JP2887927B2 - Fuel supply system for spark ignition engine - Google Patents

Fuel supply system for spark ignition engine

Info

Publication number
JP2887927B2
JP2887927B2 JP3058691A JP5869191A JP2887927B2 JP 2887927 B2 JP2887927 B2 JP 2887927B2 JP 3058691 A JP3058691 A JP 3058691A JP 5869191 A JP5869191 A JP 5869191A JP 2887927 B2 JP2887927 B2 JP 2887927B2
Authority
JP
Japan
Prior art keywords
injection
fuel
injection valve
valve
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3058691A
Other languages
Japanese (ja)
Other versions
JPH04292572A (en
Inventor
輝行 伊東
実 今城
友則 漆原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP3058691A priority Critical patent/JP2887927B2/en
Publication of JPH04292572A publication Critical patent/JPH04292572A/en
Application granted granted Critical
Publication of JP2887927B2 publication Critical patent/JP2887927B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、火花点火式機関の燃料
供給装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel supply system for a spark ignition type engine.

【0002】[0002]

【従来の技術】この種の燃料供給装置の第1従来例とし
て、図4に示すようなものがある。すなわち、機関1の
吸気通路2壁には燃料噴射弁3が気筒毎に取付けられ、
それら燃料噴射弁3は吸気弁4の傘部若しくは吸気弁4
近傍の吸気通路2内壁に燃料を噴射するように指向性を
持たせてある。
2. Description of the Related Art FIG. 4 shows a first conventional example of this type of fuel supply apparatus. That is, the fuel injection valve 3 is attached to the wall of the intake passage 2 of the engine 1 for each cylinder,
These fuel injection valves 3 are umbrellas of the intake valve 4 or the intake valve 4
Directivity is provided so that fuel is injected into the inner wall of the nearby intake passage 2.

【0003】また、第2従来例として、図5に示すよう
に、吸気マニホールド11の集合部付近に燃料噴射弁1
2を備えたものがある(特開昭60−249665号公
報参照)。そして、燃料噴射弁12から、吸気マニホー
ルド11内壁に付着しないように、吸気通路13に沿っ
て燃料を噴射する。14は吸気弁である。また、第3従
来例として、図6に示すように、吸気通路21壁に第1
燃料噴射弁22をその噴射方向を吸気通路21上流に向
けて取付けると共に、第2燃料噴射弁23を吸気通路2
1壁にその噴射方向を吸気通路21下流に向けて取付け
るものがある(実開昭60−102467号公報参
照)。24は吸気弁、25は制御装置である。
[0005] As a second conventional example, as shown in FIG.
2 (see JP-A-60-249665). Then, fuel is injected from the fuel injection valve 12 along the intake passage 13 so as not to adhere to the inner wall of the intake manifold 11. 14 is an intake valve. As a third conventional example, as shown in FIG.
The fuel injection valve 22 is mounted with the injection direction directed upstream of the intake passage 21, and the second fuel injection valve 23 is
There is a wall attached to one wall with the injection direction directed downstream of the intake passage 21 (see Japanese Utility Model Laid-Open No. 60-102467). 24 is an intake valve and 25 is a control device.

【0004】そして、暖機完了前は第2燃料噴射弁23
から燃料を吸気弁24に向けて噴射し、また暖機完了後
は第1燃料噴射弁22から燃料を吸気通路21上流に向
けて噴射する。さらに、第4従来例として、図7に示す
ように、2つの燃料噴射弁31,32から燃料を吸気通
路33の斜下流に向けて噴射させると共に、それら噴射
された燃料を相互に衝突させるものがある(実開昭61
−179370号公報参照)。
Before the completion of warm-up, the second fuel injection valve 23
From the first fuel injection valve 22 to inject fuel toward the upstream of the intake passage 21 after the warm-up is completed. Further, as a fourth conventional example, as shown in FIG. 7, fuel is injected from two fuel injection valves 31 and 32 toward an oblique downstream of the intake passage 33, and the injected fuel collides with each other. There is (61
-179370).

【0005】[0005]

【発明が解決しようとする課題】ところで、前記各従来
例のものは、燃料の微粒化及び気化を、燃料噴射弁が指
向する吸気弁傘部や吸気マニホールド内壁若しくは吸気
ポート内壁との衝突により、またそれら部位における加
熱により、促進するようにしているので、混合気の温度
が上昇する。このため、混合気の体積が増大して燃焼室
に導入されるので、充填効率が減少し、機関出力を低下
させたり耐ノッキング性能を悪化させるという不具合が
ある。
However, in each of the prior arts described above, the atomization and vaporization of the fuel is caused by a collision with an intake valve head, an intake manifold inner wall or an intake port inner wall directed by the fuel injection valve. In addition, the temperature of the air-fuel mixture rises because the heating is performed by heating these portions. For this reason, since the volume of the air-fuel mixture increases and is introduced into the combustion chamber, there is a problem that the charging efficiency is reduced, the engine output is reduced, and the anti-knock performance is deteriorated.

【0006】本発明は、このような実状に鑑みてなされ
たもので、混合気の微粒化及び気化を促進しつつ充填効
率を向上できる燃料供給装置を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and has as its object to provide a fuel supply device capable of improving the charging efficiency while promoting the atomization and vaporization of an air-fuel mixture.

【0007】[0007]

【課題を解決するための手段】このため、本発明は、機
関の吸気通路壁に上流側噴射弁をその噴射方向を吸気通
路の下流に向けて取付ける一方、前記吸気通路壁に下流
側噴射弁を前記上流側噴射弁より吸気通路の下流側に位
置させると共に、その噴射方向を前記上流側噴射弁から
噴射された燃料に燃料を衝突させるべく吸気通路の上流
に向けて取付け、前記各噴射弁の噴射角を、各噴孔から
前記燃料衝突部までの区間にて燃料が吸気通路内壁に衝
突しないような略角度に設定し、かつ前記下流側噴射弁
の噴射開始時期を前記上流側噴射弁の噴射開始時期より
早くなるように前記各噴射弁の噴射時期を設定する噴射
時期設定手段と、設定された噴射時期に各噴射弁を作動
させる弁作動手段と、を備えるようにした。
SUMMARY OF THE INVENTION Accordingly, the present invention provides an upstream injection valve mounted on an intake passage wall of an engine with its injection direction directed downstream of the intake passage, and a downstream injection valve mounted on the intake passage wall. Is positioned downstream of the intake passage from the upstream injection valve, and the injection direction is mounted toward the upstream of the intake passage so that the fuel collides with the fuel injected from the upstream injection valve. The injection angle of each of the injection holes to the fuel collision portion is set to a substantially angle such that fuel does not collide with the inner wall of the intake passage, and the injection start timing of the downstream injection valve is set to the upstream injection valve An injection timing setting means for setting the injection timing of each of the injection valves so as to be earlier than the injection start timing of the above, and a valve operating means for operating each injection valve at the set injection timing.

【0008】[0008]

【作用】そして、下流側噴射弁から燃料を吸気通路上流
に向けて噴射すると共に、下流側噴射弁の噴射作動に遅
れて上流側噴射弁から燃料を下流に向けて噴射する。そ
して、それら両噴射弁からの燃料を衝突させることによ
り燃料の吸気通路内における浮遊時間を長くして前記燃
料の衝突と相まって燃料の微粒化及び気化を促進する。
また、燃料を直接的に吸気通路内壁及び吸気弁の傘部に
衝突しないように噴射させるので、燃料の加熱を抑制で
きるため、充填効率の低下を防止でき、機関出力及び耐
ノッキング性能を向上できるようにした。
The fuel is injected from the downstream injection valve toward the upstream of the intake passage, and the fuel is injected downstream from the upstream injection valve with a delay from the injection operation of the downstream injection valve. By colliding the fuel from the two injection valves, the floating time of the fuel in the intake passage is prolonged, and the atomization and vaporization of the fuel are promoted in combination with the collision of the fuel.
Further, since the fuel is directly injected so as not to collide with the inner wall of the intake passage and the umbrella portion of the intake valve, heating of the fuel can be suppressed, so that a decrease in the charging efficiency can be prevented, and the engine output and the anti-knock performance can be improved. I did it.

【0009】[0009]

【実施例】以下に、本発明の一実施例を図1〜図3に基
づいて説明する。図1において、機関41の燃焼室42
にはスロットルバルブ43,コレクタ44,吸気マニホ
ールド45,吸気弁46を介して吸入空気が導入される
ようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. In FIG. 1, a combustion chamber 42 of an engine 41 is shown.
The intake air is introduced through a throttle valve 43, a collector 44, an intake manifold 45, and an intake valve 46.

【0010】前記コレクタ44下流側の吸気マニホール
ド45には上流側噴射弁47が取付けられ、上流側噴射
弁47の噴孔は図1の斜線A示の如く燃料の噴射方向が
吸気流れに沿って下流側に向くように指向されている。
また、吸気マニホールド45には下流側噴射弁48が前
記上流側噴射弁47より下流側に位置させて取付けら
れ、下流側噴射弁48の噴孔は図1の斜線B示の如く燃
料の噴射方向が吸気流れに対向すべく上流側に向くよう
に指向されている。これら上流側噴射弁47及び下流側
噴射弁48は、後述する制御装置49により駆動され
る。
An upstream injection valve 47 is attached to the intake manifold 45 on the downstream side of the collector 44. The injection hole of the upstream injection valve 47 has a fuel injection direction along the intake flow as shown by oblique line A in FIG. It is directed to the downstream side.
A downstream injection valve 48 is mounted on the intake manifold 45 so as to be located downstream of the upstream injection valve 47. The injection hole of the downstream injection valve 48 has a fuel injection direction as shown by a hatched line B in FIG. Are directed upstream so as to face the intake air flow. The upstream injection valve 47 and the downstream injection valve 48 are driven by a control device 49 described later.

【0011】ここで、各噴射弁47,48から噴射され
る燃料は、図1に示すように、中間部で衝突するように
なっている。また、各噴射弁47,48の噴射角は、前
記中間部の衝突部までの距離により決定され、前記中間
部までの区間にて燃料が吸気マニホールド45内壁にで
きるだけ衝突しないように決定されている。前記制御装
置49には、スロットルセンサ50からのスロットル弁
開度(機関負荷)検出信号と、トランスミッション51
の出力軸回転速度から機関回転速度を検出する回転速度
センサ52からの機関回転速度検出信号と、水温センサ
53からの冷却水温度検出信号と、が入力されている。
Here, the fuel injected from each of the injection valves 47 and 48 collides at an intermediate portion as shown in FIG. Further, the injection angle of each of the injection valves 47 and 48 is determined by the distance to the collision portion of the intermediate portion, and is determined so that the fuel does not collide with the inner wall of the intake manifold 45 as much as possible in the section to the intermediate portion. . The control device 49 includes a throttle valve opening (engine load) detection signal from a throttle sensor 50 and a transmission 51.
The engine rotation speed detection signal from the rotation speed sensor 52 for detecting the engine rotation speed from the output shaft rotation speed of the above, and the coolant temperature detection signal from the water temperature sensor 53 are input.

【0012】ここでは、制御装置49が噴射時期設定手
段と弁作動手段を構成する。尚、54は排気マニホール
ドである。次に、作用を図2のフローチャートに従って
説明する。S1では、スロットルセンサ50,回転速度
センサ52等からの各種検出信号を読込む。
Here, the control device 49 constitutes injection timing setting means and valve operating means. Incidentally, reference numeral 54 denotes an exhaust manifold. Next, the operation will be described with reference to the flowchart of FIG. In S1, various detection signals from the throttle sensor 50, the rotation speed sensor 52, and the like are read.

【0013】S2では、水温センサ53により検出され
た冷却水温度に基づいて、暖機が終了したか否かを判定
し、YESのときにはS3に進みNOのときにはS6に
進む。これは、暖機状態による機関1への吸入燃料量の
差異を低減するために、少なくても暖機前後に応じた噴
射量,噴射時期マップを設定する必要がある。S3で
は、スロットルセンサ50により検出されたスロットル
弁開度と、回転速度センサ52により検出された機関回
転速度と、に基づいて、上流側噴射弁47と下流側噴射
弁48との噴射量をマップから夫々検索する。また、検
索された噴射量(機関負荷)と機関回転速度とに基づい
て、各噴射弁47,48の噴射時期をマップから夫々検
索する。
In S2, it is determined whether or not the warm-up is completed based on the coolant temperature detected by the coolant temperature sensor 53. If YES, the process proceeds to S3, and if NO, the process proceeds to S6. In order to reduce the difference in the amount of fuel taken into the engine 1 due to the warm-up state, it is necessary to set an injection amount and an injection timing map corresponding to at least before and after the warm-up. In S3, the injection amounts of the upstream injection valve 47 and the downstream injection valve 48 are mapped based on the throttle valve opening detected by the throttle sensor 50 and the engine rotation speed detected by the rotation speed sensor 52. To search for each. Further, based on the searched injection amount (engine load) and engine speed, the injection timing of each of the injection valves 47 and 48 is searched from the map, respectively.

【0014】ここで、下流側噴射弁48の噴射開始時期
は、上流側噴射弁47の噴射開始時期より早めに設定さ
れている。また、下流側噴射弁48と上流側噴射弁47
との噴射開始時期の位相差は、図3に示すように、噴射
量(機関負荷)が一定のときには機関回転速度が高くな
るに従って小さくなるように設定され、また前記位相差
は、機関回転速度が一定のときには噴射量が大きくなる
に従って、大きくなるように設定されている。これは、
噴射量が大きくなるときには吸入空気量が増大して空気
流速が増大し、下流側噴射弁48から上流側に向けて噴
射された燃料が下流に大きく押し戻されるため、前記位
相差を噴射量が大きくなるに従って大きくなるように設
定しているのである。
Here, the injection start timing of the downstream injection valve 48 is set earlier than the injection start timing of the upstream injection valve 47. Further, the downstream injection valve 48 and the upstream injection valve 47
As shown in FIG. 3, when the injection amount (engine load) is constant, the phase difference of the injection start timing is set so as to decrease as the engine speed increases, and the phase difference is determined by the engine speed. Is set to be larger when the injection amount is larger. this is,
When the injection amount increases, the intake air amount increases and the air flow rate increases, and the fuel injected from the downstream injection valve 48 toward the upstream side is largely pushed back to the downstream side. It is set so that it becomes larger as it becomes.

【0015】S4では、S3にて検索された下流側噴射
弁48の噴射量を冷却水温度,バッテリ電圧等に基づい
て補正し、下流側噴射弁48の噴射量を決定する。ま
た、S3にて検索された下流側噴射弁48の噴射時期を
下流側噴射弁48の噴射時期として決定する。S5で
は、S3にて検索された上流側噴射弁47の噴射量を冷
却水温度,バッテリ電圧等に基づいて補正し、上流側噴
射弁47の噴射量を決定する。また、S3にて検索され
た上流側噴射弁47の噴射時期を上流側噴射弁47の噴
射時期として決定する。
In S4, the injection amount of the downstream injection valve 48 found in S3 is corrected based on the coolant temperature, the battery voltage, and the like, and the injection amount of the downstream injection valve 48 is determined. Further, the injection timing of the downstream injection valve 48 searched in S3 is determined as the injection timing of the downstream injection valve 48. In S5, the injection amount of the upstream injection valve 47 found in S3 is corrected based on the coolant temperature, the battery voltage, and the like, and the injection amount of the upstream injection valve 47 is determined. Further, the injection timing of the upstream injection valve 47 searched in S3 is determined as the injection timing of the upstream injection valve 47.

【0016】一方、S2にて暖機完了前と判定されたと
きには、前記S3と同様に、S6において、スロットル
弁開度と機関回転速度とに基づいて上流側噴射弁47と
下流側噴射弁48との噴射量をマップから夫々検索す
る。また、検索された噴射量と機関回転速度とに基づい
て、各噴射弁47,48の噴射時期をマップから夫々検
索する。このとき、下流側噴射弁48の噴射開始時期
は、上流側噴射弁47の噴射開始時期より早めに設定さ
れている。また、下流側噴射弁48と上流側噴射弁47
との噴射開始時期の位相差は、図3に示すように、機関
回転速度が高くなるに従って小さくなるように設定さ
れ、また噴射量が大きくなるに従って大きくなるように
設定されている。
On the other hand, when it is determined in S2 that the warm-up is not completed, the upstream injection valve 47 and the downstream injection valve 48 are determined in S6 based on the throttle valve opening and the engine rotation speed, as in S3. Are searched from the map, respectively. Further, the injection timings of the injection valves 47 and 48 are respectively searched from the map based on the searched injection amount and the engine rotation speed. At this time, the injection start timing of the downstream injection valve 48 is set earlier than the injection start timing of the upstream injection valve 47. Further, the downstream injection valve 48 and the upstream injection valve 47
As shown in FIG. 3, the phase difference between the injection start timings is set so as to decrease as the engine rotation speed increases, and to increase as the injection amount increases.

【0017】S7では、S6にて検索された下流側噴射
弁48の噴射量を冷却水温度,バッテリ電圧等に基づい
て補正し、下流側噴射弁48の噴射量を決定する。ま
た、S6にて検索された下流側噴射弁48の噴射時期を
下流側噴射弁48の噴射時期として決定する。S8で
は、S6にて検索された上流側噴射弁47の噴射量を冷
却水温度,バッテリ電圧等に基づいて補正し、上流側噴
射弁47の噴射量を決定する。また、S6にて検索され
た上流側噴射弁47の噴射時期を上流側噴射弁47の噴
射時期として決定する。
In S7, the injection amount of the downstream injection valve 48 found in S6 is corrected based on the coolant temperature, the battery voltage, and the like, and the injection amount of the downstream injection valve 48 is determined. Further, the injection timing of the downstream injection valve 48 searched in S6 is determined as the injection timing of the downstream injection valve 48. In S8, the injection amount of the upstream injection valve 47 searched in S6 is corrected based on the coolant temperature, the battery voltage, and the like, and the injection amount of the upstream injection valve 47 is determined. Further, the injection timing of the upstream injection valve 47 searched in S6 is determined as the injection timing of the upstream injection valve 47.

【0018】S9では、S4若しくはS7にて決定され
た噴射量と噴射時期とに基づいて、下流側噴射弁48を
作動させ燃料を吸気マニホールド45の上流側に向けて
噴射する。また、S5若しくはS8にて決定された噴射
量と噴射時期とに基づいて、上流側噴射弁47を前記下
流側噴射弁48の噴射開始時期より遅らせて作動させ、
燃料を吸気マニホールド45の下流側に向けて噴射す
る。
In S9, the downstream injection valve 48 is operated to inject fuel toward the upstream side of the intake manifold 45 based on the injection amount and the injection timing determined in S4 or S7. Further, based on the injection amount and the injection timing determined in S5 or S8, the upstream injection valve 47 is operated with a delay from the injection start timing of the downstream injection valve 48,
The fuel is injected toward the downstream side of the intake manifold 45.

【0019】以上説明したように、下流側噴射弁48か
ら燃料を上流に向けて噴射すると共に、これに遅れて上
流側噴射弁47から燃料を下流に向けて噴射し、それら
燃料を効率的に衝突させるようにしたので、吸気マニホ
ールド45内壁に付着するのを抑制しつつ吸気マニホー
ルド45内に燃料が浮遊する時間が長くでき、前記燃料
の衝突と相まって燃料の微粒化及び気化を効率良く促進
して均一な混合気を確保できる。また、燃料が吸気マニ
ホールド45内壁及び吸気弁46の傘部に直接的に衝突
しないので、燃料の加熱が抑制され混合気体積の増大を
抑制できるため、充填効率の低下を抑制でき機関出力を
向上できると共に耐ノッキング性能を向上できる。ま
た、衝突により燃料の微粒化及び気化を行うようにした
ので、低温始動時直後においても均一な混合気を確保で
き、排気性状,出力性能を向上できる。
As described above, while the fuel is injected upstream from the downstream injection valve 48, the fuel is injected downstream from the upstream injection valve 47 with a delay, and the fuel is efficiently discharged. Since the collision is performed, the time during which the fuel floats in the intake manifold 45 can be increased while preventing the fuel from adhering to the inner wall of the intake manifold 45. To ensure a uniform mixture. In addition, since the fuel does not directly collide with the inner wall of the intake manifold 45 and the umbrella portion of the intake valve 46, the heating of the fuel is suppressed, and the increase in the air-fuel mixture volume is suppressed. As well as improved knocking resistance. Further, since the fuel is atomized and vaporized by the collision, a uniform air-fuel mixture can be ensured immediately after the low temperature start, and the exhaust properties and output performance can be improved.

【0020】尚、上流側噴射弁の噴射時期を略一定に保
持し下流側噴射弁の噴射時期を機関負荷に応じて変化さ
せるようにしてもよい。また、噴射量については、上流
側噴射弁と下流側噴射弁とを同一にしたり、或いは一方
のみを一定量多くしたり、特殊な運転条件のときには一
方の噴射弁のみを噴射作動させてもよい。
The injection timing of the upstream injection valve may be kept substantially constant, and the injection timing of the downstream injection valve may be changed according to the engine load. As for the injection amount, the upstream injection valve and the downstream injection valve may be the same, or only one of them may be increased by a certain amount, or only one of the injection valves may be operated for injection under special operating conditions. .

【0021】また、両方の噴射量を機関運転条件に応じ
て変化させてもよい。この機関運転条件としては、低温
始動時や暖機前があり、このときには吸気通路壁温,燃
焼室壁温が低いため燃料が気化しにくいので両方の噴射
弁を作動させる。また、前記機関運転条件として、加減
速運転時があり、このときには応答性が重要であるた
め、噴射時期を吸気弁の開弁時に近づけたり上流側噴射
弁のみを作動させる。また、前記機関運転条件として、
暖機後の常用運転域があり、このときには吸気通路壁温
が高いので燃料は気化しやすく上流側噴射弁のみを作動
させてもよい。また、前記機関運転条件として、暖機後
の高負荷運転域があり、このときには気化熱は空気から
のみ吸収できるため両方の噴射弁を作動させる。
Further, both injection amounts may be changed according to the engine operating conditions. The engine operating conditions include a low temperature start and before warm-up. At this time, since the intake passage wall temperature and the combustion chamber wall temperature are low, it is difficult for the fuel to vaporize, so that both the injection valves are operated. The engine operating condition includes acceleration / deceleration operation. At this time, responsiveness is important. Therefore, the injection timing is made closer to the opening of the intake valve, or only the upstream injection valve is operated. Further, as the engine operating conditions,
There is a normal operation range after warm-up. At this time, since the intake passage wall temperature is high, fuel is easily vaporized, and only the upstream injection valve may be operated. Further, as the engine operating condition, there is a high-load operating range after warm-up. At this time, since both heats of vaporization can be absorbed from air, both injection valves are operated.

【0022】[0022]

【発明の効果】本発明は、以上説明したように、上流側
及び下流側噴射弁から噴射された燃料を衝突させるよう
にしたので、衝突により燃料の微粒化及び気化を促進で
きると共に充填効率の低下を抑制でき、機関出力を向上
できると共に耐ノッキング性を向上でき、さらに低温始
動時の排気特性,出力性能を向上できる。
As described above, according to the present invention, since the fuel injected from the upstream and downstream injection valves is caused to collide, the atomization and vaporization of the fuel can be promoted by the collision, and the filling efficiency can be improved. The reduction can be suppressed, the engine output can be improved, the knocking resistance can be improved, and the exhaust characteristics and output performance at low temperature start can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す構成図。FIG. 1 is a configuration diagram showing one embodiment of the present invention.

【図2】同上のフローチャート。FIG. 2 is a flowchart of the above.

【図3】同上の作用を説明するための特性図。FIG. 3 is a characteristic diagram for explaining the operation of the above.

【図4】燃料供給装置の第1従来例を示す構成図。FIG. 4 is a configuration diagram showing a first conventional example of a fuel supply device.

【図5】燃料供給装置の第2従来例を示す構成図。FIG. 5 is a configuration diagram showing a second conventional example of a fuel supply device.

【図6】燃料供給装置の第3従来例を示す構成図。FIG. 6 is a configuration diagram showing a third conventional example of a fuel supply device.

【図7】燃料供給装置の第4従来例を示す構成図。FIG. 7 is a configuration diagram showing a fourth conventional example of a fuel supply device.

【符号の説明】[Explanation of symbols]

45 吸気マニホールド 46 吸気弁 47 上流側噴射弁 48 下流側噴射弁 49 制御装置 45 Intake manifold 46 Intake valve 47 Upstream injection valve 48 Downstream injection valve 49 Controller

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 実開 昭61−179370(JP,U) 実開 昭60−102467(JP,U) (58)調査した分野(Int.Cl.6,DB名) F02M 69/00 F02M 69/04 F02D 41/34 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References Japanese Utility Model Showa 61-179370 (JP, U) Japanese Utility Model Showa 60-102467 (JP, U) (58) Fields surveyed (Int. Cl. 6 , DB name) F02M 69/00 F02M 69/04 F02D 41/34

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 機関の吸気通路壁に上流側噴射弁をその
噴射方向を吸気通路の下流に向けて取付ける一方、前記
吸気通路壁に下流側噴射弁を前記上流側噴射弁より吸気
通路の下流側に位置させると共にその噴射方向を前記上
流側噴射弁から噴射された燃料に燃料を衝突させるべく
吸気通路の上流に向けて取付け、前記各噴射弁の噴射角
を、各噴孔から前記燃料衝突部までの区間にて燃料が吸
気通路内壁に衝突しないような略角度に設定し、かつ前
記下流側噴射弁の噴射開始時期を前記上流側噴射弁の噴
射開始時期より早くなるように前記各噴射弁の噴射時期
を設定する噴射時期設定手段と、設定された噴射時期に
各噴射弁を作動させる弁作動手段と、を備えたことを特
徴とする火花点火式機関の燃料供給装置。
An upstream injection valve is mounted on an intake passage wall of an engine with its injection direction directed downstream of the intake passage, and a downstream injection valve is mounted on the intake passage wall downstream of the upstream injection valve from the upstream injection valve. Side, and the injection direction thereof is mounted toward the upstream of the intake passage so that the fuel collides with the fuel injected from the upstream side injection valve. In the section up to the section, the angle is set so that the fuel does not collide with the inner wall of the intake passage, and the respective injections are performed so that the injection start timing of the downstream injection valve is earlier than the injection start timing of the upstream injection valve. A fuel supply device for a spark ignition engine, comprising: injection timing setting means for setting an injection timing of a valve; and valve operating means for operating each injection valve at the set injection timing.
JP3058691A 1991-03-22 1991-03-22 Fuel supply system for spark ignition engine Expired - Lifetime JP2887927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3058691A JP2887927B2 (en) 1991-03-22 1991-03-22 Fuel supply system for spark ignition engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3058691A JP2887927B2 (en) 1991-03-22 1991-03-22 Fuel supply system for spark ignition engine

Publications (2)

Publication Number Publication Date
JPH04292572A JPH04292572A (en) 1992-10-16
JP2887927B2 true JP2887927B2 (en) 1999-05-10

Family

ID=13091574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3058691A Expired - Lifetime JP2887927B2 (en) 1991-03-22 1991-03-22 Fuel supply system for spark ignition engine

Country Status (1)

Country Link
JP (1) JP2887927B2 (en)

Also Published As

Publication number Publication date
JPH04292572A (en) 1992-10-16

Similar Documents

Publication Publication Date Title
JP3768296B2 (en) In-cylinder injection type spark ignition internal combustion engine control device
JP2511862B2 (en) Ignition timing control method for internal combustion engine
US4400944A (en) Air-fuel ratio control method and apparatus for internal combustion engines
EP1505293A1 (en) Fuel supply system and fuel supply method for in-cylinder direct fuel injection engine
JP3183225B2 (en) Fuel injection control device for stratified combustion internal combustion engine
US4628883A (en) Air-fuel ratio control system
JP3317166B2 (en) Knock determination device for internal combustion engine
JP2887927B2 (en) Fuel supply system for spark ignition engine
JPH09133034A (en) Fuel injection control device of internal combustion engine
JP3140200B2 (en) Control device for internal combustion engine
JP2560695B2 (en) Deceleration control device for internal combustion engine
JPS63117149A (en) Fuel injection controller for internal combustion engine
JPH07259620A (en) Fuel injection device of internal combustion engine
JP3156415B2 (en) In-cylinder internal combustion engine
JP2580645B2 (en) Ignition timing control device
JP3641831B2 (en) Engine fuel injector
JP2816441B2 (en) Ignition timing control device for spark ignition type internal combustion engine
JP2987675B2 (en) Intake control device for internal combustion engine
JP2004218490A (en) Control device for cylinder injection type internal combustion engine
JP3269350B2 (en) In-cylinder spark ignition internal combustion engine
JP2001207894A (en) Direct injection engine control device
JP2762014B2 (en) Self-diagnosis device for assist air device of internal combustion engine
JPH0430356Y2 (en)
JPH0536624B2 (en)
JP2856019B2 (en) Vehicle engine torque control device