of the electrostrictive element, the shrinkage strain in the horizontal direction of the conductor-free portion electrostrictive layer is not distorted at all. It will gradually increases toward the central region of the protective layer, the protective layer 3a, which relaxes the stress concentration in the interface between 3b and the electrostrictive effect layers 2 1, 2 n. The improvement of the mechanical strength of the interface by joining the electrostrictive ceramic base materials is also the same as in the first embodiment.

さらに、第1の実施例と比較して内部電極導体中の導
体非形成部のパターンが簡単であるため工業的大量生産
に適用し易いという利点をもつ。
Furthermore, since the pattern of the conductor-free portion in the internal electrode conductor is simpler than that of the first embodiment, there is an advantage that it can be easily applied to industrial mass production.

第5図は断面5mm×5mmの第1の実施例の電歪効果素子
の保護層と電歪効果層との界面の引張り強度を100個の
サンプルについて試験した結果であり、界面強度が従来
品の3倍近くに向上している。
FIG. 5 shows the results of testing the tensile strength at the interface between the protective layer and the electrostrictive effect layer of the electrostrictive effect element of the first embodiment having a cross section of 5 mm × 5 mm for 100 samples. It is almost three times higher.

また、第6図は断面5mm×5mm,高さ20,積層数160層の
第1の実施例の電歪効果素子100個に関する、150V200Hz
の矩形波をかける繰り返し寿命試験の結果である。この
ように本電歪効果素子は1億回のパルス印加後も不良は
1つも発生していない。
FIG. 6 shows a section of 5 mm × 5 mm, a height of 20, and a number of laminations of 160 layers.
Is a result of a repeated life test in which a rectangular wave is applied. As described above, in the present electrostrictive effect element, no defect has occurred even after 100 million pulse application.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の電歪効果素子の縦断面図、
第2図(a)〜(c)は第1図に示す第1の実施例に使
用する内部電極導体11〜16,1n-4〜1n+1の印刷パター
ン、第3図は本発明の他の実施例の電歪効果素子の縦断
面図、第4図(a)〜(c)は第3図に示す第2の実施
例に使用する内部電極導体11〜16,1n-4〜1n+1の印刷パ
ターン、第5図は従来の電歪効果素子に電圧を印加した
際の変形を表す図、第6図は電歪効果素子の保護層と電
歪効果層との界面の引張り試験結果、第7図は繰り返し
寿命試験の結果、第8図は従来の電歪効果素子の一例の
縦断面図である。 11〜1n+1……内部電極導体、21〜2n……電歪効果層、3
a,3b……保護層、41〜4n+1……絶縁層、5a,5b……外部
電極導体、6a,6b……リード線。
FIG. 1 is a longitudinal sectional view of an electrostrictive element according to one embodiment of the present invention,
2 (a) to 2 (c) are print patterns of the internal electrode conductors 11 to 16 and 1n -4 to 1n + 1 used in the first embodiment shown in FIG. 1, and FIG. FIGS. 4 (a) to 4 (c) are longitudinal sectional views of an electrostrictive element according to another embodiment of the present invention, and FIGS. 4 (a) to 4 (c) show internal electrode conductors 11 to 16 used in the second embodiment shown in FIG. 1 n-4 ~1 n + 1 of the print pattern, FIG. 5 is a diagram illustrating a modification of when a voltage is applied to the conventional electrostrictive effect element, the protective layer and the electrostrictive effect in Figure 6 electrostrictive effect element FIG. 7 is a longitudinal sectional view of an example of a conventional electrostrictive effect element, and FIG. 7 is a result of a tensile life test of the interface with the layer, FIG. 1 1 to 1 n + 1 ... internal electrode conductor, 2 1 to 2 n ... electrostrictive effect layer, 3
a, 3b: protective layer, 4 1 to 4 n + 1 ... insulating layer, 5a, 5b: external electrode conductor, 6a, 6b: lead wire.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】同じ厚さの電歪セラミック部材と同じ厚さ
の内部電極導体とを複数交互に積層した電歪効果層と該
電歪効果層の両端に電歪セラミック部材よりなる電歪不
活性な保護層とを有する電歪効果素子において、前記内
部電極導体が導体非形成部を有し、前記複数の内部電極
導体の導体非形成部の密度が保護層側から電歪効果素子
中央部に向って漸減していることを特徴とする電歪効果
素子。
1. An electrostrictive layer in which a plurality of electrostrictive ceramic members having the same thickness and internal electrode conductors having the same thickness are alternately laminated, and an electrostrictive layer formed of an electrostrictive ceramic member at both ends of the electrostrictive effect layer. In the electrostrictive effect element having an active protective layer, the internal electrode conductor has a conductor non-formed portion, and the density of the conductor non-formed portion of the plurality of internal electrode conductors is increased from the protective layer side to the electrostrictive element central portion. An electrostrictive effect element characterized by a gradual decrease toward.
JP1201642A 1989-08-02 1989-08-02 Electrostrictive effect element Expired - Lifetime JP2893741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1201642A JP2893741B2 (en) 1989-08-02 1989-08-02 Electrostrictive effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1201642A JP2893741B2 (en) 1989-08-02 1989-08-02 Electrostrictive effect element

Publications (2)

Publication Number Publication Date
JPH0364979A JPH0364979A (en) 1991-03-20
JP2893741B2 true JP2893741B2 (en) 1999-05-24

Family

ID=16444472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1201642A Expired - Lifetime JP2893741B2 (en) 1989-08-02 1989-08-02 Electrostrictive effect element

Country Status (1)

Country Link
JP (1) JP2893741B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101292129B (en) * 2005-10-17 2010-10-27 琳得科株式会社 Measuring device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4768963B2 (en) * 2004-03-01 2011-09-07 リンテック株式会社 Wafer transfer method
US7591542B2 (en) 2004-06-03 2009-09-22 Brother Kogyo Kabushiki Kaisha Piezoelectric actuator, method for producing the same and ink-jet head
DE102004038103A1 (en) * 2004-08-05 2006-02-23 Epcos Ag Multi-layer component and method for its production
CN101238598B (en) 2005-06-15 2012-07-11 京瓷株式会社 Multilayer piezoelectric element and ejector using this
JP5027448B2 (en) * 2005-06-15 2012-09-19 京セラ株式会社 Multilayer piezoelectric element and jetting apparatus using the same
US20080203853A1 (en) * 2005-07-26 2008-08-28 Carsten Schuh Method For Producing a Monolithic Piezo Actuator With Stack Elements, Monilithic Piezo Actuator With Stack Elements, and Use of the Piezo Actuator
EP1942532B1 (en) * 2005-09-29 2015-03-18 Kyocera Corporation Laminated piezoelectric element and injection apparatus using same
JP4793981B2 (en) * 2005-10-04 2011-10-12 リンテック株式会社 EXPANDING DEVICE CONTROL METHOD AND CONTROL DEVICE THEREOF
EP1942533B1 (en) 2005-10-28 2013-05-01 Kyocera Corporation Layered piezoelectric element and injection device using the same
CN101395731B (en) * 2006-03-07 2010-08-18 京瓷株式会社 Process for producing ceramic member, ceramic member, gas sensor element, fuel cell element, layer-built piezoelectric element, injector, and fuel injection system
JP2008041991A (en) * 2006-08-08 2008-02-21 Nec Tokin Corp Multi-layered piezoelectric actuator element
DE102006049892A1 (en) * 2006-10-23 2008-05-08 Siemens Ag Monolithic piezo actuator with transition zone and safety layer as well as use of the piezo actuator
JP5270578B2 (en) * 2007-12-26 2013-08-21 京セラ株式会社 Multilayer piezoelectric element, injection device including the same, and fuel injection system
JP5133399B2 (en) * 2008-02-26 2013-01-30 京セラ株式会社 Multilayer piezoelectric element, injection device including the same, and fuel injection system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101292129B (en) * 2005-10-17 2010-10-27 琳得科株式会社 Measuring device

Also Published As

Publication number Publication date
JPH0364979A (en) 1991-03-20

Similar Documents

Publication Publication Date Title
EP0247540B1 (en) Electrostriction effect element
JP2893741B2 (en) Electrostrictive effect element
EP0144655B1 (en) Electrostriction transducer comprising electrostriction layers of axially varied thicknesses
JPH04299588A (en) Electrostriction effect element
JPH04159785A (en) Electrostrictive effect element
JPH08242023A (en) Piezoelectric element and piezoelectric actuator using it
JPH05218519A (en) Electrostrictive effect element
JPH06105800B2 (en) Electrostrictive effect element
JPH06252469A (en) Manufacture of laminated piezoelectric actuator
JPS59122200A (en) Method for connecting electrically internal electrode of electrostrictive element
JPH03283581A (en) Laminated piezoelectric actuator element
JPS63122288A (en) Electrostriction effect element
JPH0387076A (en) Piezoelectric actuator and manufacture thereof
JP2893739B2 (en) Electrostrictive effect element
JPH02164085A (en) Electrostriction effect element
JPH0256822B2 (en)
JPH04274377A (en) Laminated piezoelectric actuator
JPH01184968A (en) Manufacture of laminar piezoelectric element
JPS639168A (en) Electrostrictive displacement element
JPH04240785A (en) Electrostriction-effect element
JPS63177480A (en) Electrostrictive effect device
JPH0832131A (en) Laminated piezolectric element and its manufacture
JPH07106654A (en) Multilayer displacement element
JPH049390B2 (en)
JPH0279482A (en) Electrostriction effect element and manufacture thereof