JP2892559B2 - Seismic sensor - Google Patents

Seismic sensor

Info

Publication number
JP2892559B2
JP2892559B2 JP27238792A JP27238792A JP2892559B2 JP 2892559 B2 JP2892559 B2 JP 2892559B2 JP 27238792 A JP27238792 A JP 27238792A JP 27238792 A JP27238792 A JP 27238792A JP 2892559 B2 JP2892559 B2 JP 2892559B2
Authority
JP
Japan
Prior art keywords
contact
inertial sphere
seismic
contact plate
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27238792A
Other languages
Japanese (ja)
Other versions
JPH0694510A (en
Inventor
治範 加藤
靖和 水谷
茂一 柴田
克浩 木村
秀樹 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UBUKATA SEISAKUSHO KK
Original Assignee
UBUKATA SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UBUKATA SEISAKUSHO KK filed Critical UBUKATA SEISAKUSHO KK
Priority to JP27238792A priority Critical patent/JP2892559B2/en
Priority to AU47321/93A priority patent/AU668753B2/en
Priority to ITTO930678A priority patent/IT1261866B/en
Publication of JPH0694510A publication Critical patent/JPH0694510A/en
Priority to US08/559,948 priority patent/US5610338A/en
Priority to US08/682,340 priority patent/US5837951A/en
Application granted granted Critical
Publication of JP2892559B2 publication Critical patent/JP2892559B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は例えば都市ガスやプロパ
ンガス等のマイコンメーターに取付けられたり、石油暖
房機やガス燃焼機器や電気機器の制御装置等に取付けら
れ、地震等の震動を感知して前記マイコンメーターや制
御装置に検知信号を送る感震器に関するものである。
BACKGROUND OF THE INVENTION The present invention is mounted on a microcomputer meter of, for example, city gas or propane gas, or mounted on a control device of an oil heater, a gas combustion device or an electric device, and detects vibrations such as earthquakes. And a sensor for sending a detection signal to the microcomputer meter and the control device.

【0002】[0002]

【従来の技術】従来、感震器としていくつかの形式のも
のが提唱されている。例えば特開昭63−29286号
公報には所定の震度以上の地震に於いて感震球が第1の
接点を駆動し第2の接点に接触するようになされ、ケー
ス内で自動的に水平を保つ感震装置が記載されている。
また特開昭64−79624号公報には金属容器に水銀
粒を封入した感震器が記載されている。また特開平2−
186224号公報には球体が転動する事により、容器
内の上方から懸垂された可動接点と容器の内側に設けた
固定接点とを開閉し、容器は外ケース内に吊り下げら
れ、容器と外ケースの間に液体を入れた感震器が記載さ
れている。
2. Description of the Related Art Several types of seismic devices have been proposed. For example, Japanese Patent Laid-Open Publication No. Sho 63-29286 discloses that in the event of an earthquake of a predetermined seismic intensity or more, a seismic ball drives a first contact and comes into contact with a second contact. A seismic device to keep is described.
Japanese Patent Application Laid-Open No. 64-79624 discloses a seismic sensor in which mercury particles are sealed in a metal container. In addition, Japanese Unexamined Patent Publication
In Japanese Patent No. 186224, the sphere rolls to open and close a movable contact suspended from above in the container and a fixed contact provided inside the container. The container is suspended in an outer case, and the container is A seismic sensor with liquid between the cases is described.

【0003】[0003]

【発明が解決しようとする課題】近時、例えば感震器を
都市ガスやプロパンガス等のマイコンメーターに取り付
け、地震等の震動を感知して前記マイコンメーターに検
知信号を送り適切な保安処置がとられる様になってい
る。この場合、感震器の取り付けられたメータへの飛来
物の衝突とか、自動車の走行や工事現場などを原因とす
る人為的な振動と地震の振動とを見分ける必要がある。
そのためには感震器が地震の振動領域である周波数帯域
に於いては所定の動作特性を示し、それ以外の周波数帯
域に於いては別の動作特性を示すようにする必要がある
が、特開昭63−29286号公報の感震装置において
はその点に関しては全く考慮されていない。つまりこの
感震装置では可動接点と固定接点との接触時に可動接点
の単なる駆動源である感震球と固定接点とによって可動
接点が挟まれる形になるので、事実上固定接点と感震球
との剛体同士の単純な接触と同様になりその反発力によ
り瞬時に感震球と可動接点は固定接点から開離するため
に、接触時間を長く調整することができずスイッチとし
てのオン信号の出力時間を長くできない。そのため地震
動を感知する感震器としての使用には人為的な振動等の
ノイズや、電気的なノイズとの判別ができず誤動作の可
能性があった。
Recently, for example, a seismic sensor is attached to a microcomputer meter such as city gas or propane gas to detect a vibration such as an earthquake and send a detection signal to the microcomputer meter so that appropriate security measures can be taken. It is being taken. In this case, it is necessary to discriminate between a collision of a flying object with a meter equipped with a seismic sensor, and an artificial vibration caused by running of a car or a construction site, and an earthquake vibration.
For this purpose, it is necessary for the seismic sensor to exhibit predetermined operating characteristics in the frequency band, which is the vibration region of the earthquake, and to exhibit different operating characteristics in other frequency bands. No consideration is given to this point in the seismic device disclosed in Japanese Patent Laid-Open No. 63-29286. In other words, in this seismic device, when the movable contact and the fixed contact come into contact, the movable contact is sandwiched between the fixed contact and the seismic sphere, which is simply the driving source of the movable contact. Because the resilience instantaneously separates the seismic sphere and the movable contact from the fixed contact, the contact time cannot be adjusted for a long time, and the ON signal is output as a switch. Can't lengthen time. Therefore, when used as a seismic sensor for detecting seismic motion, noise such as artificial vibration and electric noise cannot be discriminated, and there is a possibility of malfunction.

【0004】特開平2−186224号公報の感震器
は、可動接点が重心より僅かに高い位置を支点として懸
垂されており非常に部品点数が多く構造が複雑であり組
み立て難く小形化が難しい。この感震器も前述の感震装
置と同様に接触時間を長く調整することは難しく、また
可動接点と固定接点との接触時の衝撃を弾性部材で吸収
することにより瞬間的な接触とならないようにすること
はできるとの記述はあるが部品点数が増えその構造はよ
り複雑になる。また可動接点が球体と一緒に水平方向に
移動するため小さな球体を用いることができるとの記載
が有るが、球体と接点との摩擦の為に球体の小形化には
自ずと限界がある。さらに構造上、容器は絶縁物で作ら
れているが、この絶縁物が合成樹脂である場合には接点
の導通不良等の原因となる有機汚染物の発生等の問題が
有り、またこの構造のものをガラスやセラミックス等を
使用して作ると非常に高価なものになる。また容器が合
成樹脂である場合、球体の転動と衝接により容器の特に
突起部や角等が変形し、やがて当初の特性が得られなく
なると言う問題があった。
In the seismic sensor disclosed in Japanese Patent Application Laid-Open No. 2-186224, the movable contact is suspended around a position slightly higher than the center of gravity, the number of parts is very large, the structure is complicated, it is difficult to assemble, and miniaturization is difficult. As with the above-mentioned seismic device, it is difficult to adjust the contact time for this seismic device for a long time, and the shock at the time of contact between the movable contact and the fixed contact is absorbed by an elastic member to prevent instantaneous contact. Although there is a description that this can be done, the number of parts increases and the structure becomes more complicated. There is also a description that a small sphere can be used because the movable contact moves in the horizontal direction together with the sphere, but there is naturally a limit to miniaturization of the sphere due to friction between the sphere and the contact. Further, the container is made of an insulating material due to its structure. However, if the insulating material is a synthetic resin, there is a problem that organic contaminants may be generated, which may cause poor contact at the contact point. If things are made using glass or ceramics, they become very expensive. Further, when the container is made of a synthetic resin, there has been a problem that the projections and corners of the container are particularly deformed due to the rolling and abutting of the sphere, so that the initial characteristics cannot be obtained soon.

【0005】また特開昭64−79624号公報の感震
器のように水銀を使ったものはマイコン等による制御に
非常によくあう特性を有し且つ長期的にも安定した性能
が得られる高性能なスイッチではあるが、昨今、環境問
題等から水銀を使用しない形式の感震器の要求が高まっ
ている。そこで水銀を使わず、且つ従来の水銀を使用し
た感震器と同様の特性を有し、小形で堅牢な且つ多量生
産に好適でコストの安い感震器が求められている。しか
し水銀粒は液体の為、そのスイッチの構造をそのまま固
体の導電性球体を使用したものに流用することはできな
い。
A device using mercury, such as a seismic sensor disclosed in Japanese Patent Application Laid-Open No. 64-79624, has characteristics that are very suitable for control by a microcomputer or the like, and provides stable performance over a long period of time. Although it is a high performance switch, the demand for a seismic sensor that does not use mercury has recently been increasing due to environmental problems and the like. Therefore, there is a need for a small, robust, mass-production-friendly, low-cost seismic sensor that has the same characteristics as conventional seismic sensors using mercury without using mercury. However, since the mercury particles are liquid, the structure of the switch cannot be directly applied to a device using solid conductive spheres.

【0006】[0006]

【課題を解決するための手段】そこで本願の感震器は、
円形の金属板のほぼ中心に穿たれた孔に電気絶縁性の充
填材によって導電端子ピンを貫通し気密に固定した蓋板
と、有底円筒形の導電性のハウジングを有し、該ハウジ
ングの底面にはほぼ中心部から外側に向かって同心円状
に緩やかに上昇する傾斜面が形成され、前記蓋板の周縁
部にハウジングの開口端が気密に固着されて気密容器を
形成し、蓋板の導電端子ピン端部には複数のしなやかな
弾性を有した腕状部を導電端子ピンを中心とする放射状
に配設する導電材製の接点板が導電的に固着され、前記
密閉容器の内部には導電性の固体の慣性球が正規姿勢に
おいて静止時には重力によりハウジングのほぼ中央部に
位置するように収納され、振動を受ける事により慣性球
が揺動し接点板の前記腕状部のほぼ同心円状に配設され
た接触部に接触してハウジング内面と接点板との間を慣
性球を介して短絡するように構成され、前期接点板の腕
状部の先端は慣性球の中心より上部に位置するとともに
該腕状部と慣性球との接触は慣性球の中心より上部で行
われるように構成し、慣性球は接触時に接点板を変位さ
せるとともに摺動し、接点板の前記変位に基く作用力は
腕状部が慣性球と接触関係にあるは常に慣性球をハウ
ジング底面に押し付ける方向に作用するように前記接点
板の慣性球との接触部分とハウジング底面との間の角度
が90°未満とされた感震素子を正規姿勢に保持する事
を特徴としている。
Means for Solving the Problems Therefore, the seismic sensor of the present application is:
A circular metal plate has a cover plate in which a conductive terminal pin is penetrated and hermetically fixed by an electrically insulating filler in a hole formed substantially at the center of the circular metal plate, and a bottomed cylindrical conductive housing. On the bottom surface, an inclined surface gradually rising concentrically from the center to the outside is formed, and the opening end of the housing is air-tightly fixed to the peripheral edge of the lid plate to form an airtight container. At the end of the conductive terminal pin, a contact plate made of a conductive material in which a plurality of flexible elastic arms are radially disposed around the conductive terminal pin is conductively fixed, and is provided inside the closed container. When the conductive solid inertial sphere is stationary in the normal posture, it is housed so as to be located at the approximate center of the housing by gravity, and when subjected to vibration, the inertial sphere swings and the concentric circle of the arm-shaped portion of the contact plate is substantially concentric. Arranged in a shape
Contact between the inner surface of the housing and the contact plate
The arm of the contact plate is configured to short-circuit through the sex ball
The tip of the shape is located above the center of the inertial sphere
The contact between the arm and the inertial sphere occurs above the center of the inertial sphere.
The inertial sphere displaces the contact plate during contact.
Slide causes the contact plate so as to act in a direction to press always inertia ball housing bottom while acting force based on the displacement of the contact plate which <br/> arm portion is in a contacting relationship with the inertia ball The seismic element in which the angle between the contact portion with the inertial sphere and the bottom surface of the housing is less than 90 ° is maintained in a normal posture.

【0007】本発明によれば金属製の固体の慣性球を可
動接点として導電性の金属容器内を転動させる構造と
し、前記慣性球と接触する一方の接点である接点板をし
なやかな弾力性のある構造とすると共にこの接点板の慣
性球と接触する部分が他方の接点となるハウジング底面
に対して常に90゜未満の角度を成す様に構成し、接点
板と慣性球との接触が慣性球の中心より上部で行なわれ
るように構成することによって、慣性球をハウジングに
押し付ける力が作用して安定した接触状態を得ることが
できる。
According to the present invention, a solid inertial sphere made of metal can be used.
A structure that rolls inside a conductive metal container as a moving contact
And a contact plate which is one of the contact points which comes into contact with the inertial sphere.
It has a flexible and elastic structure and the contact plate
The bottom of the housing where the part that contacts the sex ball is the other contact
At an angle of less than 90 ° with respect to
The contact between the plate and the sphere is made above the center of the sphere.
The inertia sphere is attached to the housing
Pressing force acts to obtain a stable contact state
it can.

【0008】また他の実施例に係る感震器は、前記腕状
部の撓み量を腕状部と慣性球の衝接点に慣性球の重量に
相当する力を腕状部1本に印加した時に0.25mm乃
至5mmとなる値に選定された感震素子を正規姿勢に保
持する事を特徴としている。
According to another embodiment of the present invention, there is provided a seismic sensor, wherein
The amount of deflection of the part is the weight of the inertial sphere at the point of contact between the arm and the inertial sphere.
When a corresponding force is applied to one arm, it is 0.25 mm
Keep the seismic element selected to a value of
It is characterized by having.

【0009】また他の特徴は、感震器の気密容器が導電
性の金属と無機性電気絶縁材料から構成された事にあ
る。
Another feature is that the airtight container of the seismic sensor is made of a conductive metal and an inorganic electrically insulating material.

【0010】さらに他の特徴は、感震器の気密容器内の
ガスを汚損防止用ガスに置換して封入した事にある。
Still another feature is that the gas in the airtight container of the seismic sensor is replaced with a gas for preventing contamination and sealed.

【0011】さらに他の特徴は、感震器のハウジング底
面の中央部に静止部を設け、斜面上の慣性球は転動可能
で且つ所定の振動を受けるまで重力により該静止部に位
置される様に収納された事にある。
Still another feature is that a stationary part is provided at the center of the bottom surface of the housing of the seismic sensor, and the inertial sphere on the slope is rollable and is positioned at the stationary part by gravity until receiving predetermined vibration. It was stored in a different way.

【0012】さらに他の特徴は、静止部の半径を慣性球
の半径の0.1倍乃至0.25倍とした感震器にある。
Still another feature is the seismic sensor in which the radius of the stationary part is 0.1 to 0.25 times the radius of the inertial sphere.

【0013】さらに他の特徴は、慣性球が接点板にあら
ゆる姿勢において衝接した場合にも永久変形を起こさな
いよう接点板が充分な弾性を有した感震器にある。
Still another feature resides in a seismic sensor in which the contact plate has sufficient elasticity so as not to cause permanent deformation even when the inertial ball collides with the contact plate in any posture.

【0014】さらに他の特徴は、感震器の接点板と導電
端子ピンとの固着部近傍に剛性の高い保護体を設け、慣
性球の衝突による接点板の永久変形を防止した事にあ
る。
Still another feature is that a rigid protector is provided in the vicinity of the fixed portion between the contact plate of the seismic sensor and the conductive terminal pin to prevent permanent deformation of the contact plate due to collision of the inertial sphere.

【0015】さらに他の特徴は、気密容器外部には吊り
部が装着され、その吊り部が所定位置に支持される支持
体を有しかつ前記気密容器を選定された粘性を有する液
体と共に収容するケースからなり、このケースを所定の
許容傾斜角度内となるように取付けることにより所定時
間内に前記気密容器は重力により正規姿勢となるととも
に、前記ケースが地震等の振動による加速度を受けた場
合には気密容器内の球が転動し電路を開閉するように構
成した取付けに厳格な注意力を要しないですむ感震器に
ある。
Still another feature is that a hanging portion is mounted outside the airtight container, the hanging portion has a supporter supported at a predetermined position, and the airtight container is accommodated together with a liquid having a selected viscosity. The airtight container has a normal posture due to gravity within a predetermined time by attaching the case so as to be within a predetermined allowable inclination angle, and when the case receives acceleration due to vibration such as an earthquake. Is a seismic sensor that does not require rigorous attention to the installation that is configured so that the balls in the airtight container roll and open and close the electric circuit.

【0016】[0016]

【実施例】以下、本発明の実施例を図を参照しながら説
明する。図1は本発明の感震器に使用される感震素子の
一実施例であり、図2(A)は図1の感震素子の一部を
示すものであり、また図2(B)は接点板7の腕状部を
点線7Dにて展開して示す平面図である。感震素子1は
導電性材料のハウジング2と蓋板3を有しており、蓋板
3は円形の金属板4に穿たれた貫通孔4Aにガラスやセ
ラミックス等の電気絶縁性の充填材5によって導電端子
ピン6を貫通固定している。導電端子ピン6の一方の端
面には半固定接点である接点板7が溶接等により固着さ
れており、この接点板7は中心から放射状に伸びる複数
の充分な弾性を有した腕状部7Aを有している。ハウジ
ング2内には可動接点たる固体の導電性の慣性球8が収
納され、前記蓋板3は接点板7を内部に収納するように
ハウジング2の開口端面とリングプロジェクション溶接
等により固着され気密容器を構成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of a seismic element used in the seismic device of the present invention. FIG. 2 (A) shows a part of the seismic element of FIG. 1 and FIG. 2 (B). FIG. 4 is a plan view showing an arm-shaped portion of the contact plate 7 developed by a dotted line 7D. The seismic element 1 has a housing 2 made of a conductive material and a cover plate 3, and the cover plate 3 fills a through hole 4 A formed in a circular metal plate 4 with an electrically insulating filler 5 such as glass or ceramic. Thus, the conductive terminal pins 6 are fixed through. A contact plate 7 which is a semi-fixed contact is fixed to one end surface of the conductive terminal pin 6 by welding or the like. The contact plate 7 has a plurality of arms 7A having sufficient elasticity extending radially from the center. Have. A solid conductive inertial sphere 8 serving as a movable contact is accommodated in the housing 2, and the lid plate 3 is fixed to the opening end face of the housing 2 by ring projection welding or the like so as to accommodate the contact plate 7 therein. Is configured.

【0017】この時、本実施例においては気密容器内部
の空気を排除し代りに水素、ヘリウム、アルゴン、窒素
などのような汚損防止用ガスと置換して封入する事によ
り、接点板7や慣性球8やハウジング2内面を腐食や汚
損から保護して長期にわたり安定した特性を得る事がで
きる。またさらに本実施例では感震素子の容器が金属と
無機性電気絶縁材料の密閉容器であるため、容器材料に
合成樹脂等を使用した場合のような接点の導通不良等の
原因となる有機汚染物の発生が無く、またガラスやセラ
ミックス等を容器全体に使用したものに比較して丈夫で
安価な密閉容器を得ることができる。
At this time, in this embodiment, the air inside the airtight container is removed and replaced with a gas for preventing contamination such as hydrogen, helium, argon, nitrogen, etc., and sealed. The ball 8 and the inner surface of the housing 2 can be protected from corrosion and fouling, and stable characteristics can be obtained for a long time. Further, in this embodiment, since the container of the seismic element is a sealed container made of a metal and an inorganic electrically insulating material, organic contamination causing poor conduction of the contacts as in the case of using a synthetic resin or the like as the container material is used. It is possible to obtain an inexpensive sealed container which is free of any matter, and which is strong and inexpensive as compared with the case where glass, ceramics or the like is used for the whole container.

【0018】ハウジング2の底面2Bの中央部には所定
の振動が与えられるまで慣性球8を保持しておくための
静止部である凹部2Aが設けられている。この静止部が
無いと微弱な振動でも慣性球8は転動しやすくなり、そ
の応動閾値附近での特性が安定せず、また例えば接点間
にチャタリング等を引き起こす原因となることがある。
その大きさは慣性球8の直径と感知すべき所定の振動加
速度とによって決定される。慣性球8の半径をRとしこ
の凹部2Aの半径をrとする時、慣性球8の転動開始す
る振動加速度αは以下の式によってほぼ決定される。
At the center of the bottom surface 2B of the housing 2, there is provided a recess 2A as a stationary portion for holding the inertial sphere 8 until a predetermined vibration is applied. Without this stationary part, the inertial sphere 8 is likely to roll even with a weak vibration, the characteristics near the response threshold are not stable, and may cause chattering between the contacts, for example.
Its size is determined by the diameter of the inertial sphere 8 and a predetermined vibration acceleration to be sensed. When the radius of the inertial sphere 8 is R and the radius of the concave portion 2A is r, the vibration acceleration α at which the inertia sphere 8 starts rolling is substantially determined by the following equation.

【0019】[0019]

【数1】(Equation 1)

【0020】例えば震度5で動作する感震素子を得よう
とする場合、慣性球の半径Rが3mmの場合には静止部で
ある凹部2Aの半径rを0.3mmとすると慣性球が転動
開始する振動加速度αは上述の式より約100ガルとな
り、rを0.75mmとするとαは250ガル程度とな
る。この値は震度5の時の振動加速度80〜250ガル
の範囲にほぼ相当する。よって静止部の半径を慣性球の
半径の0.1倍乃至0.25倍とすることにより、慣性
球の転動開始する振動加速度を震度5に相当する範囲に
設定することができる。
For example, when trying to obtain a seismic element operating at seismic intensity 5, when the radius R of the inertial sphere is 3 mm, the radius r of the concave portion 2A which is a stationary part is 0.3 mm, and the inertial sphere rolls. The starting vibration acceleration α is about 100 gal from the above equation, and when r is 0.75 mm, α becomes about 250 gal. This value substantially corresponds to the range of the vibration acceleration of 80 to 250 gal when the seismic intensity is 5. Accordingly, by setting the radius of the stationary portion to be 0.1 to 0.25 times the radius of the inertial sphere, the vibration acceleration at which the inertial sphere starts rolling can be set to a range corresponding to the seismic intensity 5.

【0021】この感震素子1の動作について説明する
と、正規姿勢で静止時には慣性球8は凹部2A上に保持
されている。この時、慣性球8と接点板7とは離れてお
り、従って導電端子ピン6とハウジング2及び金属板4
の間に導通はない。
The operation of the seismic element 1 will be described. The inertial sphere 8 is held on the concave portion 2A when stationary in a normal posture. At this time, the inertial sphere 8 and the contact plate 7 are separated, so that the conductive terminal pins 6 and the housing 2 and the metal plate 4
There is no continuity between them.

【0022】次にこの感震素子1に振動が与えられる
と、慣性球8と凹部2Aとの半径によって決定される所
定の振動加速度に達するまでは慣性球8は凹部2A上に
保持され続ける。振動加速度が所定の値に達すると、慣
性球8は凹部2Aから飛び出してハウジングの底面2B
上で転動を開始する。こうして転動した慣性球8が接点
板7の腕状部7Aと接触し、導電端子ピン6−接点板7
−慣性球8−ハウジング2−金属板4の経路の電路が閉
路される。この信号を各種警報装置や制御装置に入力す
る事により、例えば燃焼器やガスメータ等の安全装置を
作動させ地震による二次災害を防ぐ事ができる。
Next, when vibration is applied to the seismic element 1, the inertial sphere 8 continues to be held on the concave portion 2A until a predetermined vibration acceleration determined by the radius of the inertial sphere 8 and the concave portion 2A is reached. When the vibration acceleration reaches a predetermined value, the inertial sphere 8 jumps out of the recess 2A and moves to the bottom surface 2B of the housing.
Start rolling on. The rolling inertia ball 8 comes into contact with the arm portion 7A of the contact plate 7, and the conductive terminal pins 6-contact plate 7
The electric path of the path of the inertial sphere 8-the housing 2-the metal plate 4 is closed. By inputting this signal to various alarm devices and control devices, for example, a safety device such as a combustor or a gas meter can be operated to prevent a secondary disaster caused by an earthquake.

【0023】ここで都市ガスやプロパンガスボンベに用
いられるマイコン式ガスメータに使用される場合を例に
とると、安全装置の不必要な作動を避けるために地震に
よる震動と地震以外の外乱の振動とを区別する必要があ
る。例えば地震の震動は広範囲の周期を含んだ波形であ
るが、通常代用特性として0.3秒乃至0.7秒周期の
正弦波形が用いられる。感震素子の応動閾値の領域を震
度5に相当する130ガル乃至190ガルとする場合、
この応動領域値で上記の0.3秒乃至0.7秒周期の正
弦波形を印加する。例えばマイクロコンピュータにより
オン時間が40ミリ秒以上でオフ時間が40ミリ秒以上
のオン−オフ信号が3秒間以内に3サイクル以上あれば
地震が発生したと判定するというように条件設定をした
場合、前述の正弦波を印加した時にマイコンが地震発生
の指令を出力してガスの遮断弁を閉止する等の安全装置
を作動させるためには、感震素子からの信号がその条件
に合致するようにしなければならない。
Here, taking as an example the case of use in a microcomputer-type gas meter used for city gas or propane gas cylinders, in order to avoid unnecessary operation of the safety device, vibrations due to an earthquake and vibrations due to disturbances other than the earthquake are to be avoided. Need to be distinguished. For example, the quake of an earthquake has a waveform including a wide range of periods, but a sine waveform having a period of 0.3 seconds to 0.7 seconds is usually used as a substitute characteristic. When the response threshold region of the seismic element is set to 130 gal to 190 gal corresponding to seismic intensity 5,
The sine waveform having a cycle of 0.3 seconds to 0.7 seconds is applied with the response area value. For example, if the microcomputer sets an on-off signal with an on-time of 40 milliseconds or more and an off-time of 40 milliseconds or more for three or more cycles within three seconds, the condition is set to determine that an earthquake has occurred. In order for the microcomputer to output a command to generate an earthquake when the above-mentioned sine wave is applied and to operate a safety device such as closing the gas shut-off valve, the signal from the seismic element must meet the conditions. There must be.

【0024】本実施例の感震素子では、図2(A)に示
す接点板7の弾性及び腕状部7Aの持つ角度7Bは本感
震素子のオン時間及びオフ時間の決定の為に重要な要素
となる。例えば接点板7は厚さ0.05mmで腕状部7A
の幅が0.5mm、長さが4mmのリン青銅板を使用し、慣
性球8には約0.7gの鋼球にニッケルメッキを施した
球を使用したものにおいて、接点板7をコの字形つまり
腕状部7Aのハウジング内底面2Bに対する角度7Bを
90°とし慣性球の周囲に同心的に配置した時には、慣
性球8は腕状部7Aに接触すると直ちに跳ね返され且つ
ハウジングの底面2B上で僅かに上下に跳躍運動をする
ために、充分な接触継続時間が得られず上述の応動領域
値で所定の周期の正弦波を印加しても必要なオン時間が
得られず、またオン時間が短いために上述のものより短
い周期の正弦波を与えた時との特性の違いが判別し難
く、また電気的なノイズとの区別ができない。この傾向
は接点板のバネ定数が高いほど顕著になる。即ち慣性球
8の運動により腕状部7Aとの接触が生じた時に、その
接触時間を継続するための機能を腕状部7Aと慣性球8
との接触角度により生じさせる必要があることが判っ
た。
In the seismic element of this embodiment, the elasticity of the contact plate 7 and the angle 7B of the arm 7A shown in FIG. 2A are important for determining the ON time and the OFF time of the present seismic element. Element. For example, the contact plate 7 has a thickness of 0.05 mm and an arm portion 7A.
A phosphor bronze plate having a width of 0.5 mm and a length of 4 mm is used, and a ball obtained by applying nickel plating to a steel ball of about 0.7 g for the inertia ball 8 is used. When the angle 7B of the arm-shaped portion 7A with respect to the inner bottom surface 2B of the housing is set at 90 ° and concentrically arranged around the inertial sphere, the inertial sphere 8 is immediately rebounded when it comes into contact with the arm-shaped portion 7A, and is placed on the bottom surface 2B of the housing. In order to slightly jump up and down, a sufficient contact duration time cannot be obtained, and a required ON time cannot be obtained even if a sine wave having a predetermined period is applied with the above-described response area value. Is short, it is difficult to determine the difference in characteristics from when a sine wave having a shorter cycle than that described above is given, and it is not possible to distinguish it from electrical noise. This tendency becomes more pronounced as the spring constant of the contact plate is higher. That is, when contact with the arm 7A occurs due to the movement of the inertial sphere 8, the function of maintaining the contact time is provided by the arm 7A and the inertial sphere 8.
It has been found that it needs to be caused by the contact angle with the contact.

【0025】ここで腕状部を広げて角度7Bを小さくす
る事により、慣性球8が接点板7に接触し押し付けられ
る時にハウジング2の底面2Bに押し付けられる方向の
分力が発生し、慣性球8は接点板7に挟まれた状態で慣
性球が腕状部7Aと摺動しながら制動されるため、腕状
部7Aの角度7Bを90°としたものに対してオン時間
を長くする事ができる。また腕状部とハウジングとで慣
性球が適宜の力で挟まれるために、接触状態が安定す
る。さらに慣性球と接点板及びハウジングが摺動接触す
るために接点の接触する部分の表面は常に清浄化され接
点不良が生じなくなる。
Here, by reducing the angle 7B by expanding the arm-shaped portion, when the inertial sphere 8 comes into contact with the contact plate 7 and is pressed, a component force is generated in the direction of being pressed against the bottom surface 2B of the housing 2, thereby causing the inertial sphere. 8, since the inertial sphere slides on the arm portion 7A and is braked while being sandwiched between the contact plates 7, the on-time is increased when the angle 7B of the arm portion 7A is 90 °. Can be. Further, since the inertial sphere is sandwiched between the arm-shaped portion and the housing with an appropriate force, the contact state is stabilized. Further, since the inertial ball and the contact plate and the housing are in sliding contact with each other, the surface of the portion where the contact is in contact is always cleaned, and no contact failure occurs.

【0026】故に、本発明の感震素子では接点板7とハ
ウジング底面2Bとの角度を、慣性球と接点板との接触
時に慣性球が接するハウジングの底面に対して90°未
満になるように設定されている。つまり接点板7の腕状
部7Aとハウジング2の底面2Bの間に慣性球8が入り
込むような構成とし、腕状部7Aによって慣性球8をハ
ウジング底面2Bに押し付けて慣性球の接触状態を安定
させると共に、摺動接触させて制動効果を得る事により
接触抵抗を安定させることができる。
Therefore, in the seismic element of the present invention, the angle between the contact plate 7 and the bottom surface 2B of the housing is set so as to be less than 90 ° with respect to the bottom surface of the housing with which the inertial sphere comes into contact when the inertial sphere contacts the contact plate. Is set. In other words, the inertial sphere 8 is inserted between the arm 7A of the contact plate 7 and the bottom 2B of the housing 2, and the inertial sphere 8 is pressed against the housing bottom 2B by the arm 7A to stabilize the contact state of the inertial sphere. At the same time, the contact resistance can be stabilized by obtaining a braking effect by making sliding contact.

【0027】これに対して例えば慣性球を直径5.5m
m、質量0.7g程度の鋼球とした場合、慣性球が衝接
した時の接点板の撓みは腕状部の幅0.5mmで厚さ0.
06mm以上のものにおいては非常に僅かであり、慣性球
は接点板により跳ね返されるため、オン時間はオフ時間
に対して非常に短くなる。また慣性球はその動きを接点
板により乱されるために、与えられた振動に正確に追従
できずオン−オフ信号の波形が乱される。またこの場
合、腕状部7Bの角度を90°以下にしても撓みが少な
いため慣性球を挟む力や摺動による減速効果が生じにく
く、コの字形に腕状部を配置したものと比較してもオン
時間はあまり長くならない。
On the other hand, for example, the inertial sphere is 5.5 m in diameter.
When a steel ball having a mass of about 0.7 g and a mass of about 0.7 g is used, the bending of the contact plate when the inertial ball comes into contact with the arm is 0.5 mm in width and 0.5 mm in thickness of the arm.
Since the inertial ball is repelled by the contact plate, the on-time is very short with respect to the off-time because the inertia ball is rebounded by the contact plate. Further, since the inertial sphere is disturbed in its movement by the contact plate, it cannot follow the given vibration accurately, and the waveform of the on-off signal is disturbed. Further, in this case, even if the angle of the arm 7B is 90 ° or less, the bending is small, so that the force for sandwiching the inertial sphere and the deceleration effect due to the sliding are less likely to occur, and the arm 7 is arranged in a U-shape. But the on-time doesn't get too long.

【0028】慣性球の直径が5.5mmを超える大きなも
のについては上記の接点板の厚みが0.06mm以上であ
ってもオン−オフ信号の波形としてマイコンの判別条件
に合致させ得る可能性がある。しかし小形の感震器を製
作しようとする場合には感震素子の容器の内径が制限さ
れ、その中で慣性球をより大きい直径のものにする事
は、慣性球の移動距離が短くなるためにオフ時間が充分
に取れない等の理由から適当ではない。
If the diameter of the inertial sphere is larger than 5.5 mm, even if the thickness of the contact plate is 0.06 mm or more, it is possible that the waveform of the on-off signal can be matched with the determination conditions of the microcomputer. is there. However, when trying to manufacture a small seismic sensor, the inner diameter of the container of the seismic element is limited, and making the inertial sphere of a larger diameter among them reduces the moving distance of the inertial sphere. However, it is not appropriate because the off-time cannot be sufficiently obtained.

【0029】ハウジング底面2Bの傾斜角度2Cに関し
ては、その傾斜とマイコンにより地震と判定される周波
数別の加速度との関係を計測した結果、図3のグラフに
示す様な結果となった。なおマイコンは前述の様にオン
時間が40ミリ秒以上でオフ時間が40ミリ秒以上のオ
ン−オフ信号が3秒間以内に3サイクル以上あれば地震
が発生したと判定するというように条件設定されてい
る。振動周波数のF1,F2は各々1.43Hz,3.3
Hzを示し、震動加速度のG1,G2は130ガル,19
0ガルをそれぞれ示す。
As for the inclination angle 2C of the housing bottom surface 2B, the relationship between the inclination and the acceleration for each frequency determined as an earthquake by the microcomputer was measured, and the result was as shown in the graph of FIG. As described above, the microcomputer is set under conditions such that if an on-off signal with an on-time of 40 ms or more and an off-time of 40 ms or more is 3 cycles or more within 3 seconds, it is determined that an earthquake has occurred. ing. The vibration frequencies F1 and F2 are 1.43 Hz and 3.3, respectively.
Hz, G1 and G2 of the vibration acceleration are 130 gal, 19
0 gal is indicated.

【0030】グラフ中の曲線AからDはハウジング底面
の傾斜角度の違うサンプルの特性を示すものであり、A
は傾斜角度が2°未満でBは3°、Cは6°、Dは11
°の如く順に傾斜角度が深くなっている。このグラフか
らハウジング底面の傾斜が浅いものでは地震波よりも高
い周波数領域においても動作しており、外乱振動による
所謂ノイズ特性が悪いことが判る。また傾斜角が深いも
のは高い周波数領域での誤動作はなくなるが地震波に相
当する低周波領域でのバラツキが大きくなる所謂震動特
性の悪化が見られるとともに低周波領域での動作震動加
速度が高くなってしまう。
The curves A to D in the graph show the characteristics of samples having different inclination angles of the housing bottom.
Is less than 2 °, B is 3 °, C is 6 ° and D is 11
The inclination angle becomes deeper in order as in °. From this graph, it is higher than the seismic wave when the slope of the housing bottom is shallow.
It can be seen that the device operates even in a low frequency range , and that so-called noise characteristics due to disturbance vibration are poor. In addition, those with a large inclination angle eliminate malfunctions in the high frequency region , but are not suitable for seismic waves.
The so-called vibration characteristic deteriorates in which the variation in the corresponding low-frequency region increases, and the operating vibration acceleration in the low-frequency region increases.

【0031】そこで本実施例においてはハウジング2の
底面2Bを2〜10度のテーパー状又はそれに相当する
凹球面状とする事により、ノイズ特性と震動特性の悪化
を防ぐことができる。また特に底面を凹球面状にする事
により慣性球8の水平方向への移動距離を抑制すること
ができるので、例えば容器の内径が9mm程度の大きさで
比較的大きな慣性球、例えば直径5.5mm程度のものを
使用する事ができる。
In this embodiment, the noise characteristic and the vibration characteristic can be prevented from deteriorating by forming the bottom surface 2B of the housing 2 in a tapered shape of 2 to 10 degrees or a concave spherical shape corresponding thereto. In particular, make the bottom surface concave concave
Thus, the distance of movement of the inertial sphere 8 in the horizontal direction can be suppressed, so that a relatively large inertial sphere having a diameter of about 9 mm, for example, about 5.5 mm in diameter can be used. .

【0032】図4の感震器11は前述の感震素子1を正
規姿勢に保持する部材である樹脂製のケース12を有し
た実施例を示したものである。感震素子1はその金属板
4上にL字形の導電性の溶接ピン13が溶接されてい
る。この感震素子1をケース下面の開口部から挿入し、
その導電端子ピン6と溶接ピン13をケースに穿たれた
貫通孔12A,12Bに挿通し、ケース12の内側にあ
る面状もしくは少なくとも3ヵ所の突起の姿勢保持部1
2Cに金属板4を当接し感震素子の位置決めを行う。こ
の状態で導電端子ピン6及び溶接ピン13のケース上部
に突出した端部に、それぞれ端子14及び15を溶接す
ることにより、感震素子1はケース12に対して固定さ
れる。
4 shows an embodiment having a resin case 12 which is a member for holding the above-described seismic element 1 in a normal posture. The L-shaped conductive welding pin 13 is welded on the metal plate 4 of the seismic sensor 1. Insert this seismic element 1 through the opening on the bottom of the case,
The conductive terminal pins 6 and the welding pins 13 are inserted through through holes 12A and 12B formed in the case, and the position holding portion 1 of a planar or at least three projections inside the case 12 is formed.
The metal plate 4 is brought into contact with 2C to position the seismic element. In this state, the terminals 14 and 15 are welded to the ends of the conductive terminal pins 6 and the welding pins 13 protruding above the case, respectively, so that the seismic element 1 is fixed to the case 12.

【0033】この感震器11を例えば石油ファンヒータ
ー等に取付けるに際して、このケース底面12Dを図示
しない石油ファンヒータの底板等の水平面に密着させ固
定用孔12Eにネジ等を通して感震器11をネジにより
締めつけて固定することによって感震素子1は正規姿勢
を成すように感震器11のケース底面12Dと感震素子
1とは所定の位置付けが為されているものである。尚、
この他にも感震素子を正規姿勢に保持する手段は種々の
形態が考えられ、たとえば導電端子ピン6に門形やL字
形等の所定の金具を溶接して、この金具が所定の取付面
に取り付けられることにより感震素子が正規の姿勢に保
持されるようにしたものはさらに容易な手段である。
When attaching the seismic sensor 11 to, for example, an oil fan heater or the like, the case bottom surface 12D is brought into close contact with a horizontal surface such as a bottom plate of an oil fan heater (not shown), and the seismic sensor 11 is screwed through a fixing hole 12E. The seismic element 1 is positioned at a predetermined position between the case bottom surface 12D of the seismic sensor 11 and the seismic element 1 so that the seismic element 1 takes a normal posture by being fixed. still,
In addition to the above, various means for holding the seismic element in the normal posture can be considered. For example, a predetermined metal fitting such as a gate or an L-shape is welded to the conductive terminal pin 6 and the metal fitting is fixed to a predetermined mounting surface. In this case, the seismic element can be maintained in a normal posture by being attached to the sensor.

【0034】この種の感震器は通常の使用状態では図1
に示した構造で充分その機能を満足する。しかし例えば
運搬途中の落下等によって通常の動作加速度に比較して
非常に高い衝撃加速度が与えられる場合を想定すると、
落下時の感震器の向きに係わらず落下の衝撃またはその
反動により、蓋板3側を下にして落下した場合と同様な
衝撃が慣性球8によって接点板7の導電端子ピン6との
溶接点7C附近等の弾性剛性共に低い部分に衝撃が加え
られ、この部分を弾性変形領域外に永久変形させてしま
う事がある。
This kind of seismic sensor is shown in FIG.
The structure shown in (1) sufficiently satisfies the function. However, assuming a case where a very high impact acceleration is given as compared to a normal operation acceleration due to, for example, dropping during transportation,
Irrespective of the direction of the seismic sensor at the time of the fall, the same impact as when the fall is made with the lid plate 3 side down due to the impact of the fall or the recoil thereof is welded to the conductive terminal pins 6 of the contact plate 7 by the inertial ball 8. An impact is applied to a portion having low elastic rigidity such as near the point 7C, and this portion may be permanently deformed outside the elastic deformation region.

【0035】そこで本発明の他の実施例として、接点板
7の材質にリン青銅よりも充分なしなやかさ及び弾性係
数の大きいステンレス鋼、ベリリウム銅、モネルメタル
等を使用するか、または接点板の形状を若干変えて図2
に示した展開図における点線7Dの部分を絞り成型する
如き形状にして強度を高めることによって永久変形を防
ぐ。
Therefore, as another embodiment of the present invention, the material of the contact plate 7 is made of stainless steel, beryllium copper, Monel metal, etc., which is sufficiently flexible and has a higher elastic coefficient than phosphor bronze, or the shape of the contact plate is Figure 2
The permanent deformation is prevented by increasing the strength by forming the portion indicated by the dotted line 7D in the developed view shown in FIG.

【0036】また他の実施例として接点板7と導電端子
ピン6との固着部近傍に接点板の板厚に比べて数倍以上
の厚みを有する鉄板等で作られた剛性の高い保護体9を
設け、慣性球8の衝突による接点板7の永久変形を防止
することができる。図5に感震素子に保護体を設けた例
を示す。前述の説明と同様の部分については同一の記号
を付し、その説明を省略する。図5(A)に示すものは
接点板7と導電端子ピン6の間に保護体9を設けたもの
の一例で、その周縁部9Aの角度9Bが前述の接点板7
の角度7Bと同じかまたは小さくされている。また本実
施例では保護体9の端部に近付く程外側に曲げられてお
り、その端部と慣性球とが当たらないようにされてい
る。保護体9は震動加速度を与えられた時の慣性球8の
位置を点線で示すように、慣性球8及び接点板7の腕状
部7Aの通常の動きを妨げないようにされており、感震
素子1の通常の使用で且つ通常の加速度を受けただけで
は接点板7の動きに影響を与えることがない。
As another embodiment, a highly rigid protective body 9 made of an iron plate or the like having a thickness several times or more as large as the thickness of the contact plate in the vicinity of the fixed portion between the contact plate 7 and the conductive terminal pins 6 is provided. To prevent the contact plate 7 from being permanently deformed due to the collision of the inertial sphere 8. FIG. 5 shows an example in which a protective body is provided on the seismic element. The same parts as those described above are denoted by the same reference numerals, and description thereof will be omitted. FIG. 5A shows an example in which a protective body 9 is provided between the contact plate 7 and the conductive terminal pins 6, and the angle 9B of the peripheral edge 9A is the same as that of the contact plate 7 described above.
Is equal to or smaller than the angle 7B. Further, in this embodiment, the protective body 9 is bent outward as it approaches the end, so that the end does not hit the inertial ball. The protection body 9 does not hinder the normal movement of the inertial ball 8 and the arm 7A of the contact plate 7 as indicated by the dotted line when the vibrating acceleration is applied to the inertial ball 8. The normal operation of the vibration element 1 and the normal acceleration do not affect the movement of the contact plate 7.

【0037】衝撃加速度等の大きな加速度により慣性球
8が例えば図示上方向に移動した時には、慣性球8と保
護体9により接点板7が挟まれることになるが、保護体
9の形状を接点板7が慣性球8との間で挟まれても弾性
変形領域を超えないような形状とし、また保護体の角で
接点板が慣性球に挟まれることが無いようにされたこと
でその永久変形は防止される。
When the inertial sphere 8 moves upward, for example, due to a large acceleration such as an impact acceleration, the contact plate 7 is sandwiched between the inertial sphere 8 and the protective body 9. 7 has a shape such that it does not exceed the elastic deformation area even if it is sandwiched between the inertial sphere 8 and the contact plate is prevented from being sandwiched by the inertial sphere at the corner of the protective body, so that its permanent deformation is achieved. Is prevented.

【0038】図5(B)の実施例は接点板7と慣性球8
の間に保護体10を設け、接点板7が慣性球8と保護体
10に挟まれることを避ける構造としている。保護体1
0は、感震素子1の通常の使用で且つ通常の加速度を受
け慣性球8がハウジングの底面2B上を転動する間は点
線にて示す如く慣性球8とは接触しない。そのため慣性
球8が接点板7とハウジング2の間に挟み込まれ保持さ
れてしまうことはない。
FIG. 5B shows an embodiment in which the contact plate 7 and the inertial ball 8 are used.
A protective body 10 is provided between the inertial sphere 8 and the protective body 10 to prevent the contact plate 7 from being sandwiched between the inertial sphere 8 and the protective body 10. Protective body 1
Numeral 0 indicates normal use of the seismic element 1 and no contact with the inertial sphere 8 as indicated by a dotted line while the inertial sphere 8 rolls on the bottom surface 2B of the housing under normal acceleration. Therefore, the inertial sphere 8 is not sandwiched and held between the contact plate 7 and the housing 2.

【0039】前述の例と同様に、衝撃加速度等により慣
性球8が例えば図示上方向に移動した時には、慣性球8
と保護体10が衝接し、接点板7と慣性球8の直接の衝
接は避けられ接点板7の永久変形は防止される。
Similarly to the above-described example, when the inertial sphere 8 moves upward in the drawing due to impact acceleration or the like, the inertial sphere 8
The contact plate 7 and the inertia ball 8 do not come into direct contact with each other, and the contact plate 7 is prevented from being permanently deformed.

【0040】本発明において腕状部の撓み量は、腕状部
と慣性球の衝接点で慣性球の重量に相当する力を腕状部
1本に印加した時に0.25mm乃至5mmとなるように設
定されており、この様に設定することで腕状部が撓み安
定した信号を得ることができる。例えば腕状部の撓み量
が0.25mm未満のものでは慣性球との接触時間が短く
なりすぎて信号が不安定になり、また5mmを超えるもの
では接触時間が長くなりすぎてオフ時間の周波数による
変化が読み取りにくくなる。
In the present invention, the amount of deflection of the arm is 0.25 mm to 5 mm when a force corresponding to the weight of the inertial sphere is applied to one arm at the contact point between the arm and the inertial sphere. The arm-shaped portion can be bent to obtain a stable signal. For example, if the bending amount of the arm is less than 0.25 mm, the contact time with the inertial sphere becomes too short and the signal becomes unstable. If the bending amount exceeds 5 mm, the contact time becomes too long and the frequency of the off time becomes too long. The change due to is difficult to read.

【0041】次に本発明の他の実施例について説明す
る。図7は感震素子18の断面図であり、前述の感震素
子と同一の効果を呈する部分には同一の記号を付してそ
の詳細な説明を省略する。また図8はこの感震素子の接
点板の部分拡大断面図である。この感震素子18もまた
蓋板3とハウジング2によって構成される密閉容器中に
導電性の慣性球8が収納されている。導電端子ピン6の
先端に固着された接点板19はその腕状部19Aが水平
部19Bから始っており、その先端部19Cは慣性球8
の中心より上部に位置するようにされている。また腕状
部19Aのハウジング底面2Bに対する角度は任意であ
るが好ましくは90°以下である。19Dは慣性球8と
の当接時に電極先端部が引っ掛ることを避けるための曲
げ部であり、その曲げ形状は図の様な形に限定するもの
ではなく、また慣性球8との当接が腕状部19Aの垂下
部19Eの面上で生じるものや、慣性球に対する電極先
端部の引っ掛りが生じない場合には省略してもよい。
Next, another embodiment of the present invention will be described. FIG. 7 is a cross-sectional view of the seismic element 18, and the portions exhibiting the same effects as those of the above-described seismic element are denoted by the same reference numerals, and detailed description thereof will be omitted. FIG. 8 is a partially enlarged sectional view of a contact plate of the seismic element. The seismic element 18 also has a conductive inertial sphere 8 housed in a closed container formed by the lid plate 3 and the housing 2. The contact plate 19 fixed to the tip of the conductive terminal pin 6 has an arm portion 19A starting from a horizontal portion 19B, and a tip portion 19C of the contact plate 19 has an inertial ball 8A.
It is located above the center. The angle of the arm 19A with respect to the housing bottom surface 2B is arbitrary, but is preferably 90 ° or less. Reference numeral 19D denotes a bent portion for preventing the tip of the electrode from being caught in contact with the inertial sphere 8, and the bent shape is not limited to the shape shown in the figure, and the contact with the inertial sphere 8 is not limited. The contact occurs on the surface of the hanging portion 19E of the arm 19A or the electrode tip with respect to the inertial sphere .
If the end does not catch, it may be omitted.

【0042】例えば図6の形状の場合には、接点板の腕
状部のバネ定数が高いと、腕状部の曲げ角度がハウジン
グ底面に対して90°以上となった場合には、接点板に
より慣性球をすくい上げる方向の力が発生し、ハウジン
グ底面との接触が不安定になるおそれがあった。
For example, in the case of the shape shown in FIG. 6, when the spring constant of the arm portion of the contact plate is high, if the bending angle of the arm portion is 90 ° or more with respect to the housing bottom, the contact plate As a result, a force in the direction of scooping up the inertial sphere is generated, and contact with the housing bottom surface may become unstable.

【0043】これに対して本実施例では慣性球8がその
中心より上方で接点板19と衝接す る構造としたため、
腕状部19Aの曲げ角度が90°以上であっても接点板
によって慣性球をすくい上げる方向の力が発生すること
はなくハウジングとの接触が不安定になることはない。
また本実施例では腕状部19Aの先端部19Cが慣性球
の中心より上に位置しているためにそうでないものと比
較して慣性球が接点板に達するまでの移動距離を同一に
した場合、同一の大きさの慣性球8に対して接点板19
の直径を小さくすることができ、感震素子全体を小形化
することができる。また腕状部が慣性球の中心より上部
で当接し、また腕状部19Aが接点板19の水平部19
Bから始っているために、腕状部19Aの角度にかかわ
らず慣性球8との当接時に接点板は上方へ撓み慣性球を
ハウジング底面に押し付ける力が発生するため慣性球と
ハウジングの接触は安定する。
On the other hand, in the present embodiment, the inertial sphere 8 is
Due to the structure abuts the contact plate 19 from the center at the upper,
Contact plate even if bending angle of arm 19A is 90 ° or more
Generates a force in the direction of scooping up the inertial sphere
And the contact with the housing does not become unstable.
Further, in this embodiment, since the tip 19C of the arm 19A is located above the center of the inertial sphere, the moving distance until the inertial sphere reaches the contact plate is the same as that in the case where it is not so.
In this case , the contact plate 19 contacts the inertial sphere 8 of the same size.
Can be reduced, and the entire seismic element can be reduced in size. Further, the arm portion abuts above the center of the inertial sphere, and the arm portion 19A is in contact with the horizontal portion 19 of the contact plate 19.
Since the contact plate starts from B, regardless of the angle of the arm 19A, the contact plate bends upward at the time of contact with the inertial ball 8 and a force is generated to press the inertial ball against the bottom surface of the housing. Is stable.

【0044】さらに本発明の他の実施例について説明す
る。図9はその接点板の一例を示すものであり、図9
(A)はその接点板20が蓋板3に固着された様子を示
すものであり、図9(B)はその展開図である。この接
点板20は2個の腕状部がT字形をした薄い金属板より
成型されている。即ち導電端子ピン6の一端に固着され
る20A部分からそれぞれ反対方向にT字形の部分20
B及び20Cが所定の長さで慣性球を取り囲むように点
線20Dで折り曲げられ両端の延長部分を円弧状に成形
されたものである。従ってこの感震素子に加速度が印加
された時に慣性球は円弧状の部分に接触する。この様に
接点板の腕状部の数は16本に限定されるものではなく
形状によっては2本以上あればよい。
Next, another embodiment of the present invention will be described. FIG. 9 shows an example of the contact plate.
FIG. 9A shows a state in which the contact plate 20 is fixed to the cover plate 3, and FIG. 9B is a developed view thereof. The contact plate 20 is formed of a thin metal plate having two T-shaped arms. That is, a T-shaped portion 20 is fixed in the opposite direction from the portion 20A fixed to one end of the conductive terminal pin 6.
B and 20C are bent along a dotted line 20D so as to surround the inertial sphere with a predetermined length, and the extended portions at both ends are formed in an arc shape. Therefore, when an acceleration is applied to the seismic element, the inertial sphere contacts the arc-shaped portion. As described above, the number of the arm portions of the contact plate is not limited to 16, but may be 2 or more depending on the shape.

【0045】さらに本発明の他の実施例について説明す
る。図10はこの実施例における感震器21であり、樹
脂製の容器22と蓋23を超音波による溶着等により封
着してなるケース中に図1に示す感震素子1の導電端子
ピン6に吊り部たるフック24が固定されて感震素子1
が収容されている。このケースが感震素子を正規姿勢に
保持する部材となる。図1中の記号と同一の記号を付し
て示したものについての説明は省略するが、容器22に
はケース内部と外部とを電気的に接続する端子25A,
25Bがインサート成型により固定され、また後述の支
持体26が設けられている。感震素子1は容器22内に
設けられた支持体26にフック24の端部を揺動可能に
支持されて、重力により感震素子1が正規姿勢となるよ
うに為されている。
Next, another embodiment of the present invention will be described. FIG. 10 shows a seismic sensor 21 in this embodiment, in which a conductive terminal pin 6 of the seismic element 1 shown in FIG. 1 is placed in a case in which a resin container 22 and a lid 23 are sealed by ultrasonic welding or the like. Hook 24 is fixed to the seismic element 1
Is housed. This case serves as a member for holding the seismic element in the normal posture. Although the description of the components denoted by the same symbols as those in FIG. 1 is omitted, the container 22 has terminals 25A, which electrically connect the inside and the outside of the case.
25B is fixed by insert molding, and a support 26 described later is provided. The seismic element 1 is supported by a support 26 provided in the container 22 so that the end of the hook 24 can swing, so that the seismic element 1 is in a normal posture by gravity.

【0046】このケース内にはシリコンオイルの様な粘
性を選定した液体27が封入されている。また感震素子
1のハウジングと同電位の金属板4からは導線28が、
また接点板7と同電位の導電端子ピン6からは導線29
がそれぞれ端子25A,25Bに電気的に接続されてい
る。この導線28及び29は柔軟な細線であり感震素子
1が正規姿勢を得るための動作に影響を与えない様に配
慮されている。また感震素子1は金属製のハウジングと
蓋板を気密に溶接した気密容器とされているために、シ
リコンオイル中に吊るされても感震素子1の内部にオイ
ルが浸入する心配は全くない。
In this case, a liquid 27 having a viscosity selected like silicon oil is sealed. In addition, a conducting wire 28 extends from the metal plate 4 having the same potential as the housing of the seismic element 1,
A conductive wire 29 is connected from the conductive terminal pin 6 having the same potential as the contact plate 7.
Are electrically connected to the terminals 25A and 25B, respectively. The conductors 28 and 29 are flexible thin wires and are designed so as not to affect the operation of the seismic element 1 for obtaining the normal posture. Further, since the seismic element 1 is an airtight container in which a metal housing and a lid plate are welded in an airtight manner, there is no concern that oil may enter the interior of the seismic element 1 even when suspended in silicon oil. .

【0047】この感震器21の動作について説明する
と、前述の感震器11の場合は取付けにおいて高い精度
が要求され、例えば取付け部分の傾き等によりその取付
角度が水平面から外れて傾きが1°あると約20ガル動
作値が低下する。しかし本実施例の感震器21において
は、感震素子1がフック24により支持体26に揺動可
能に支持されているため、取付けに対する許容傾斜角度
以内、例えばケース内の空間において正規姿勢を取れる
余裕空間以内であれば重力により感震素子1は自動的に
ケース内の空間において補正されて正規姿勢となる。こ
の時ケース内の液体27はケースが傾いてから所定時間
内、例えば20秒以内に感震素子1が正規姿勢となるよ
うに粘性を選定されている。
The operation of the seismic sensor 21 will be described. In the case of the above-described seismic sensor 11, a high accuracy is required in mounting. For example, the mounting angle deviates from the horizontal plane and the inclination is 1 ° due to the inclination of the mounting part. If there is, the operating value of about 20 galls decreases. However, in the seismic device 21 of the present embodiment, the seismic element 1 is swingably supported by the support 26 by the hook 24, so that the normal posture is set within the allowable inclination angle for mounting, for example, in the space in the case. If it is within the available space, the seismic element 1 is automatically corrected in the space in the case by the gravity and assumes the normal posture. At this time, the viscosity of the liquid 27 in the case is selected so that the seismic element 1 assumes the normal posture within a predetermined time, for example, within 20 seconds after the case is tilted.

【0048】所定の許容傾斜角度以内に取付けられ、感
震素子1が正規姿勢となった感震器21が震動や加速度
を受けると感震器21には粘性の選定された液体27が
封入してあるので、例えば周期が2乃至3秒以下の検出
すべき震動に対しては感震素子1はケースと一体に動作
し確実な検出を可能とする。
When the seismic device 21 is mounted within a predetermined allowable inclination angle and the seismic element 1 in the normal posture receives vibration or acceleration, a viscous liquid 27 is filled in the seismic element 21. Therefore, for example, when a vibration having a period of 2 to 3 seconds or less is to be detected, the seismic element 1 operates integrally with the case and enables reliable detection.

【0049】また感震器がガスメータに設置されている
と、通常この種のメータは屋外に設置されているため
に、この附近を通る人が体や持ち物を当てたり、ボール
投げ遊びのボールがガスメータに衝突するなど外乱振動
が与えられる可能性がある。この場合、ガス配管の固定
金具の支持位置の間隔寸法等により多少の差はあるが通
常0.1秒前後の周期でほぼ正弦波形の1000ガル程
度から減衰していく振動加速度がガスメータに印加され
るという事が実験により認められた。たとえば感震器の
動作閾値が150ガルに設定され前述の如くオン時間が
40ミリ秒以上でオフ時間が40ミリ秒以上のオン−オ
フ信号が3秒間以内に3サイクル以上あれば地震が発生
したと判定するというようにマイコンのソフトの条件が
設定されている場合、感震器から0.1秒前後の周期に
同期したオン−オフ信号が出力されても、オン時間とオ
フ時間が40ミリ秒未満となるので、マイコンが地震の
判定をしない。
When a seismic sensor is installed on a gas meter, this type of meter is usually installed outdoors. There is a possibility that disturbance vibration such as a collision with the gas meter is given. In this case, although there is a slight difference depending on the distance between the supporting positions of the fixing fittings of the gas pipe, the vibration acceleration which is attenuated from about 1000 gal of a substantially sinusoidal waveform in a cycle of about 0.1 second is applied to the gas meter. Experiments have shown that For example, if the operation threshold value of the seismic sensor is set to 150 gallons and the on-off signal has an on-time of 40 ms or more and the off-time of 40 ms or more as described above and there are 3 cycles or more within 3 seconds, an earthquake has occurred. If the condition of the software of the microcomputer is set such that the on-off signal synchronized with the period of about 0.1 second is output from the seismic sensor, the on-time and the off-time are 40 millimeters. Since it is less than a second, the microcomputer does not judge the earthquake.

【0050】また大地震の発生時には感震器を取付けた
機器が転倒する事があり、この場合には感震器からの信
号はオンの状態を継続する事になる。そのため前述の制
御用のマイコンには所定時間、例えば1秒以上オンの状
態が継続すると機器を停止する等の制御をするようにプ
ログラムされている。
When a large earthquake occurs, a device equipped with a seismic sensor may fall over. In this case, a signal from the seismic sensor continues to be on. Therefore, the microcomputer for control is programmed to perform control such as stopping the device when the on state continues for a predetermined time, for example, 1 second or more.

【0051】地震発生時に万が一感震器が震動加速度に
よる判断を行う以前に感震器を取り付けた機器が転倒し
たり傾斜した時には、当然感震器はオン状態となり、こ
の状態が1秒以上継続すれば所定の加速度を有する地震
を検出したと同一の判断となることは前に述べた通りで
ある。ただし傾斜角度がケース内の余裕空間から定めら
れた例えば5度程度の場合、ケース内に液体27が封入
されていないと感震素子24は即座に正規姿勢となるた
めに装置の傾斜が検出されないが、感震器21は液体2
7の粘度により制動され、急に感震器が傾斜した時には
前述の如く20秒程度の所定の時間内で徐々に正規姿勢
に復帰するようにされているので、オン時間が1秒以上
継続して感震器を取り付けた装置が傾斜したと判断し
て、警報を発したり制御対象機器を制御する事ができ
る。
In the event that the seismic sensor falls down or tilts before the seismic device makes a judgment based on the vibration acceleration in the event of an earthquake, the seismic sensor is naturally turned on and this state continues for more than one second. As described above, it is the same as when an earthquake having a predetermined acceleration is detected. However, when the inclination angle is, for example, about 5 degrees determined from the extra space in the case, if the liquid 27 is not sealed in the case, the seismic element 24 immediately assumes the normal posture, and the inclination of the device is not detected. However, the seismic sensor 21 is liquid 2
When the seismic sensor is suddenly tilted, the on-time is maintained for 1 second or more because it is gradually returned to the normal posture within a predetermined time of about 20 seconds as described above. It can judge that the device equipped with the seismic sensor has tilted, and can issue an alarm or control the controlled device.

【0052】[0052]

【発明の効果】以上、本発明によれば金属製の固体の慣
性球を可動接点として導電性の金属容器内を転動させる
構造とし、前記慣性球と接触する一方の接点である接点
板をしなやかな弾力性のある構造とすると共に他方の接
点となるハウジング底面に対して慣性球と接触する部分
常に90゜未満の角度を成す様に構成し、また接点板
の腕状部の撓み量を所定の値とし、さらに該腕状部にほ
ぼ水平に延長された部分を有し慣性球との接触が慣性球
の中心より上部で行なわれるように構成することによっ
て安定した接触を得る。
As described above, according to the present invention, a metal solid inertial sphere is used as a movable contact so as to roll in a conductive metal container, and a contact plate which is one of the contacts that comes into contact with the inertial sphere is formed. It has a flexible and elastic structure, and a portion that contacts the inertial sphere with respect to the bottom surface of the housing, which is the other contact point, always forms an angle of less than 90 °. The amount of bending of the arm portion of the contact plate Is set to a predetermined value, and a stable contact is obtained by configuring the arm-shaped portion so as to have a portion extending substantially horizontally so that the contact with the inertial sphere is performed above the center of the inertial sphere.

【0053】また、上述の様に構成することにより、慣
性球が接点板と接触した時に摺動しながら減速する構造
となり、単純に慣性球が接点を駆動するものと比較し
て、慣性球と接点板の接触時間を長く取ることができ、
また接点としての慣性球は常に接触する面が異なった部
分となり且つ接点板と摺動するため表面の汚れに対して
極めて有利になる。
Further, by employing the above-described structure, the inertial sphere slides and decelerates when it comes into contact with the contact plate, so that the inertial sphere and the inertial sphere simply drive the contact. Long contact time of the contact plate,
In addition, the inertial sphere as a contact always has a different contact surface and slides on the contact plate, which is extremely advantageous against surface contamination.

【0054】またハウジング底面の形状を2〜10°の
テーパー状又はそれに相当する凹球面状とすることによ
り、安定した震動特性及びノイズ特性が得られるととも
に、慣性球の水平方向への移動距離を小さくすることが
でき、感震器全体の大きさに対して比較的大きな慣性球
が使用でき、感震器自体を小形化することができる。
By making the shape of the bottom surface of the housing a tapered shape of 2 to 10 ° or a concave spherical shape corresponding thereto, stable vibration characteristics and noise characteristics can be obtained, and the moving distance of the inertial sphere in the horizontal direction can be reduced. The size can be reduced, a relatively large inertial sphere can be used for the entire size of the seismic sensor, and the size of the seismic sensor itself can be reduced.

【0055】本発明によれば部品点数の少ない安価な感
震器を提供でき、また感震素子に金属製の密閉容器を使
用したため、接点に有害な有機物が発生することがな
く、また容器内部のガスを汚損防止用ガスに置換して封
入することもでき長期に亘り安定した機能を有するスイ
ッチを提供することができる。
According to the present invention, an inexpensive seismic sensor having a small number of parts can be provided. Further, since a metal hermetically sealed container is used for the seismic element, no harmful organic matter is generated at the contacts, and the inside of the container can be prevented. This gas can be replaced with a gas for preventing contamination and sealed, and a switch having a stable function for a long time can be provided.

【0056】また、感震器の運搬時等に発生する衝撃加
速度による慣性球の動きを保護体で受ける等の構造とし
たために、慣性球の衝接による接点板の永久変形を避け
ることができる。
Further, since the protective body receives the movement of the inertial sphere due to the impact acceleration generated when the seismic sensor is carried or the like, permanent deformation of the contact plate due to the impact of the inertial sphere can be avoided. .

【0057】さらに腕状部を慣性球の重量に対して所定
の撓み量とすることにより、震動に正確に追従した信号
が得られると共に、慣性球とハウジングの接触が安定
し、より明確な信号を得ることができる。
Further, by setting the arm-shaped portion to a predetermined amount of deflection with respect to the weight of the inertial sphere, a signal that accurately follows the vibration is obtained, and the contact between the inertial sphere and the housing is stabilized, and a clearer signal is obtained. Can be obtained.

【0058】さらにまた腕状部の垂直部と比較して同程
度の水平部分を設け、接点板が慣性球の中央部より上部
に当接するように構成する事により、腕状部の慣性球と
の当接角度にかかわらず慣性球をハウジング底面に押し
付ける力が発生し、安定した信号を得ることができる。
Further, by providing a horizontal portion which is substantially the same as the vertical portion of the arm portion and making the contact plate abut above the center portion of the inertial sphere, Irrespective of the contact angle, a force is generated to press the inertial sphere against the bottom of the housing, and a stable signal can be obtained.

【0059】さらに、感震素子をケース内に粘性を選定
した液体と共に封入し、ケース内に吊り下げる構造とす
る事により、感震素子は重力により自動的に所定の正規
姿勢となるので、ケースの厳格な取付け姿勢が不必要と
なってプリント基板等への装着に適する効果を奏する。
Further, by enclosing the seismic element in a case together with a liquid of which viscosity is selected, and suspending the element in the case, the seismic element automatically assumes a predetermined normal posture due to gravity. This eliminates the need for a strict mounting posture, and provides an effect suitable for mounting on a printed circuit board or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の感震器に使用される感震素子の一実施
FIG. 1 shows an embodiment of a seismic element used in a seismic sensor according to the present invention.

【図2】図1の感震素子の接点板の一実施例FIG. 2 is an embodiment of a contact plate of the seismic sensor of FIG. 1;

【図3】震動周波数と感震器の動作震動加速度との関係
を示すグラフ
FIG. 3 is a graph showing a relationship between a vibration frequency and an operation vibration acceleration of a seismic sensor.

【図4】本発明の感震器の一実施例FIG. 4 shows an embodiment of a seismic sensor according to the present invention.

【図5】本発明の感震器に使用される感震素子の他の実
施例
FIG. 5 shows another embodiment of the seismic element used for the seismic sensor of the present invention.

【図6】本発明に使用される感震素子との比較例 FIG. 6 is a comparative example with the seismic element used in the present invention .

【図7】本発明の感震器に使用される感震素子の他の実
施例
FIG. 7 shows another embodiment of the seismic element used in the seismic sensor of the present invention.

【図8】図7の感震素子の接点板の一実施例8 is an embodiment of a contact plate of the seismic sensor of FIG. 7;

【図9】感震素子の接点板の他の実施例FIG. 9 shows another embodiment of the contact plate of the seismic element.

【図10】本発明の感震器の他の実施例FIG. 10 shows another embodiment of the vibration sensor according to the present invention.

【符号の説明】[Explanation of symbols]

1,16,18:感震素子 2:ハウジング 3:蓋板 4:金属板 5:充填材 6:導電端子ピン 7,17:接点板 7A,17A:腕状部 8:慣性球 9:保護体 11:感震器 12:ケース 19,20:接点板 19A:腕状部 19B:水平部 21:感震器 22:容器 23:蓋 24:フック(吊り部) 25A,25B:端子 26:支持体 27:シリコンオイル(粘性を選定した液体) 28,29:導線 1, 16, 18: Seismic element 2: Housing 3: Cover plate 4: Metal plate 5: Filler 6: Conductive terminal pin 7, 17: Contact plate 7A, 17A: Arm 8: Inertial ball 9: Protective body 11: Seismic device 12: Case 19, 20: Contact plate 19A: Arm 19B: Horizontal portion 21: Seismic device 22: Container 23: Lid 24: Hook (hanging portion) 25A, 25B: Terminal 26: Support 27: Silicon oil (liquid with selected viscosity) 28, 29: Conductor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小関 秀樹 名古屋市南区宝生町4丁目30番地 株式 会社生方製作所内 審査官 菊井 広行 (56)参考文献 特開 昭61−239191(JP,A) 特開 昭63−29286(JP,A) 特開 平3−10122(JP,A) 特開 平2−186224(JP,A) 実開 昭56−13718(JP,U) 実開 昭61−74846(JP,U) (58)調査した分野(Int.Cl.6,DB名) G01H 1/00 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hideki Koseki 4-30-30 Hoshocho, Minami-ku, Nagoya Investigator, Ikukata Manufacturing Co., Ltd. Hiroyuki Kikui (56) References JP-A-61-239191 (JP, A) JP-A-63-29286 (JP, A) JP-A-3-10122 (JP, A) JP-A-2-186224 (JP, A) Japanese Utility Model Application No. 56-13718 (JP, U) Japanese Utility Model Application No. Sho 61-74846 (JP, U) (58) Field surveyed (Int. Cl. 6 , DB name) G01H 1/00

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 円形の金属板のほぼ中心に穿たれた孔に
電気絶縁性の充填材によって導電端子ピンを貫通し気密
に固定した蓋板と、 有底円筒形の導電性のハウジングを有し、 該ハウジングの底面にはほぼ中心部から外側に向かって
同心円状に緩やかに上昇する傾斜面が形成され、 前記蓋板の周縁部にハウジングの開口端が気密に固着さ
れて気密容器を形成し、蓋板の導電端子ピン端部には複
数のしなやかな弾性を有した腕状部を導電端子ピンを中
心とする放射状に配設する導電材製の接点板が導電的に
固着され、 前記密閉容器の内部には導電性の固体の慣性球が正規姿
勢において静止時には重力によりハウジングのほぼ中央
部に位置するように収納され、 振動を受ける事により慣性球が揺動し接点板の前記腕状
部のほぼ同心円状に配設された接触部に接触してハウジ
ング内面と接点板との間を慣性球を介して短絡するよう
に構成され、 前記接点板の腕状部の先端は慣性球の中心より上部に位
置するとともに該腕状部と慣性球との接触は慣性球の中
心より上部で行われるように構成し、 慣性球は接触時に接点板を変位させるとともに摺動し、 接点板の前記変位に基く作用力は腕状部が慣性球と接触
関係にあるは常に慣性球をハウジング底面に押し付け
る方向に作用するように前記接点板の慣性球との接触部
分とハウジング底面との間の角度が90゜未満とされた
感震素子を正規姿勢に保持する事を特徴とする感震器。
1. A cover plate in which a conductive terminal pin is penetrated and hermetically fixed by an electrically insulating filler in a hole formed substantially in the center of a circular metal plate, and a bottomed cylindrical conductive housing. The bottom surface of the housing is formed with an inclined surface that gradually rises concentrically from the center to the outside toward the outside, and the open end of the housing is airtightly fixed to the peripheral edge of the lid plate to form an airtight container. A contact plate made of a conductive material, in which a plurality of flexible elastic arms are radially arranged around the conductive terminal pins, is conductively fixed to the conductive terminal pin end of the lid plate, inside the closed vessel is at rest inertia ball of electrically conductive solid in normal posture is accommodated so as to be positioned substantially at the center of the housing by gravity, the arm of the contact plate inertia ball is swung by receiving vibration Condition
The housing is brought into contact with the contact part arranged almost concentrically
Between the inner surface of the bearing and the contact plate via the inertial sphere.
And the tip of the arm of the contact plate is located above the center of the inertial sphere.
And the contact between the arm and the inertial sphere is within the inertial sphere.
The contact ball is displaced and slides at the time of contact when the inertial sphere slides, and the acting force based on the displacement of the contact plate is such that the arm is in contact with the inertial ball.
While in the relationship, the seismic element in which the angle between the contact portion of the contact plate with the inertial sphere and the bottom surface of the housing is less than 90 ° so as to always act in the direction of pressing the inertial sphere against the housing bottom is in the normal posture. A seismic sensor characterized by being held at
【請求項2】 前記腕状部の撓み量は腕状部と慣性球の
衝接点に慣性球の重量に相当する力を腕状部1本に印加
した時に0.25mm乃至5mmとなる値に選定された
感震素子を正規姿勢に保持する事を特徴とする請求項1
に記載の感震器。
2. The amount of deflection of the arm-shaped part is determined by the distance between the arm-shaped part and the inertial sphere.
A force equivalent to the weight of the inertial sphere is applied to one of the arms at the contact point
Was selected to be a value between 0.25mm and 5mm
2. The seismic element is held in a normal posture.
The seismic sensor described in.
【請求項3】 気密容器が導電性の金属と無機性電気絶
縁材料から構成された事を特徴とする請求項1または請
求項2のいずれか1項に記載の感震器。
3. An airtight container comprising a conductive metal and an inorganic electric insulator.
2. The method according to claim 1, wherein the material is made of an edge material.
The seismic sensor according to claim 2.
【請求項4】 気密容器内に汚損防止用ガスを封入した
事を特徴とする請求項1乃至請求項3のいずれか1項に
記載の感震器。
4. An antifouling gas is sealed in an airtight container.
The method according to any one of claims 1 to 3, wherein
The described shock sensor.
【請求項5】 ハウジング底面の中央部に静止部を設
け、 斜面上の慣性球は転動可能で且つ所定の振動を受けるま
で重力により該静止部に位置される様に収納された事を
特徴とする請求項1乃至請求項4のいずれか1項に記載
の感震器。
5. A stationary part is provided at the center of the bottom of the housing.
Only, the inertia ball on the inclined surface is subjected to and predetermined vibration can roll or
It is stored in the stationary part by gravity in
The method according to any one of claims 1 to 4, characterized in that:
Seismic sensor.
【請求項6】 静止部の半径を慣性球の半径の0.1倍
乃至0.25倍としたことを特徴とする請求項5の感震
器。
6. The radius of the stationary part is 0.1 times the radius of the inertial sphere.
6. The seismic sensor according to claim 5, wherein the value is set to 0.25 times.
vessel.
【請求項7】 慣性球が接点板にあらゆる姿勢において
衝接した場合にも永久変形を起こさないよう接点板が充
分な弾性を有した事を特徴とする請求項1乃至請求項6
のいずれか1項に記載の感震器。
7. An inertial sphere is mounted on a contact plate in any posture.
The contact plate is filled to prevent permanent deformation in the event of a collision.
7. An elastic material having a sufficient elasticity.
The seismic sensor according to any one of the above items.
【請求項8】 接点板と導電端子ピンとの固着部近傍に
剛性の高い保護体を設け、慣性球の衝突による接点板の
永久変形を防止した事を特徴とする請求項1乃至7のい
ずれか1項に記載の感震器。
8. In the vicinity of the fixed portion between the contact plate and the conductive terminal pin.
Providing a highly rigid protective body, the contact plate
8. A method according to claim 1, wherein permanent deformation is prevented.
The seismic sensor according to any one of the preceding items.
【請求項9】 気密容器外部には吊り部が装着され、 その吊り部が所定位置に支持される支持体を有しかつ前
記気密容器を選定された粘性を有する液体と共に収容す
るケースからなり、 このケースを所定の許容傾斜角度内となるように取付け
ることにより所定時間内に前記気密容器は重力により正
規姿勢となるとともに、 前記ケースが地震等の振動による加速度を受けた場合に
は気密容器内の球が転動し電路を開閉するように構成し
たことを特徴とする請求項1乃至請求項8のいずれか1
項に記載の感震器。
9. A hanging portion is attached to the outside of the airtight container, and the hanging portion has a supporting body supported at a predetermined position.
Store airtight container with liquid of selected viscosity
Made from the case that, attached to the casing a predetermined allowable inclination within an angle
The airtight container is corrected by gravity within a predetermined time.
With the regulations posture, if the case is subjected to acceleration due to vibration such as earthquake
Is configured so that the balls in the airtight container roll and open and close the electrical circuit.
9. The method according to claim 1, wherein
The seismic sensor described in the section.
JP27238792A 1992-09-16 1992-09-16 Seismic sensor Expired - Fee Related JP2892559B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP27238792A JP2892559B2 (en) 1992-09-16 1992-09-16 Seismic sensor
AU47321/93A AU668753B2 (en) 1992-09-16 1993-09-14 Acceleration responsive device
ITTO930678A IT1261866B (en) 1992-09-16 1993-09-16 Acceleration sensitive device
US08/559,948 US5610338A (en) 1992-09-16 1995-11-17 Rolling or tilting responsible switch
US08/682,340 US5837951A (en) 1992-09-16 1996-07-25 Inertia switching device, acceleration responsive device and method of making acceleration responsive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27238792A JP2892559B2 (en) 1992-09-16 1992-09-16 Seismic sensor

Publications (2)

Publication Number Publication Date
JPH0694510A JPH0694510A (en) 1994-04-05
JP2892559B2 true JP2892559B2 (en) 1999-05-17

Family

ID=17513178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27238792A Expired - Fee Related JP2892559B2 (en) 1992-09-16 1992-09-16 Seismic sensor

Country Status (1)

Country Link
JP (1) JP2892559B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033089A (en) 2005-07-22 2007-02-08 Ubukata Industries Co Ltd Acceleration switch

Also Published As

Publication number Publication date
JPH0694510A (en) 1994-04-05

Similar Documents

Publication Publication Date Title
US5610338A (en) Rolling or tilting responsible switch
WO2007010992A1 (en) Acceleration switch
JPH0997545A (en) Inclination/vibration switch and inclination angle adjusting tool for it
US5837951A (en) Inertia switching device, acceleration responsive device and method of making acceleration responsive device
JP2892559B2 (en) Seismic sensor
JPS6089022A (en) Vibration sensitive trip switch for warning device
JP2935485B2 (en) Seismic sensor
JP2930491B2 (en) Seismic sensor
JPS6239501Y2 (en)
US3617664A (en) Acceleration-responsive switch
JP2827085B2 (en) Seismic element
JP2887556B2 (en) Acceleration response switch
JPH08273504A (en) Acceleration reacting switch
JP3809599B2 (en) Accelerometer
JPH0650804A (en) Vibration sensor and its production method
JP2914859B2 (en) Acceleration response switch
JP3052416B2 (en) Seismic sensor
JP2827098B2 (en) Seismic element
JPH0567886B2 (en)
JPH0757168A (en) Control unit
JP2981511B2 (en) Seismic sensor
JPH06119855A (en) Vibration sensitive switch and vibration sensor
JP2692220B2 (en) Seismic sensor with horizontal holding mechanism
JP2934597B2 (en) Seismic element
JP2692221B2 (en) Seismic sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090226

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100226

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100226

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110226

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120226

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees