JP2889799B2 - Heat pump equipment - Google Patents

Heat pump equipment

Info

Publication number
JP2889799B2
JP2889799B2 JP5259545A JP25954593A JP2889799B2 JP 2889799 B2 JP2889799 B2 JP 2889799B2 JP 5259545 A JP5259545 A JP 5259545A JP 25954593 A JP25954593 A JP 25954593A JP 2889799 B2 JP2889799 B2 JP 2889799B2
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
pressure gas
path
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5259545A
Other languages
Japanese (ja)
Other versions
JPH07113541A (en
Inventor
薫 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP5259545A priority Critical patent/JP2889799B2/en
Publication of JPH07113541A publication Critical patent/JPH07113541A/en
Application granted granted Critical
Publication of JP2889799B2 publication Critical patent/JP2889799B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高圧ガス冷媒供給路と
凝縮冷媒導出路とを熱交換器に連通させて、その熱交換
器を凝縮器として機能させる状態(以下、単に「凝縮器
状態」と言う。)と、膨張手段からの膨張冷媒供給路と
低圧ガス冷媒導出路とを前記熱交換器に連通させて、前
記熱交換器を蒸発器として機能させる状態(以下、単に
「蒸発器状態」と言う。)とに、冷媒路を切換制御する
制御手段を設けたヒートポンプ装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to a state in which a high-pressure gas refrigerant supply path and a condensed refrigerant outlet path are communicated with a heat exchanger so that the heat exchanger functions as a condenser (hereinafter simply referred to as "condenser state"). ), And a state where the expanded refrigerant supply passage from the expansion means and the low-pressure gas refrigerant outlet passage are communicated with the heat exchanger so that the heat exchanger functions as an evaporator (hereinafter simply referred to as “evaporator”). The present invention relates to a heat pump device provided with control means for switching control of the refrigerant path.

【0002】[0002]

【従来の技術】従来、この種のヒートポンプ装置におい
て、制御手段は、熱交換器を凝縮器状態と蒸発器状態と
に切り換えるときには、一旦、高圧ガス冷媒供給路、凝
縮冷媒導出路、膨張冷媒供給路、低圧ガス冷媒導出路の
全てを熱交換器に対し非連通状態としたのち、膨張冷媒
供給路及び低圧ガス冷媒導出路、又は、高圧ガス冷媒供
給路及び凝縮冷媒導出路を、同時に熱交換器に対し連通
させて、熱交換器に冷媒を通流させるように構成されて
いた。
2. Description of the Related Art Conventionally, in a heat pump apparatus of this type, when a heat exchanger is switched between a condenser state and an evaporator state, a control means temporarily supplies a high-pressure gas refrigerant supply path, a condensed refrigerant discharge path, and an expanded refrigerant supply path. After all of the passages and the low-pressure gas refrigerant outlet passages are not communicated with the heat exchanger, the heat exchange is performed simultaneously on the expansion refrigerant supply passage and the low-pressure gas refrigerant outlet passage, or on the high-pressure gas refrigerant supply passage and the condensed refrigerant outlet passage. It was configured to communicate with the heat exchanger to allow the refrigerant to flow through the heat exchanger.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来技術によれば、切り換えにおいて4つの全ての冷媒路
を熱交換器に対し非連通状態とした後に、それまでとは
異なる2つの冷媒路を同時に連通させるとき、熱交換器
におけるそれまでの器内圧力とは大きな高低差のある冷
媒の流れが熱交換器内で急激に生じることに起因して、
騒音が発生する不都合があった。
However, according to the above prior art, after switching all four refrigerant paths to a heat exchanger in a non-communication state during switching, two different refrigerant paths different from the previous one are simultaneously connected. When communicating, due to a sudden flow in the heat exchanger refrigerant flow with a large difference in height from the previous internal pressure in the heat exchanger,
There was an inconvenience of generating noise.

【0004】又、凝縮器状態から蒸発器状態への切り換
えの場合、従来技術では、4つの冷媒路の全てを熱交換
器に対し非連通状態とした後、膨張冷媒供給路及び低圧
ガス冷媒導出路を同時に熱交換器に連通させる時点にお
いて、熱交換器内には、まだ切り換え前の凝縮冷媒が残
存しており、そして、この凝縮冷媒残存のため、一時的
にせよ必要冷媒循環量の低下を生じて、運転効率が低下
する不都合もあった。
In the case of switching from the condenser state to the evaporator state, in the prior art, all the four refrigerant paths are brought into a non-communication state with the heat exchanger, and then the expanded refrigerant supply path and the low-pressure gas refrigerant are led out. At the time when the passages are simultaneously connected to the heat exchanger, the condensed refrigerant before the switching still remains in the heat exchanger. And the operating efficiency is reduced.

【0005】本発明の目的は、上記従来欠点を解消する
点にある。
An object of the present invention is to eliminate the above-mentioned conventional disadvantages.

【0006】[0006]

【課題を解決するための手段】本発明によるヒートポン
プ装置の第一の特徴構成は、前記制御手段が、前記熱交
換器を凝縮器として機能させる状態(凝縮器状態)から
蒸発器として機能させる状態(蒸発器状態)への切り換
えを行うときには、前記高圧ガス冷媒供給路、凝縮冷媒
導出路、膨張冷媒供給路、低圧ガス冷媒導出路の全てを
前記熱交換器に対し非連通状態としたのち、前記膨張冷
媒供給路よりも前記低圧ガス冷媒導出路を先行して前記
熱交換器に対し連通させ、かつ、その後に前記膨張冷媒
供給路を前記熱交換器に対して連通させるように構成さ
れている点にある。
A first feature of the heat pump device according to the present invention is that the control means causes the heat exchanger to function as a condenser from a state of functioning as a condenser (condenser state). When switching to the (evaporator state), all of the high-pressure gas refrigerant supply path, the condensed refrigerant outlet path, the expanded refrigerant supply path, and the low-pressure gas refrigerant outlet path are brought into a non-communication state with the heat exchanger. The low-pressure gas refrigerant lead-out path is communicated with the heat exchanger ahead of the expansion refrigerant supply path, and the expanded refrigerant supply path is thereafter configured to communicate with the heat exchanger. There is in the point.

【0007】本発明によるヒートポンプ装置の第二の特
徴構成は、前記制御手段が、前記熱交換器を蒸発器とし
て機能させる状態(蒸発器状態)から凝縮器として機能
させる状態(凝縮器状態)への切り換えを行うときに
は、前記高圧ガス冷媒供給路、凝縮冷媒導出路、膨張冷
媒供給路、低圧ガス冷媒導出路の全てを前記熱交換器に
対し非連通状態としたのち、前記凝縮冷媒導出路よりも
前記高圧ガス冷媒供給路を先行して前記熱交換器に対し
連通させ、かつ、その後に前記凝縮冷媒導出路を前記熱
交換器に対して連通させるように構成されている点にあ
る。
[0007] A second characteristic configuration of the heat pump device according to the present invention is that the control means switches from a state in which the heat exchanger functions as an evaporator (evaporator state) to a state in which the heat exchanger functions as a condenser (condenser state). When performing the switching, the high-pressure gas refrigerant supply path, the condensed refrigerant outlet path, the expansion refrigerant supply path, all the low-pressure gas refrigerant outlet path to the non-communication state to the heat exchanger, after the condensed refrigerant outlet path Also, the configuration is such that the high-pressure gas refrigerant supply path is communicated with the heat exchanger in advance, and then the condensed refrigerant outlet path is communicated with the heat exchanger.

【0008】[0008]

【作用】本発明の第一の特徴構成によれば、熱交換器を
凝縮器状態から蒸発器状態へ切り換えるときには、膨張
冷媒供給路よりも低圧ガス冷媒導出路が先行して連通さ
れるから、熱交換器内に膨張冷媒が通流される前に、熱
交換器内に残存している高圧ガス冷媒及び凝縮冷媒が低
圧ガス冷媒導出路から導出されて、熱交換器内が低圧状
態となる。
According to the first characteristic configuration of the present invention, when the heat exchanger is switched from the condenser state to the evaporator state, the low-pressure gas refrigerant outlet path is communicated before the expanded refrigerant supply path, Before the expanded refrigerant flows into the heat exchanger, the high-pressure gas refrigerant and the condensed refrigerant remaining in the heat exchanger are led out from the low-pressure gas refrigerant outlet passage, and the inside of the heat exchanger is brought into a low-pressure state.

【0009】第二の特徴構成によれば、熱交換器を蒸発
器状態から凝縮器状態へ切り換えるときには、凝縮冷媒
導出路よりも高圧ガス冷媒供給路が先行して連通される
から、熱交換器内が高圧ガス冷媒又は凝縮冷媒の通流状
態になる前に、熱交換器内が高圧ガス冷媒供給路からの
圧力により圧縮されて、熱交換器内が高圧状態になる。
According to the second feature, when the heat exchanger is switched from the evaporator state to the condenser state, the high-pressure gas refrigerant supply path is communicated in advance of the condensed refrigerant outlet path. Before the inside becomes a flow state of the high-pressure gas refrigerant or the condensed refrigerant, the inside of the heat exchanger is compressed by the pressure from the high-pressure gas refrigerant supply path, and the inside of the heat exchanger becomes a high-pressure state.

【0010】[0010]

【発明の効果】本発明の第一の特徴構成によれば、熱交
換器を凝縮器状態から蒸発器状態へ切り換えるときに
は、熱交換器内に膨張冷媒が通流される前に、熱交換器
内が低圧状態となり、また、残存凝縮冷媒も除去される
から、蒸発器状態への切り換え時における従前の騒音発
生、及び、冷媒循環量の低下による運転効率の低下が効
果的に解消される。
According to the first aspect of the present invention, when the heat exchanger is switched from the condenser state to the evaporator state, before the expanded refrigerant is passed through the heat exchanger, the heat exchanger is turned on. Is in a low pressure state, and the remaining condensed refrigerant is also removed, so that the previous generation of noise at the time of switching to the evaporator state and the reduction in operating efficiency due to a reduction in the refrigerant circulation amount are effectively eliminated.

【0011】本発明の第二の特徴構成によれば、熱交換
器を蒸発器状態から凝縮器状態へ切り換えるときには、
熱交換器内が高圧ガス冷媒又は凝縮冷媒の通流状態にな
る前に、熱交換器内が高圧状態となるから、凝縮器状態
への切り換え時における従前の騒音発生が効果的に解消
される。
According to the second aspect of the present invention, when the heat exchanger is switched from the evaporator state to the condenser state,
Before the high-pressure gas refrigerant or the condensed refrigerant flows into the heat exchanger, the internal pressure of the heat exchanger becomes high, so that the previous generation of noise when switching to the condenser state is effectively eliminated. .

【0012】[0012]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1〜4は、セパレート型空調装置を示し、Uo
は室外機、Uiは室内機であり、これら室外機Uoと室
内機Uiとは、高圧ガス冷媒Rhを通流する高圧ガス管
Ghと、低圧ガス冷媒Rcを通流する低圧ガス管Gc
と、液冷媒Rwを通流する液管Wとで接続されている。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 4 show a separate type air conditioner,
Is an outdoor unit and Ui is an indoor unit. The outdoor unit Uo and the indoor unit Ui are a high-pressure gas pipe Gh flowing through a high-pressure gas refrigerant Rh and a low-pressure gas pipe Gc flowing through a low-pressure gas refrigerant Rc.
And a liquid pipe W through which the liquid refrigerant Rw flows.

【0013】室外機Uoには、外気OAに対して吸放熱
を行う第一熱交換器N1及び第二熱交換器N2と、それ
ら第一、第二熱交換器N1,N2に対して外気OAを通
風する外気ファンF1,F2と、圧縮機Cmp及びアキ
ュムレータAcと、レシーバRと、第一熱交換器N1に
対する第一膨張弁ex1と、第二熱交換器N2に対する
第二膨張弁ex2とが備えられている。
The outdoor unit Uo includes a first heat exchanger N1 and a second heat exchanger N2 for absorbing and releasing heat to and from the outside air OA, and an outside air OA to the first and second heat exchangers N1 and N2. The outside air fans F1 and F2, the compressor Cmp and the accumulator Ac, the receiver R, the first expansion valve ex1 for the first heat exchanger N1, and the second expansion valve ex2 for the second heat exchanger N2 are provided. Provided.

【0014】室内機Uiには、給気ダクトdaを通して
ペリメータゾーンPeri へ給気SApを給送する第一給
気ファンF3と、給気ダクトdbを通してインテリアゾ
ーンInte へ給気SAiを給送する第二給気ファンF4
と、ペリメータゾーンPeriへの給気SApを調整対象
とする第三熱交換器N3と、インテリアゾーンInteへ
の給気SAiを調整対象とする上流側第四熱交換器N4
及び下流側第五熱交換器N5と、第三熱交換器N3に対
する第三膨張弁ex3、第四熱交換器N4に対する第四
膨張弁ex4及び第五熱交換器N5に対する第五膨張弁
ex5とが備えられ、また、インテリアゾーンInte 及
びペリメータゾーンPeri からの還気RAを導く還気ダ
クトdcが接続されている。
The indoor unit Ui has a first air supply fan F3 for supplying air supply SAp to the perimeter zone Peri through the air supply duct da, and a second air supply fan F1 for supplying air supply SAi to the interior zone Inte through the air supply duct db. Two-supply fan F4
A third heat exchanger N3 for adjusting the air supply SAp to the perimeter zone Peri, and an upstream fourth heat exchanger N4 for adjusting the air supply SAi to the interior zone Inte.
And a fifth heat exchanger N5 on the downstream side, a third expansion valve ex3 for the third heat exchanger N3, a fourth expansion valve ex4 for the fourth heat exchanger N4, and a fifth expansion valve ex5 for the fifth heat exchanger N5. And a return air duct dc for guiding return air RA from the interior zone Inte and the perimeter zone Peri is connected.

【0015】v1からv9は、後述の運転モードに応じ
て、第一乃至第五熱交換器N1〜N5のうち、凝縮器C
dとして機能させるものと、蒸発器Evとして機能させ
るものと、さらに冷媒通過を断って休止させるものとを
選択的に切り換えるための切換弁である。
V1 to v9 correspond to the condenser C among the first to fifth heat exchangers N1 to N5 according to the operation mode described later.
This is a switching valve for selectively switching between a function that functions as d, a function that functions as the evaporator Ev, and a function that stops and stops the passage of the refrigerant.

【0016】室外機Uoの弁vRは、第一及び第二熱交
換器N1,N2について、それら第一及び第二熱交換器
N1,N2の両方に冷媒を通過させる状態と、第二熱交
換器N2への冷媒通過を断って第一熱交換器N1にのみ
冷媒を通過させる状態とに冷媒経路を切り換えること
で、第一及び第二熱交換器N1,N2の全体としての外
気OAとの熱交換能力を切り換える切換弁であり、ま
た、vcは、逆止弁である。
The valve vR of the outdoor unit Uo determines whether the first and second heat exchangers N1 and N2 allow refrigerant to pass through both the first and second heat exchangers N1 and N2, By switching the refrigerant path to a state in which the passage of the refrigerant to the heat exchanger N2 is interrupted and the refrigerant is passed only to the first heat exchanger N1, the communication between the first and second heat exchangers N1 and N2 and the outside air OA as a whole is changed. A switching valve for switching the heat exchange capacity, and vc is a check valve.

【0017】第一〜第五膨張弁ex1〜ex5は、それ
らの弁の夫々に対応する熱交換器N1〜N5に向かって
液冷媒Rwが通流するときには、本来の冷媒膨張手段と
して機能し、夫々に対応する熱交換器N1〜N5から離
れる側に向かって液冷媒Rwが通流するときには、単に
流量調整弁として機能するように構成されている。ま
た、第一〜第五膨張弁ex1〜ex5の夫々には、閉弁
手段が備えられており、冷媒の通流を断つことができる
ように構成されている。
The first to fifth expansion valves ex1 to ex5 function as original refrigerant expansion means when the liquid refrigerant Rw flows toward the heat exchangers N1 to N5 corresponding to the respective valves. When the liquid refrigerant Rw flows toward the side away from each of the corresponding heat exchangers N1 to N5, it is configured to simply function as a flow control valve. Further, each of the first to fifth expansion valves ex1 to ex5 is provided with a valve closing means, and is configured to be able to cut off the flow of the refrigerant.

【0018】室内機Uiの第四熱交換器N4と第五熱交
換器N5とは、空気流れ方向で下流側の第五熱交換器N
5を凝縮機Cdとして機能させ、且つ、空気流れ方向で
上流側の第四熱交換器N4を蒸発器Evとして機能させ
ることで、インテリアゾーンInte に対する再熱除湿温
調運転が行えるように構成されている。
The fourth heat exchanger N4 and the fifth heat exchanger N5 of the indoor unit Ui are connected to the fifth heat exchanger N on the downstream side in the air flow direction.
5 is made to function as a condenser Cd, and the fourth heat exchanger N4 on the upstream side in the air flow direction is made to function as an evaporator Ev, so that the reheat dehumidification temperature control operation for the interior zone Inte can be performed. ing.

【0019】室外機Uoには、本セパレート型空調装置
の各種運転動作を制御する制御部Hが備えられている。
制御部Hは、マイクロコンピュータを主要部として構成
され、内蔵させるソフト・ウェアによって、種々の制御
動作が行えるように構成されている。
The outdoor unit Uo is provided with a control unit H for controlling various operation operations of the separate air conditioner.
The control unit H is mainly configured by a microcomputer, and is configured to perform various control operations by software incorporated therein.

【0020】給気ダクトdaには、給気SApの温度T
pを検出する温度センサS3が設けられている。給気ダ
クトdbには、給気SAiの温度Tiを検出する温度セ
ンサS4が設けられている。還気ダクトdcには、ペリ
メータゾーンPeri 及びインテリアゾーンInte からの
還気RAの還気温度Trを検出する温度センサS5が設
けられている。
The temperature T of the supply air SAp is supplied to the supply air duct da.
A temperature sensor S3 for detecting p is provided. The air supply duct db is provided with a temperature sensor S4 for detecting the temperature Ti of the air supply SAi. The return air duct dc is provided with a temperature sensor S5 for detecting the return air temperature Tr of the return air RA from the perimeter zone Peri and the interior zone Inte.

【0021】圧縮機Cmpの吐出側には、高圧ガス冷媒
の圧力Phを検出する圧力センサS8が設けられ、圧縮
機Cmpの吸引側には、低圧ガス冷媒の圧力Pcを検出
する圧力センサS9が設けられている。
A pressure sensor S8 for detecting the pressure Ph of the high-pressure gas refrigerant is provided on the discharge side of the compressor Cmp, and a pressure sensor S9 for detecting the pressure Pc of the low-pressure gas refrigerant is provided on the suction side of the compressor Cmp. Is provided.

【0022】同図1には、室外機Uoの第一及び第二熱
交換器N1及びN2を蒸発器Evとして機能させ、且
つ、室内機Uiの第三熱交換器N3と第四熱交換器N4
とを凝縮機Cdとして機能させて、外気OAからの吸熱
を行いながら、ペリメータゾーンPeri への給気SAp
及びインテリアゾーンInte への給気SAiを加熱温調
する「暖房モード」の運転状態が示されている。
FIG. 1 shows that the first and second heat exchangers N1 and N2 of the outdoor unit Uo function as an evaporator Ev, and the third and fourth heat exchangers N3 and N3 of the indoor unit Ui. N4
Function as a condenser Cd to absorb heat from the outside air OA while supplying air to the perimeter zone Peri.
In addition, the operation state of the “heating mode” in which the supply air SAi to the interior zone Inte is heated and temperature-controlled is shown.

【0023】具体的冷媒流れとしては、圧縮機Cmpに
より圧縮された高圧ガス冷媒Rh(図中、黒塗りの太線
で示す)は、高圧ガス管Ghを通って室内機Uiに送給
され、第三熱交換器N3及び第四熱交換器N4に分配供
給されて凝縮され、加熱温調が行われる。
As a specific refrigerant flow, a high-pressure gas refrigerant Rh (shown by a thick black line in the figure) compressed by the compressor Cmp is sent to the indoor unit Ui through a high-pressure gas pipe Gh. The heat is distributed and supplied to the three heat exchangers N3 and the fourth heat exchanger N4 to be condensed, and the heating temperature is adjusted.

【0024】第三熱交換器N3及び第四熱交換器N4へ
の高圧ガス冷媒Rhの分配比は、流量調整弁として機能
する第三膨張弁ex3及び第四膨張弁ex4の開度調整
により調整されている。
The distribution ratio of the high-pressure gas refrigerant Rh to the third heat exchanger N3 and the fourth heat exchanger N4 is adjusted by adjusting the degree of opening of the third expansion valve ex3 and the fourth expansion valve ex4 functioning as flow control valves. Have been.

【0025】第三熱交換器N3及び第四熱交換器N4か
ら送出される凝縮液冷媒Rw(図中、ハッチングを施し
た太線で示す)は、流量調整弁として機能する第三膨張
弁ex3又は第四膨張弁ex4を通ったのち再び合流さ
れ、液管Wを通って室外機Uoに送給され、本来の冷媒
膨張手段として機能する第一膨張弁ex1及び第二膨張
弁ex2によって分配され減圧膨張されたのち、第一及
び第二熱交換器N1及びN2にて蒸発され、外気OAか
らの吸熱が行われる。
The condensed liquid refrigerant Rw (shown by a thick line with hatching in the figure) sent from the third heat exchanger N3 and the fourth heat exchanger N4 is supplied to the third expansion valve ex3 or ex3 which functions as a flow control valve. After passing through the fourth expansion valve ex4, they are merged again, fed through the liquid pipe W to the outdoor unit Uo, and distributed and depressurized by the first expansion valve ex1 and the second expansion valve ex2 functioning as the original refrigerant expansion means. After being expanded, it is evaporated in the first and second heat exchangers N1 and N2, and heat is absorbed from the outside air OA.

【0026】第一及び第二熱交換器N1及びN2から送
出される低圧ガス冷媒Rc(図中、白抜きの太線で示
す)は、再び合流されてからアキュムレータAcに送給
され、圧縮機Cmpに戻される。(なお、図中、黒塗り
の弁は、閉弁状態を示す。)
The low-pressure gas refrigerant Rc (shown by a thick white line in the drawing) sent out from the first and second heat exchangers N1 and N2 is again joined and then sent to the accumulator Ac, where it is sent to the compressor Cmp Is returned to. (Note that, in the figure, a black valve indicates a closed state.)

【0027】制御部Hによる空調装置の運転モードとし
ては、上記の「暖房モード」以外にも、第一及び第二熱
交換器N1,N2を放熱用凝縮器Cdとして機能させ、
第三及び第四熱交換器N3,N4を冷却用蒸発器Evと
して機能させる「冷房モード」、第一及び第二熱交換器
N1,N2を放熱用凝縮器Cdとして機能させ、第三及
び第四熱交換器N3,N4のどちらか一方を加熱用凝縮
器Cdとして機能させ、且つ、他方を冷却用蒸発器Ev
として機能させる「冷暖同時モード」、第一及び第二熱
交換器N1,N2を吸熱用蒸発器Evとして機能させる
状態の「冷暖同時モード」、第四熱交換器N4を除湿用
蒸発器Evとして機能させ、第五熱交換器N5を加熱用
凝縮器Cdとして機能させる「再熱除湿モード」、及
び、ヒートポンプ装置を運転せず、給気ファンF3,F
4により、インテリアゾーンInte及びペリメータゾー
ンPeri に対する換気だけを行う「換気モード」などが
実施できるように構成されている。
As an operation mode of the air conditioner by the control unit H, the first and second heat exchangers N1 and N2 are made to function as a condenser Cd for radiation, in addition to the above-mentioned "heating mode".
The "cooling mode" in which the third and fourth heat exchangers N3 and N4 function as cooling evaporators Ev, the first and second heat exchangers N1 and N2 function as heat dissipation condensers Cd, and the third and fourth heat exchangers N1 and N2 function as heat dissipation condensers Cd. One of the four heat exchangers N3 and N4 is made to function as a condenser Cd for heating, and the other is used as an evaporator Ev for cooling.
"Cooling / heating simultaneous mode" in which the first and second heat exchangers N1 and N2 function as the endothermic evaporator Ev, and the fourth heat exchanger N4 as the dehumidifying evaporator Ev. "Reheat dehumidification mode" in which the fifth heat exchanger N5 functions as the heating condenser Cd, and the air supply fans F3, F without operating the heat pump device.
4 is configured so that a "ventilation mode" in which only ventilation is performed for the interior zone Inte and the perimeter zone Peri can be performed.

【0028】図5には、給気ダクトda、給気ダクトd
b及び還気ダクトdcによって室内機Uiに接続されて
いるペリメータゾーンPeri 及びインテリアゾーンInt
e が示されている。ペリメータゾーンPeri 及びインテ
リアゾーンInte に対する給気ダクトda及び給気ダク
トdbの分岐接続路には、夫々、ダンパーの開度調節に
より給気SAp又は給気SAiの送風量を調整する複数
の変風量装置Vav1又はVav2が備えられている。
FIG. 5 shows an air supply duct da and an air supply duct d.
b and the perimeter zone Peri and the interior zone Int connected to the indoor unit Ui by the return air duct dc.
e is shown. The air supply duct da and the branch connection path of the air supply duct db to the perimeter zone Peri and the interior zone Inte are provided with a plurality of variable air flow devices for adjusting the air supply amount of the air supply SAp or the air supply SAi by adjusting the opening degree of the damper, respectively. Vav1 or Vav2 is provided.

【0029】変風量装置Vav1及びVav2には、夫々、
ダンパーの開度調節を行うコントローラcv1又はcv
2と、送風量Qを検出する風量センサS6又はS7と、
夫々の空調対象領域の温度を検出する温度センサS1又
はS2と、夫々の空調対象領域の目標温度を設定する目
標温度設定器r1又はr2とが備えられている。
In the variable air volume devices Vav1 and Vav2,
Controller cv1 or cv for adjusting the opening of the damper
2, an air volume sensor S6 or S7 for detecting the air volume Q,
A temperature sensor S1 or S2 for detecting the temperature of each air conditioning target area and a target temperature setting device r1 or r2 for setting a target temperature of each air conditioning target area are provided.

【0030】コントローラcv1及びcv2は、供給さ
れる給気SAp又はSAiが加熱温調の場合には、図6
に示すグラフに従って、又、供給される給気SAp又は
SAiが冷却温調の場合には、図7に示すグラフに従っ
て、温度センサS1又はS2の検出温度と目標温度設定
器r1又はr2の設定目標温度との偏差Δt(検出温度
−設定目標温度)に基づいて、目標風量Qmを設定す
る。そして、複数の変風量装置Vav1,Vav2の夫々
が、独自に、検出送風量Qが目標風量Qmになるよう
に、ダンパー開度を増減調節するように構成されてい
る。
When the supplied air supply SAp or SAi is at the heating temperature control, the controllers cv1 and cv2 are shown in FIG.
If the supplied air supply SAp or SAi is controlled for cooling temperature, the detected temperature of the temperature sensor S1 or S2 and the set target of the target temperature setter r1 or r2 are determined according to the graph shown in FIG. The target air volume Qm is set based on a deviation Δt from the temperature (detected temperature−set target temperature). Each of the plurality of variable air volume devices Vav1 and Vav2 is configured to independently increase or decrease the damper opening so that the detected air volume Q becomes the target air volume Qm.

【0031】また、コントローラcv1及びcv2は、
室外器Uoに備えられている制御部Hに対して、後述さ
れる、各種制御情報を送信するように構成されている。
The controllers cv1 and cv2 are:
The control unit H included in the outdoor unit Uo is configured to transmit various control information, which will be described later.

【0032】図8に示すように、制御部Hには、その機
能として、給気SAiの設定給気温度Tsi、及び、給気
SApの設定給気温度Tspを設定及び変更調節する設定
給気温度制御手段101と、設定給気温度制御手段10
1にて設定される設定給気温度Tsi及びTspに基づいて
ヒートポンプ装置の運転能力を調節する運転能力制御手
段102と、還気RAの還気温度Trと設定給気温度T
si及びTspとに基づいて、ヒートポンプ装置の運転モー
ドを切り換える運転モード切換手段103とが構成され
ている。この他、制御部Hは、各種機器や各種弁の動作
を制御して、運転の開始停止や、除霜動作などを行うよ
うに構成されている。
As shown in FIG. 8, the control unit H has a set air supply function for setting and changing the set air supply temperature Tsi of the air supply SAi and the air supply temperature Tsp of the air supply SAp. Temperature control means 101 and set air supply temperature control means 10
The operating capacity control means 102 adjusts the operating capacity of the heat pump device based on the set air supply temperatures Tsi and Tsp set in Step 1, the return air temperature Tr of the return air RA, and the set air supply temperature T.
An operation mode switching means 103 for switching the operation mode of the heat pump device based on si and Tsp is configured. In addition, the control unit H is configured to control the operation of various devices and various valves to start and stop the operation, perform a defrosting operation, and the like.

【0033】設定給気温度制御手段101は、前記コン
トローラcv1及びcv2の夫々から送られてくるペリ
メータゾーンPeri 又はインテリアゾーンInte の室温
の状態を表す情報に基づいて、給気SApの設定給気温
度Tsp及び給気SAiの設定給気温度Tsiを変更調節す
るように構成されている。
The set air supply temperature control means 101 determines the set air supply temperature of the air supply SAp based on information indicating the room temperature state of the perimeter zone Peri or interior zone Inte sent from each of the controllers cv1 and cv2. It is configured to change and adjust the set supply temperature Tsi of Tsp and the supply air SAi.

【0034】室温の状態を表す情報は、図9に示すよう
に、「OVER」、「不足」、又は、「OK」の3種類
のいずれかの信号で構成され、コントローラcv1又は
cv2の目標風量Qmの状態に応じて割り当てられてい
る。ただし、「OVER」信号は、コントローラcv1
又はcv2が加熱温調時の送風量Qを制御している場合
(すなわち、図6に従って目標風量Qmを設定している
場合)には、室温が設定目標温度よりも1℃以上高いこ
とを表し、冷却温調時の送風量Qを制御している場合
(すなわち、図7に従って目標風量Qmを設定している
場合)には、室温が設定目標温度よりも1℃以上低いこ
とを表している。「不足」信号も、上記の場合と同様
に、加熱温調か冷却温調かによって、表す室温の状態を
異にする。強制的に最大風量に設定されている変風量装
置には、そのまま「不足」信号が割り当てられ、強制全
閉状態の変風量装置の信号は、後述するように、設定給
気温度Tsi,Tspの制御において無視される。
As shown in FIG. 9, the information indicating the state at room temperature is composed of one of three types of signals, "OVER", "insufficient", and "OK", and the target air volume of the controller cv1 or cv2. Assigned according to the state of Qm. However, the “OVER” signal is output from the controller cv1
Alternatively, when cv2 controls the air volume Q during the heating temperature control (that is, when the target air volume Qm is set according to FIG. 6), it indicates that the room temperature is higher than the set target temperature by 1 ° C. or more. When the air volume Q during cooling temperature control is controlled (that is, when the target air volume Qm is set according to FIG. 7), it indicates that the room temperature is lower than the set target temperature by 1 ° C. or more. . As in the case described above, the "insufficient" signal also has a different room temperature state depending on whether the heating temperature is controlled or the cooling temperature is controlled. The “deficient” signal is directly assigned to the variable air volume device that is forcibly set to the maximum air volume, and the signal of the variable air volume device in the forced fully closed state is, as described later, a signal of the set supply air temperature Tsi, Tsp. Ignored in control.

【0035】なお、給気SApの設定給気温度Tspの制
御は、コントローラcv1の信号のみにによって行わ
れ、給気SAiの設定給気温度Tsiの制御は、コントロ
ーラcv2の信号のみによって行われる。
The control of the set supply temperature Tsp of the supply air SAp is performed only by the signal of the controller cv1, and the control of the set supply temperature Tsi of the supply air SAi is performed only by the signal of the controller cv2.

【0036】設定給気温度制御手段101は、図10に
示すフローチャートに従って、給気SApの設定給気温
度Tsp及び給気SAiの設定給気温度Tsiを、以下のよ
うに変更調節する。まず、ステップ1に示すように、全
てのコントローラcv1又は全てのコントローラcv2
の信号が受信されるに伴って信号の内容を検査し、ステ
ップ2に示すように、強制全閉状態の変風量装置Vav1
又はVav2の台数を計測し、全台数から強制全閉状態の
台数を差し引いた残り台数を100パーセントに設定す
る。そして、ステップ3に示すように、強制全閉状態の
台数のパーセント値xを求める。
The set air supply temperature control means 101 changes and adjusts the set air supply temperature Tsp of the air supply SAp and the set air supply temperature Tsi of the air supply SAi according to the flowchart shown in FIG. First, as shown in step 1, all controllers cv1 or all controllers cv2
As the signal is received, the content of the signal is inspected, and as shown in step 2, the forced air volume device Vav1 in the forced fully closed state
Alternatively, the number of Vav2s is measured, and the remaining number obtained by subtracting the number in the forced fully closed state from the total number is set to 100%. Then, as shown in step 3, a percentage value x of the number of vehicles in the forced fully closed state is obtained.

【0037】次に、ステップ4に示すように、「OVE
R」信号の台数を計測し、「OVER」信号の台数のパ
ーセント値aを算出し、ステップ5に示すように、「不
足」信号の台数を計測し、「不足」信号の台数のパーセ
ント値bを算出する。
Next, as shown in step 4, "OVE
R, the number of “OVER” signals is calculated, and a percentage value “a” of the number of “OVER” signals is calculated. Is calculated.

【0038】そして、ステップ6に示すように、yを、
「OVER」信号及び「不足」信号が同時に入ったとき
の優先させる倍数として、2を代入し、ステップ7及び
ステップ8に示すように、a≧x、且つ、a≧y・bで
ある場合には、ステップ9に示すように、加熱温調(暖
房)の制御ならば、設定給気温度Tsi又はTspを1℃下
降させ、冷却温調(冷房)の制御ならば、設定給気温度
Tsi又はTspを1℃上昇させる。
Then, as shown in Step 6, y is
Substituting 2 as a priority multiple when the “OVER” signal and the “insufficient” signal are simultaneously input, and when a ≧ x and a ≧ y · b as shown in steps 7 and 8, As shown in step 9, if the heating temperature control (heating) is controlled, the set supply temperature Tsi or Tsp is decreased by 1 ° C., if the cooling temperature control (cooling) is controlled, the set supply temperature Tsi or Increase Tsp by 1 ° C.

【0039】一方、ステップ10及びステップ11に示
すように、b≧x、且つ、b≧y・aである場合には、
ステップ12に示すように、加熱温調(暖房)の制御な
らば、設定給気温度Tsi又はTspを1℃上昇させ、冷却
温調(冷房)の制御ならば、設定給気温度Tsi又はTsp
を1℃下降させる。
On the other hand, as shown in Steps 10 and 11, when b ≧ x and b ≧ y · a,
As shown in step 12, if the control is heating temperature control (heating), the set supply air temperature Tsi or Tsp is increased by 1 ° C., if the control is cooling temperature control (cooling), the set supply air temperature Tsi or Tsp is used.
Is lowered by 1 ° C.

【0040】それ以外の場合には、現状が維持され、上
記の制御動作が、所定の時間毎に、随時繰り返される。
このようにして、設定給気温度Tsp及び設定給気温度T
siは、ペリメータゾーンPeri 又はインテリアゾーンI
nte の室温の状態に応じて、常に、自動的に変更調節さ
れる。
In other cases, the current condition is maintained, and the above-described control operation is repeated at predetermined time intervals.
Thus, the set supply temperature Tsp and the set supply temperature Tsp
si is the perimeter zone Peri or interior zone I
Depending on the room temperature condition of the nte, it is always adjusted automatically.

【0041】運転能力制御手段102は、図8に示すよ
うに、温度センサS3及び温度センサS4の検出情報に
基づいて、給気SApの温度Tpが設定給気温度Tspに
なるように、且つ、給気SAiの温度Tiが設定給気温
度Tsiになるように、圧縮器Cmpの回転数、及び、第
一〜第四膨張弁ex1〜ex4の開度を調節するように
構成されている。
As shown in FIG. 8, the operating capacity control means 102 sets the temperature Tp of the supply air SAp to the set supply air temperature Tsp based on the detection information of the temperature sensors S3 and S4, and The rotation speed of the compressor Cmp and the opening degrees of the first to fourth expansion valves ex1 to ex4 are adjusted so that the temperature Ti of the supply air SAi becomes the set supply temperature Tsi.

【0042】図1に示す、本実施例の「暖房モード」に
おいては、圧縮器Cmpの回転数を調節することによ
り、ヒートポンプ回路の冷媒循環量が制御され、流量調
整弁として機能する状態の第三及び第四膨張弁ex3及
びex4の開度を調節することにより、第三及び第四熱
交換器N3,N4に対する冷媒の分配比が制御されて、
第三及び第四熱交換器N3,N4の夫々の加熱量が調節
されることによって、給気SAp及びSAiの温度T
p,Tiが調節される。
In the "heating mode" of the present embodiment shown in FIG. 1, the amount of refrigerant circulating in the heat pump circuit is controlled by adjusting the rotation speed of the compressor Cmp, and the state in which the refrigerant functions as a flow control valve is obtained. By adjusting the opening of the third and fourth expansion valves ex3 and ex4, the distribution ratio of the refrigerant to the third and fourth heat exchangers N3 and N4 is controlled,
By adjusting the respective heating amounts of the third and fourth heat exchangers N3 and N4, the temperatures T of the supply air SAp and SAi are adjusted.
p and Ti are adjusted.

【0043】「冷房モード」も、同様に制御できる。The "cooling mode" can be similarly controlled.

【0044】第一及び第二熱交換器N1,N2を放熱用
凝縮器Cdとして機能させ、第三及び第四熱交換器N
3,N4のどちらか一方を加熱用凝縮器Cdとして機能
させ、且つ、他方を冷却用蒸発器Evとして機能させる
冷房主体の「冷暖同時モード」においては、圧縮器Cm
pの回転数を調節して冷媒の循環量を制御することによ
り、冷却用蒸発器Evとして機能する熱交換器N3又は
N4の冷却量が調節され、冷却温調の方の温度Tp又は
Tiが調節される。そして、流量調整弁として機能する
第一、第二膨張弁ex1,ex2及び加熱用凝縮器Cd
として機能する熱交換器N3又はN4に対応する膨張弁
ex3又はex4の開度を調節することによって、冷媒
の分配比が制御されて、加熱用凝縮器Cdとして機能す
る熱交換器N3又はN4の加熱量と、第一及び第二熱交
換器N1,N2の放熱量とが調節され、加熱温調の方の
温度Ti又はTpが調節される。
The first and second heat exchangers N1 and N2 are made to function as a condenser Cd for heat dissipation, and the third and fourth heat exchangers N
3 and N4 function as a condenser for heating Cd, and the other functions as an evaporator for cooling Ev.
By controlling the number of rotations of p and controlling the circulation amount of the refrigerant, the cooling amount of the heat exchanger N3 or N4 functioning as the cooling evaporator Ev is adjusted, and the temperature Tp or Ti in the cooling temperature control is reduced. Adjusted. Then, the first and second expansion valves ex1 and ex2 functioning as flow rate adjusting valves and the heating condenser Cd
By adjusting the opening degree of the expansion valve ex3 or ex4 corresponding to the heat exchanger N3 or N4 functioning as a heat exchanger, the distribution ratio of the refrigerant is controlled, and the heat exchanger N3 or N4 functioning as the heating condenser Cd is controlled. The heating amount and the heat radiation amount of the first and second heat exchangers N1 and N2 are adjusted, and the temperature Ti or Tp of the heating temperature controller is adjusted.

【0045】第一及び第二熱交換器N1,N2を吸熱用
蒸発器Evとして機能させる暖房主体の「冷暖同時モー
ド」においても、同様に、冷媒の循環量の制御により加
熱用凝縮器Cdとして機能する熱交換器N3又はN4の
加熱量が調節され、冷媒の分配比の制御により、冷却用
蒸発器Evとして機能する熱交換器N4又はN3の冷却
量と、第一及び第二熱交換器N1,N2の吸熱量とが調
節されて、温度Tp及びTiが調節される。
In the "cooling / heating simultaneous mode" in which the first and second heat exchangers N1 and N2 function as heat-absorbing evaporators Ev, the heating condenser Cd is similarly controlled by controlling the circulation amount of the refrigerant. The heating amount of the functioning heat exchanger N3 or N4 is adjusted, and by controlling the distribution ratio of the refrigerant, the cooling amount of the heat exchanger N4 or N3 functioning as the cooling evaporator Ev, and the first and second heat exchangers The endothermic amounts of N1 and N2 are adjusted to adjust the temperatures Tp and Ti.

【0046】なお、必要に応じて能力切換弁vRの断続
を切り換えて、第一及び第二熱交換器N1,N2の吸放
熱能力を調節する。
It should be noted that the on / off state of the capacity switching valve vR is switched as required to adjust the heat absorbing and radiating capacity of the first and second heat exchangers N1 and N2.

【0047】運転モード切換手段103は、図8に示す
ように、まず、空調装置の運転開始時において、温度セ
ンサS5にて検出される還気RAの還気温度Trに基づ
いて、運転モードを、還気温度Trが25℃以上のとき
には「冷房モード」に、還気温度Trが21℃以下のと
きには「暖房モード」に、還気温度Trが22℃から2
4℃の範囲内のときには「換気モード」に初期設定す
る。(以下、本実施例において、温度は全て、1℃刻み
のデジタル量で扱われる。従って、例えば、25℃未満
と24℃以下とは、同じ意味である。)
As shown in FIG. 8, the operation mode switching means 103 first sets the operation mode based on the return air temperature Tr of the return air RA detected by the temperature sensor S5 at the start of the operation of the air conditioner. When the return air temperature Tr is equal to or higher than 25 ° C., the cooling mode is set, and when the return air temperature Tr is equal to or lower than 21 ° C., the heating mode is set.
When the temperature is within the range of 4 ° C., “ventilation mode” is initially set. (Hereinafter, in the present embodiment, all temperatures are handled in digital quantities in increments of 1 ° C. Therefore, for example, less than 25 ° C. and 24 ° C. or less have the same meaning.)

【0048】このとき、設定給気温度制御手段101
は、「暖房モード」のときには、設定給気温度Tsp及び
Tsiを35℃に初期設定し、「冷房モード」のときに
は、15℃に初期設定する。以後、設定給気温度Tsp及
びTsiは、前述の如く自動的に、1℃づつ上下に変更調
節される。
At this time, the set supply air temperature control means 101
Sets the set air supply temperatures Tsp and Tsi to 35 ° C. in the “heating mode”, and 15 ° C. in the “cooling mode”. Thereafter, the set supply air temperatures Tsp and Tsi are automatically changed up and down by 1 ° C. as described above.

【0049】そして、運転モード切換手段103は、常
に、還気温度Trと設定給気温度Tsp及びTsiとを監視
しており、設定給気温度Tspが還気温度Trよりも所定
温度以上高くなった場合には、第三熱交換器N3を冷却
用蒸発器Evとして機能させる運転モードから、加熱用
凝縮器Cdとして機能させる運転モードに切り換える。
設定給気温度Tsiのときには、第四熱交換器N4につい
て、同様に運転モードを切り換える。
The operation mode switching means 103 constantly monitors the return air temperature Tr and the set supply air temperatures Tsp and Tsi, and the set supply air temperature Tsp becomes higher than the return air temperature Tr by a predetermined temperature or more. In this case, the operation mode is switched from the operation mode in which the third heat exchanger N3 functions as the cooling evaporator Ev to the operation mode in which the third heat exchanger N3 functions as the heating condenser Cd.
At the set air supply temperature Tsi, the operation mode of the fourth heat exchanger N4 is similarly switched.

【0050】また、設定給気温度Tspが還気温度Trよ
りも所定温度以上低くなった場合には、第三熱交換器N
3を加熱用凝縮器Cdとして機能させる運転モードか
ら、冷却用蒸発器Evとして機能させる運転モードに切
り換える。設定給気温度Tsiのときにも、第四熱交換器
N4について、同様に運転モードを切り換える。
If the set supply air temperature Tsp is lower than the return air temperature Tr by a predetermined temperature or more, the third heat exchanger N
3 is switched from an operation mode in which it functions as the heating condenser Cd to an operation mode in which it functions as the cooling evaporator Ev. Also at the set air supply temperature Tsi, the operation mode of the fourth heat exchanger N4 is similarly switched.

【0051】なお、室外機Uoの熱交換器である第一及
び第二熱交換器N1,N2の切換は、「冷房モード」又
は「暖房モード」への切り換えに対応する場合の他、後
述するように、「冷暖同時モード」のときにおいては、
加熱用凝縮器Cdの凝縮量と冷却用蒸発器Evの蒸発量
との大小関係の変化に応じて随時行われる場合がある。
The switching of the first and second heat exchangers N1 and N2, which are the heat exchangers of the outdoor unit Uo, corresponds to the switching to the "cooling mode" or the "heating mode" and will be described later. Thus, in the “simultaneous cooling and heating mode”,
It may be performed at any time according to a change in the magnitude relationship between the amount of condensation of the heating condenser Cd and the amount of evaporation of the cooling evaporator Ev.

【0052】運転モードの切り換えは、第一〜第五膨張
弁ex1〜ex5及び切換弁v1〜v9の断続状態を切
り換えることにより、第一〜第五熱交換器N1〜N5の
夫々に連通される冷媒路を切換制御することによって行
われる。以下、「暖房モード」から第四熱交換器N4を
冷却用蒸発器Evとして機能させる「冷暖同時モード」
への切換制御を例にとって、図1から図4に示すよう
に、順を追って説明する。
The switching of the operation mode is performed by switching the intermittent state of the first to fifth expansion valves ex1 to ex5 and the switching valves v1 to v9, thereby communicating with the first to fifth heat exchangers N1 to N5. This is performed by switching control of the refrigerant path. Hereinafter, from the “heating mode”, the “simultaneous cooling and heating mode” in which the fourth heat exchanger N4 functions as the cooling evaporator Ev
The switching control to the example will be described step by step as shown in FIGS. 1 to 4.

【0053】図1には、前述のごとく、「暖房モード」
の状態が示されている。第四熱交換器N4は、加熱用凝
縮器Cdとして機能する状態である。切換弁v8は閉弁
され、且つ、切換弁v6は開弁され、第四熱交換器N4
には、高圧ガス冷媒Rhが供給されている。また、第四
膨張弁ex4は、開弁状態で且つ流量調整弁として機能
する状態で、第四熱交換器N4からの凝縮液冷媒Rwを
通流している。従って、第四熱交換器N4には、高圧ガ
ス冷媒供給路と凝縮冷媒導出路とが連通されている。
FIG. 1 shows the "heating mode" as described above.
Is shown. The fourth heat exchanger N4 is in a state of functioning as a heating condenser Cd. The switching valve v8 is closed, the switching valve v6 is opened, and the fourth heat exchanger N4
Is supplied with a high-pressure gas refrigerant Rh. In addition, the fourth expansion valve ex4 flows the condensed liquid refrigerant Rw from the fourth heat exchanger N4 in a state where the fourth expansion valve ex4 is open and functions as a flow control valve. Therefore, the high-pressure gas refrigerant supply path and the condensed refrigerant outlet path are connected to the fourth heat exchanger N4.

【0054】運転モード切換手段103は、まず、図2
に示すように、切換弁v6及び第四膨張弁ex4を閉弁
して、第四熱交換器N4の加熱用凝縮器Cdとしての運
転を停止する。
The operation mode switching means 103 first operates as shown in FIG.
As shown in (5), the switching valve v6 and the fourth expansion valve ex4 are closed, and the operation of the fourth heat exchanger N4 as the heating condenser Cd is stopped.

【0055】次に、図3に示すように、切換弁v8を開
弁し、アキュムレータAcを介して圧縮器Cmpの吸引
側に接続されている低圧ガス冷媒導出路を、第四熱交換
器N4に対して連通状態にする。このとき、第四膨張弁
ex4は、まだ閉弁状態のままである。第四熱交換器N
4の内部に残存している冷媒は、低圧ガス冷媒の状態に
近づけられる。
Next, as shown in FIG. 3, the switching valve v8 is opened, and the low-pressure gas refrigerant outlet path connected to the suction side of the compressor Cmp via the accumulator Ac is connected to the fourth heat exchanger N4. To the communication state. At this time, the fourth expansion valve ex4 is still in the closed state. Fourth heat exchanger N
The refrigerant remaining inside 4 is brought close to a state of a low-pressure gas refrigerant.

【0056】その後、図4に示すように、第四膨張弁e
x4を開弁し、且つ、本来の膨張弁として機能する状態
に制御して過熱度の制御を開始し、膨張弁からの冷媒を
供給する膨張冷媒供給路を第四熱交換器N4に対して連
通状態にして、第四熱交換器N4を冷却用蒸発器Evと
して機能させる「冷暖同時モード」の運転を開始する。
なお、蒸発量と凝縮量との調整のために、第二膨張弁e
x2及び能力切換弁vRを閉弁して、第二熱交換器N2
の吸熱用蒸発器Evとしての運転を停止する。
Thereafter, as shown in FIG. 4, the fourth expansion valve e
x4, and controls the degree of superheat by controlling it to function as an original expansion valve, and connects the expansion refrigerant supply passage for supplying refrigerant from the expansion valve to the fourth heat exchanger N4. In the communication state, the operation in the “simultaneous cooling / heating mode” in which the fourth heat exchanger N4 functions as the cooling evaporator Ev is started.
In order to adjust the evaporation amount and the condensation amount, the second expansion valve e
x2 and the capacity switching valve vR are closed, and the second heat exchanger N2 is closed.
Is stopped as the endothermic evaporator Ev.

【0057】また、冷却用蒸発器Evから加熱用蒸発器
Evに切り換えるときの具体的切換手順を、図4に示す
第四熱交換器N4を例にとって説明する。図4におい
て、第四熱交換器N4は、前述の如く、第四膨張弁N4
及び切換弁v8の開弁状態によって膨張冷媒供給路及び
低圧ガス冷媒導出路が連通され、冷却用蒸発器Evとし
て機能する状態にある。
Further, a specific switching procedure when switching from the cooling evaporator Ev to the heating evaporator Ev will be described by taking the fourth heat exchanger N4 shown in FIG. 4 as an example. In FIG. 4, the fourth heat exchanger N4 is connected to the fourth expansion valve N4 as described above.
The expanded refrigerant supply path and the low-pressure gas refrigerant outlet path are communicated with each other depending on the open state of the switching valve v8, and are in a state of functioning as a cooling evaporator Ev.

【0058】運転モード切換手段103は、まず、切換
弁v8及び第四膨張弁ex4を閉弁して、第四熱交換器
N4の冷却用蒸発器Evとしての運転を停止する。次
に、切換弁v6を開弁し、圧縮器Cmpの吐出側に接続
されている高圧ガス冷媒供給路を、第四熱交換器N4に
対して連通状態にする。このとき、第四膨張弁ex4
は、まだ閉弁状態のままである。第四熱交換器N4の内
部に残存している冷媒は、高圧ガス冷媒の状態に近づけ
られる。その後、第四膨張弁ex4を開弁し、且つ、流
量調整制御を開始して、第四熱交換器N4からの凝縮液
冷媒Rwを導出する凝縮冷媒導出路を連通状態にして、
第四熱交換器N4の加熱用凝縮器Cdとしての運転を開
始する。
The operation mode switching means 103 first closes the switching valve v8 and the fourth expansion valve ex4 to stop the operation of the fourth heat exchanger N4 as the cooling evaporator Ev. Next, the switching valve v6 is opened to bring the high-pressure gas refrigerant supply path connected to the discharge side of the compressor Cmp into a state of communication with the fourth heat exchanger N4. At this time, the fourth expansion valve ex4
Is still in the closed state. The refrigerant remaining inside the fourth heat exchanger N4 is brought close to a state of a high-pressure gas refrigerant. After that, the fourth expansion valve ex4 is opened, and the flow rate adjustment control is started, and the condensed refrigerant outlet path for discharging the condensed liquid refrigerant Rw from the fourth heat exchanger N4 is set in a communicating state,
The operation of the fourth heat exchanger N4 as the heating condenser Cd is started.

【0059】同様に、運転モード切換手段103は、運
転モードの切換に伴って第一及び第二熱交換器N1,N
2、第三熱交換器N3、又は、第五熱交換器N5を切り
換えるときにも、夫々の熱交換器に対応する第一及び第
二膨張弁ex1,ex2、第三膨張弁ex3、及び、第
五膨張弁ex5、並びに、切換弁v1,v3、切換弁v
4,v5、及び、切換弁v7,v9を、上記の動作手順
で切り換えて、夫々に連通させる冷媒路を切換制御す
る。
Similarly, the operation mode switching means 103 switches the first and second heat exchangers N1, N
2. When the third heat exchanger N3 or the fifth heat exchanger N5 is switched, the first and second expansion valves ex1 and ex2, the third expansion valve ex3, and the third expansion valve ex3 corresponding to the respective heat exchangers are also provided. Fifth expansion valve ex5, switching valves v1, v3, switching valve v
4, v5 and the switching valves v7, v9 are switched according to the above-described operation procedure, and the refrigerant paths to be communicated with each other are switched and controlled.

【0060】従って、運転モード切換手段103は、高
圧ガス冷媒供給路と凝縮冷媒導出路とを第一、第二、第
三、第四又は第五熱交換器N1,N2,N3,N4又は
N5に連通させて、その熱交換器N1,N2,N3,N
4又はN5を凝縮器Cdとして機能させる状態と、膨張
手段としての第一〜第五膨張弁ex1〜ex5からの膨
張冷媒供給路と低圧ガス冷媒導出路とを連通させて、蒸
発器Evとして機能させる状態とに、冷媒路を切換制御
する制御手段として構成され、凝縮器Cdとして機能さ
せる状態から蒸発器Evとして機能させる状態への切り
換えを行うときには、前記高圧ガス冷媒供給路、凝縮冷
媒導出路、膨張冷媒供給路、低圧ガス冷媒導出路の全て
をその熱交換器N1,N2,N3,N4又はN5に対し
非連通状態としたのち、前記膨張冷媒供給路よりも前記
低圧ガス冷媒導出路を先行してその熱交換器N1,N
2,N3,N4又はN5に対し連通させ、かつ、その後
に前記膨張冷媒供給路をその熱交換器N1,N2,N
3,N4又はN5に対し連通させるように構成され、且
つ、蒸発器Evとして機能させる状態から凝縮器Cdと
して機能させる状態への切り換えを行うときには、前記
高圧ガス冷媒供給路、凝縮冷媒導出路、膨張冷媒供給
路、低圧ガス冷媒導出路の全てをその熱交換器N1,N
2,N3,N4又はN5に対し非連通状態としたのち、
前記凝縮冷媒導出路よりも前記高圧ガス冷媒供給路を先
行してその熱交換器N1,N2,N3,N4又はN5に
対し連通させ、かつ、その後に前記凝縮冷媒導出路をそ
の熱交換器N1,N2,N3,N4又はN5に対して連
通させるように構成されている。
Accordingly, the operation mode switching means 103 connects the high pressure gas refrigerant supply passage and the condensed refrigerant outlet passage to the first, second, third, fourth or fifth heat exchangers N1, N2, N3, N4 or N5. And the heat exchangers N1, N2, N3, N
4 or N5 functions as a condenser Cd, and communicates an expansion refrigerant supply path from first to fifth expansion valves ex1 to ex5 as expansion means and a low-pressure gas refrigerant discharge path to function as an evaporator Ev. And a state in which the refrigerant path is controlled to switch the refrigerant path. When switching from the state in which the condenser Cd functions to the state in which the condenser Cd functions as the evaporator Ev, the high-pressure gas refrigerant supply path and the condensed refrigerant outlet path After all of the expansion refrigerant supply path and the low-pressure gas refrigerant lead-out path are in a non-communication state with respect to the heat exchangers N1, N2, N3, N4 or N5, the low-pressure gas refrigerant lead-out path is set to a lower position than the expansion refrigerant supply path. Prior to the heat exchanger N1, N
2, N3, N4 or N5, and then connect the expanded refrigerant supply path to the heat exchangers N1, N2, N5.
3, N4 or N5, and when switching from the state of functioning as the evaporator Ev to the state of functioning as the condenser Cd, the high-pressure gas refrigerant supply path, the condensing refrigerant outlet path, All of the expansion refrigerant supply path and the low-pressure gas refrigerant discharge path are connected to the heat exchangers N1, N
2, after making it incommunicable with N3, N4 or N5,
The high-pressure gas refrigerant supply path is communicated with the heat exchanger N1, N2, N3, N4 or N5 prior to the condensed refrigerant discharge path, and thereafter the condensed refrigerant discharge path is connected to the heat exchanger N1. , N2, N3, N4 or N5.

【0061】本実施例において、運転モード切換手段1
03は、第三熱交換器N3及び第四熱交換器N4の切換
かかる運転モードの切換を、図11に示すフローチャー
トに従って制御する。第三熱交換器N3又は第四熱交換
器N4の加熱用凝縮器Cdから冷却用蒸発器Evへの切
換は、ステップ3及びステップ4に示すように、設定給
気温度Tsp又はTsiが還気温度Trよりも1℃以上低く
なるに伴って行われる。但し、このとき、第三又は第四
膨張弁ex3又はex4は、まだ閉弁状態である。そし
て、ステップ7に示すように、設定給気温度Tsp又はT
siが更に低下を続け、還気温度Trよりも3℃以上低く
なるに伴って、ステップ8に示すように、第三又は第四
膨張弁ex3又はex4を開弁、且つ、本来の膨張弁と
して機能する状態に制御して、過熱度制御を開始し、冷
房運転を開始する。
In this embodiment, the operation mode switching means 1
03 controls the switching of the operation mode in which the third heat exchanger N3 and the fourth heat exchanger N4 are switched according to the flowchart shown in FIG. The switching from the heating condenser Cd to the cooling evaporator Ev of the third heat exchanger N3 or the fourth heat exchanger N4 is performed by returning the set supply temperature Tsp or Tsi as shown in steps 3 and 4. This is performed as the temperature becomes lower than the temperature Tr by 1 ° C. or more. However, at this time, the third or fourth expansion valve ex3 or ex4 is still in the closed state. Then, as shown in Step 7, the set supply air temperature Tsp or Tsp
As si continues to decrease further and becomes lower than the return air temperature Tr by 3 ° C. or more, as shown in Step 8, the third or fourth expansion valve ex3 or ex4 is opened and the original expansion valve is opened. Control to a functioning state, start superheat control, and start cooling operation.

【0062】また、冷却用蒸発器Evから加熱用凝縮器
Cdへの切換は、ステップ5及びステップ6に示すよう
に、設定給気温度Tsp又はTsiが還気温度Trよりも1
℃以上高くなるに伴って行われる。但し、このとき、第
三又は第四膨張弁ex3又はex4は、まだ閉弁状態で
ある。そして、ステップ9に示すように、設定給気温度
Tsp又はTsiが更に上昇を続け、還気温度Trよりも3
℃以上高くなるに伴って、ステップ10に示すように、
第三又は第四膨張弁ex3又はex4を開弁、且つ、流
量調整制御を開始して、暖房運転を開始する。
The switching from the cooling evaporator Ev to the heating condenser Cd is performed as shown in Steps 5 and 6, when the set supply air temperature Tsp or Tsi is one more than the return air temperature Tr.
It is performed as the temperature rises by more than ℃. However, at this time, the third or fourth expansion valve ex3 or ex4 is still in the closed state. Then, as shown in step 9, the set supply air temperature Tsp or Tsi continues to further increase, and becomes 3
As the temperature rises by more than ℃, as shown in step 10,
The third or fourth expansion valve ex3 or ex4 is opened, the flow rate adjustment control is started, and the heating operation is started.

【0063】第三及び第四熱交換器N3,N4の切換制
御を温度に付いてまとめると、図12に示すように、温
度センサS5にて検出される検出還気温度Trを基準と
して、設定給気温度制御手段101による設定給気温度
Tsp又はTsiが検出還気温度Trよりも1℃以上高く又
は低くなったときに、運転モードの切換が開始され、3
℃以上高く又は低くなったときに、暖房運転又は冷房運
転が開始されるように構成されており、従って、検出還
気温度Trの上下2℃の範囲が、切換制御の不感帯とな
っている。(但し、温度は全て、1℃刻みのデジタル量
で扱われる。)
When the switching control of the third and fourth heat exchangers N3 and N4 is summarized with respect to the temperature, as shown in FIG. 12, the switching control is performed based on the detected return air temperature Tr detected by the temperature sensor S5. When the supply air temperature Tsp or Tsi set by the air supply temperature control means 101 becomes higher or lower by 1 ° C. or more than the detected return air temperature Tr, the operation mode switching is started, and
The heating operation or the cooling operation is started when the temperature rises or falls by more than ° C. Therefore, the range of 2 ° C above and below the detected return air temperature Tr is a dead zone of the switching control. (However, all temperatures are handled in digital quantities in 1 ° C increments.)

【0064】また、本実施例において、運転モード切換
手段103は、「冷暖同時モード」において、室外機U
oの熱交換器、すなわち、第一及び第二熱交換器N1,
N2の運転状態を、図13に示すフローチャートに従っ
て制御する。運転モード切換手段103は、ステップ1
に示すように、第一及び第二膨張弁ex1,ex2の開
度を監視しており、開度が下限(例えば、20%以下)
になるに伴って、ステップ2に示すように、圧力センサ
S8にて検出される高圧ガス冷媒Rhの検出圧力Ph
と、圧力センサS9にて検出される低圧ガス冷媒Rcの
検出圧力Pcとを、それぞれ記憶圧力Phm、及び、記憶
圧力Pcmとしてメモリーに記憶する。
In this embodiment, the operation mode switching means 103 sets the outdoor unit U in the “simultaneous cooling / heating mode”.
o, ie, the first and second heat exchangers N1,
The operation state of N2 is controlled according to the flowchart shown in FIG. The operation mode switching means 103 performs step 1
As shown in (1), the opening of the first and second expansion valves ex1 and ex2 is monitored, and the opening is the lower limit (for example, 20% or less).
, The detected pressure Ph of the high-pressure gas refrigerant Rh detected by the pressure sensor S8 as shown in step 2.
And the detected pressure Pc of the low-pressure gas refrigerant Rc detected by the pressure sensor S9 are stored in the memory as the storage pressure Phm and the storage pressure Pcm, respectively.

【0065】その後、ステップ3に示すように、タイマ
ーによって、1分経過するまで待ち、1分経過後に、再
び高圧ガス冷媒Rhの圧力Phと低圧ガス冷媒Rcの圧
力Pcとを検査して、その時、ステップ4に示すよう
に、検出圧力Phが記憶圧力Phmよりも上昇していた場
合には、ステップ5に示すように、第一及び第二熱交換
器N1,N2を放熱用凝縮器Cdに切り換え、また、ス
テップ8に示すように、検出圧力Pcが記憶圧力Pcmよ
りも下降していた場合には、ステップ9に示すように、
第一及び第二熱交換器N1,N2を吸熱用蒸発器Evに
切り換える。但し、このとき、第一及び第二膨張弁ex
1,ex2は、まだ閉弁状態である。
Thereafter, as shown in step 3, the timer waits until one minute elapses, and after one minute elapses, the pressure Ph of the high-pressure gas refrigerant Rh and the pressure Pc of the low-pressure gas refrigerant Rc are checked again. If the detected pressure Ph is higher than the storage pressure Phm as shown in Step 4, the first and second heat exchangers N1 and N2 are connected to the condenser Cd as shown in Step 5. If the detected pressure Pc has fallen below the stored pressure Pcm as shown in step 8, as shown in step 9,
The first and second heat exchangers N1 and N2 are switched to the endothermic evaporator Ev. However, at this time, the first and second expansion valves ex
1 and ex2 are still in the valve closed state.

【0066】そして、ステップ6及びステップ10に示
すように、タイマーによって、更に1分経過するまで待
ち、1分経過後に、ステップ7又はステップ11に示す
ように、第一及び第二膨張弁ex1,ex2を開弁し、
且つ、流量調整制御又は過熱度制御を開始する。
Then, as shown in steps 6 and 10, the timer waits for another one minute to elapse, and after one minute elapses, as shown in step 7 or step 11, the first and second expansion valves ex1 and ex1. open ex2,
At the same time, the flow rate control or the superheat control is started.

【0067】なお、ステップ4及びステップ8におい
て、高圧ガス冷媒Rhの圧力Phの上昇も、低圧ガス冷
媒Rcの圧力Pcの下降も検出されなかった場合には、
ステップ1に帰還し、第一及び第二熱交換器N1,N2
の運転状態は、現状が維持される。
In steps 4 and 8, if neither increase in the pressure Ph of the high-pressure gas refrigerant Rh nor decrease in the pressure Pc of the low-pressure gas refrigerant Rc is detected.
Returning to step 1, the first and second heat exchangers N1, N2
Is maintained as it is.

【0068】〔別実施例〕本実施例において、第一〜第
五熱交換器N1〜N5の夫々は、2本の冷媒管が接続さ
れ、高圧ガス冷媒供給路と低圧ガス冷媒導出路、及び、
凝縮冷媒導出路と膨張冷媒供給路とが同じ冷媒管で兼用
されていたが、夫々別の冷媒管(計4本)で構成され、
夫々の冷媒管に切換弁が設けられても良い。片方のみ兼
用されて、計3本で構成されも良い。
[Alternative Embodiment] In this embodiment, each of the first to fifth heat exchangers N1 to N5 is connected to two refrigerant pipes, and has a high-pressure gas refrigerant supply path, a low-pressure gas refrigerant outlet path, and ,
Although the condensed refrigerant outlet path and the expanded refrigerant supply path are shared by the same refrigerant pipe, each is constituted by separate refrigerant pipes (four in total),
A switching valve may be provided for each refrigerant pipe. Only one of them may be used, and a total of three may be used.

【0069】膨張手段としての第一〜第五膨張弁ex1
〜ex5は、凝縮冷媒導出路又は膨張冷媒供給路を連通
状態と非連通状態とに切り換える切換手段に兼用されて
いたが、切換弁が別に設けられても良い。
First to fifth expansion valves ex1 as expansion means
Although ex5 is also used as a switching means for switching the condensed refrigerant outlet passage or the expanded refrigerant supply passage between the communicating state and the non-communicating state, a switching valve may be separately provided.

【0070】運転モード切換手段103の運転モードの
切換制御は、上述の制御形態に限らず、切り換え温度や
不感帯幅、設定給気温度の制御形態などを適宜変更でき
る。但し、冷媒路の切換手順は、本発明の手順による。
また、運転モードの切換は、運転モード切換手段103
により自動的に行われるものに限らず、手動操作によ
り、強制的に行われても良い。
The switching control of the operation mode of the operation mode switching means 103 is not limited to the above-described control mode, and the control mode of the switching temperature, the dead zone width, the set supply air temperature and the like can be appropriately changed. However, the switching procedure of the refrigerant path is based on the procedure of the present invention.
The operation mode is switched by the operation mode switching means 103.
However, the operation may not be performed automatically, but may be performed forcibly by manual operation.

【0071】空調装置の空調対象域の構成、インテリア
ゾーンInte ペリメータゾーンPeri の構成は、適宜変
更可能である。
The configuration of the air-conditioning target area of the air conditioner and the configuration of the interior zone Inte perimeter zone Peri can be changed as appropriate.

【0072】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
In the claims, reference numerals are provided for convenience of comparison with the drawings, but the present invention is not limited to the configuration shown in the attached drawings.

【図面の簡単な説明】[Brief description of the drawings]

【図1】空調装置の全体構成を示す構成図FIG. 1 is a configuration diagram showing an overall configuration of an air conditioner.

【図2】空調装置の全体構成を示す構成図FIG. 2 is a configuration diagram showing the overall configuration of the air conditioner.

【図3】空調装置の全体構成を示す構成図FIG. 3 is a configuration diagram showing the overall configuration of the air conditioner.

【図4】空調装置の全体構成を示す構成図FIG. 4 is a configuration diagram showing the overall configuration of the air conditioner.

【図5】インテリアゾーン及びペリメータゾーンを示す
構成図
FIG. 5 is a configuration diagram showing an interior zone and a perimeter zone.

【図6】変風量装置の目標風量を示すグラフFIG. 6 is a graph showing a target air volume of the variable air volume device.

【図7】変風量装置の目標風量を示すグラフFIG. 7 is a graph showing a target air volume of the variable air volume device.

【図8】制御部を示すブロック図FIG. 8 is a block diagram showing a control unit.

【図9】室温の状態を表す情報を示す表FIG. 9 is a table showing information indicating a state at room temperature.

【図10】設定給気温度制御のフローチャートFIG. 10 is a flowchart of set air supply temperature control.

【図11】運転モード切換制御のフローチャートFIG. 11 is a flowchart of operation mode switching control.

【図12】運転モード切換制御を示す説明図FIG. 12 is an explanatory diagram showing operation mode switching control.

【図13】室外機熱交換器切換制御のフローチャートFIG. 13 is a flowchart of the outdoor unit heat exchanger switching control.

【符号の説明】 Cd 凝縮器 Ev 蒸発器 N1〜N5 熱交換器 ex1〜ex5 膨張手段 103 制御手段[Description of Signs] Cd condenser Ev Evaporator N1 to N5 Heat exchanger ex1 to ex5 Expansion means 103 Control means

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高圧ガス冷媒供給路と凝縮冷媒導出路と
を熱交換器(N1〜N5)に連通させて、その熱交換器
(N1〜N5)を凝縮器(Cd)として機能させる状態
と、膨張手段(ex1〜ex5)からの膨張冷媒供給路
と低圧ガス冷媒導出路とを前記熱交換器(N1〜N5)
に連通させて、前記熱交換器(N1〜N5)を蒸発器
(Ev)として機能させる状態とに、冷媒路を切換制御
する制御手段(103)を設けたヒートポンプ装置であ
って、 前記制御手段(103)が、前記熱交換器(N1〜N
5)を凝縮器(Cd)として機能させる状態から蒸発器
(Ev)として機能させる状態への切り換えを行うとき
には、前記高圧ガス冷媒供給路、凝縮冷媒導出路、膨張
冷媒供給路、低圧ガス冷媒導出路の全てを前記熱交換器
(N1〜N5)に対し非連通状態としたのち、前記膨張
冷媒供給路よりも前記低圧ガス冷媒導出路を先行して前
記熱交換器(N1〜N5)に対し連通させ、かつ、その
後に前記膨張冷媒供給路を前記熱交換器(N1〜N5)
に対して連通させるように構成されているヒートポンプ
装置。
1. A state in which a high-pressure gas refrigerant supply path and a condensed refrigerant outlet path are communicated with heat exchangers (N1 to N5) so that the heat exchangers (N1 to N5) function as condensers (Cd). The expansion refrigerant supply path from the expansion means (ex1 to ex5) and the low pressure gas refrigerant discharge path to the heat exchanger (N1 to N5).
A heat pump device provided with control means (103) for switching and controlling a refrigerant path so that the heat exchangers (N1 to N5) function as evaporators (Ev). (103) is the heat exchanger (N1 to N
5) When switching from the state of functioning as the condenser (Cd) to the state of functioning as the evaporator (Ev), the high-pressure gas refrigerant supply path, the condensed refrigerant discharge path, the expansion refrigerant supply path, and the low-pressure gas refrigerant discharge are performed. After all of the paths are in a non-communication state with respect to the heat exchangers (N1 to N5), the low-pressure gas refrigerant outlet path precedes the expanded refrigerant supply path with respect to the heat exchangers (N1 to N5). And then connect the expanded refrigerant supply path to the heat exchanger (N1 to N5).
A heat pump device configured to communicate with the heat pump.
【請求項2】 高圧ガス冷媒供給路と凝縮冷媒導出路と
を熱交換器(N1〜N5)に連通させて、その熱交換器
(N1〜N5)を凝縮器(Cd)として機能させる状態
と、膨張手段(ex1〜ex5)からの膨張冷媒供給路
と低圧ガス冷媒導出路とを前記熱交換器(N1〜N5)
に連通させて、前記熱交換器(N1〜N5)を蒸発器
(Ev)として機能させる状態とに、冷媒路を切換制御
する制御手段(103)を設けたヒートポンプ装置であ
って、 前記制御手段(103)が、前記熱交換器(N1〜N
5)を蒸発器(Ev)として機能させる状態から凝縮器
(Cd)として機能させる状態への切り換えを行うとき
には、前記高圧ガス冷媒供給路、凝縮冷媒導出路、膨張
冷媒供給路、低圧ガス冷媒導出路の全てを前記熱交換器
(N1〜N5)に対し非連通状態としたのち、前記凝縮
冷媒導出路よりも前記高圧ガス冷媒供給路を先行して前
記熱交換器(N1〜N5)に対し連通させ、かつ、その
後に前記凝縮冷媒導出路を前記熱交換器(N1〜N5)
に対して連通させるように構成されているヒートポンプ
装置。
2. A state in which a high-pressure gas refrigerant supply path and a condensed refrigerant outlet path are communicated with heat exchangers (N1 to N5) so that the heat exchangers (N1 to N5) function as condensers (Cd). The expansion refrigerant supply path from the expansion means (ex1 to ex5) and the low pressure gas refrigerant discharge path to the heat exchanger (N1 to N5).
A heat pump device provided with control means (103) for switching and controlling a refrigerant path so that the heat exchangers (N1 to N5) function as evaporators (Ev). (103) is the heat exchanger (N1 to N
5) When switching from the state of functioning as the evaporator (Ev) to the state of functioning as the condenser (Cd) is performed, the high-pressure gas refrigerant supply path, the condensed refrigerant discharge path, the expansion refrigerant supply path, and the low-pressure gas refrigerant discharge. After all of the paths are not in communication with the heat exchangers (N1 to N5), the high-pressure gas refrigerant supply path precedes the condensed refrigerant outlet path to the heat exchangers (N1 to N5). And then the condensed refrigerant outlet path to the heat exchanger (N1 to N5).
A heat pump device configured to communicate with the heat pump.
JP5259545A 1993-10-18 1993-10-18 Heat pump equipment Expired - Lifetime JP2889799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5259545A JP2889799B2 (en) 1993-10-18 1993-10-18 Heat pump equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5259545A JP2889799B2 (en) 1993-10-18 1993-10-18 Heat pump equipment

Publications (2)

Publication Number Publication Date
JPH07113541A JPH07113541A (en) 1995-05-02
JP2889799B2 true JP2889799B2 (en) 1999-05-10

Family

ID=17335602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5259545A Expired - Lifetime JP2889799B2 (en) 1993-10-18 1993-10-18 Heat pump equipment

Country Status (1)

Country Link
JP (1) JP2889799B2 (en)

Also Published As

Publication number Publication date
JPH07113541A (en) 1995-05-02

Similar Documents

Publication Publication Date Title
US5344069A (en) Air conditioning apparatus for distributing primarily-conditioned air to rooms
JP5182358B2 (en) Refrigeration equipment
EP0676595A1 (en) Air conditioning apparatus
US8020395B2 (en) Air conditioning apparatus
US20080197206A1 (en) Refrigerant System With Water Heating
JPH037853A (en) Air conditioner
US20160223240A1 (en) Outdoor unit of air conditioner and air conditioner
WO2019053876A1 (en) Air conditioning device
JP2557577B2 (en) Air conditioner
JP4258117B2 (en) Air conditioner
JPH11173628A (en) Air conditioner
JP2889799B2 (en) Heat pump equipment
JP4105413B2 (en) Multi-type air conditioner
KR20190081837A (en) air-conditioning system
JPH07151419A (en) Heat pump
KR950012148B1 (en) Airconditioner
JPH09178247A (en) Controller for multi-room air conditioning equipment
JPH06317360A (en) Multi-chamber type air conditioner
JP3380384B2 (en) Control device for air conditioner
JPH0526530A (en) Air-conditioner
EP4310416A1 (en) Hybrid multi-air conditioning system
JP2716559B2 (en) Cooling / heating mixed type multi-room air conditioner
JPH0480569A (en) Air-conditioning machine
JP2003254588A (en) Multi-type air conditioner
JPH03117846A (en) Air conditioner