JP2886544B2 - Indoor heat exchanger of air conditioner - Google Patents

Indoor heat exchanger of air conditioner

Info

Publication number
JP2886544B2
JP2886544B2 JP1041798A JP4179889A JP2886544B2 JP 2886544 B2 JP2886544 B2 JP 2886544B2 JP 1041798 A JP1041798 A JP 1041798A JP 4179889 A JP4179889 A JP 4179889A JP 2886544 B2 JP2886544 B2 JP 2886544B2
Authority
JP
Japan
Prior art keywords
heat transfer
refrigerant flow
refrigerant
flow path
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1041798A
Other languages
Japanese (ja)
Other versions
JPH02223791A (en
Inventor
實男 池谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1041798A priority Critical patent/JP2886544B2/en
Publication of JPH02223791A publication Critical patent/JPH02223791A/en
Application granted granted Critical
Publication of JP2886544B2 publication Critical patent/JP2886544B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、空気調和機の室内熱交換器の改良に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to an improvement of an indoor heat exchanger of an air conditioner.

(従来の技術) 空気調和機の室内熱交換器は、平行に配設した複数の
フィンに、U字状の伝熱管を複数挿通した後、拡径して
固定し、そのU字状の伝熱管の開放端を適宜接続して形
成される。従来、この熱交換器の性能向上、薄型化、コ
ンパクト化などのために、伝熱管を細径化したり、フィ
ン幅を縮小化したり或いは異径の伝熱管を用いるなどし
ている。
(Prior Art) In an indoor heat exchanger of an air conditioner, after inserting a plurality of U-shaped heat transfer tubes through a plurality of fins arranged in parallel, the U-shaped heat transfer tubes are expanded and fixed. It is formed by appropriately connecting the open ends of the heat tubes. Conventionally, in order to improve the performance, reduce the thickness, and make the heat exchanger compact, the heat transfer tube has been reduced in diameter, the fin width has been reduced, or a heat transfer tube having a different diameter has been used.

第2図,第3図は異径の伝熱管を用いた熱交換器の例
を示す。フィン1は、多数枚平行に積層され、その積層
したフィン1の上部に大径で、U字状の伝熱管2aが挿入
され、中間部に中間径の伝熱管2bが挿入され、下部に小
径の伝熱管2cが2列になるよう挿入され、これらの開放
端部が上下に繋るよう適宜連結されて熱交換器3が形成
される。またフィン1には、第3図に示すように伝熱管
2間に多数切り起こしたスリットフィン4が形成され
る。
2 and 3 show examples of a heat exchanger using heat transfer tubes of different diameters. A large number of fins 1 are stacked in parallel, a large-diameter, U-shaped heat transfer tube 2a is inserted into the upper portion of the stacked fins 1, a middle-diameter heat transfer tube 2b is inserted into an intermediate portion, and a small-diameter lower portion is inserted. The heat exchangers 3 are formed by inserting the heat transfer tubes 2c in two rows and connecting them appropriately so that their open ends are connected vertically. The fin 1 is formed with a large number of slit fins 4 cut and raised between the heat transfer tubes 2 as shown in FIG.

この熱交換器3において、暖房時の高温高圧冷媒は、
上部の接続管5から流入し各伝熱管2a,2b,2cを通って下
部の接続管6に凝縮液として流出し、また冷房時には、
減圧された低温冷媒が下部の接続管6から流入し、各伝
熱管2c,2b,2aを通り蒸発冷媒となって、上部の接続管5
に流出する。なお、7は横流ファンである。
In this heat exchanger 3, the high-temperature and high-pressure refrigerant during heating is:
It flows in from the upper connection pipe 5 and flows out as condensate through the heat transfer pipes 2a, 2b, 2c to the lower connection pipe 6, and at the time of cooling,
The decompressed low-temperature refrigerant flows in from the lower connecting pipe 6 and passes through the heat transfer pipes 2c, 2b, 2a to become an evaporative refrigerant, and becomes the upper connecting pipe 5
Leaked to Reference numeral 7 denotes a cross flow fan.

この第2図,第3図に示した熱交換器3においては、
下部の伝熱管2cが小径に形成されるため、暖房時、出口
側となる下部の伝熱管2cを流れる凝縮液の流速が増加す
るため、過冷却増加による能力の向上を図ることができ
る。すなわち、過冷却増加による能力の向上は、第4図
のモリエル線図上の冷凍サイクルで示すように、室内熱
交換器を出た凝縮冷媒のエンタルピを、従来よりΔi分
下げれば、放出熱量QがΔi分増加するため、暖房能力
を向上できる。
In the heat exchanger 3 shown in FIGS. 2 and 3,
Since the lower heat transfer tube 2c is formed with a small diameter, the flow rate of the condensate flowing through the lower heat transfer tube 2c on the outlet side during heating increases, so that the capacity can be improved by increasing the supercooling. That is, the improvement of the capacity by the increase of the supercooling can be achieved by reducing the enthalpy of the condensed refrigerant exiting the indoor heat exchanger by Δi as compared with the conventional method, as shown by the refrigeration cycle on the Mollier diagram of FIG. Increases by Δi, so that the heating capacity can be improved.

また異径の伝熱管を用いる他に伝熱管を細径化し、例
えば暖房時の冷媒流路の出口側のパス数を入口側のパス
数より多くすることもなされている。
In addition to using heat transfer tubes having different diameters, the heat transfer tubes are also reduced in diameter, for example, so that the number of passes on the outlet side of the refrigerant flow path during heating is larger than the number of passes on the inlet side.

(発明が解決しようとする課題) ところで、上述した熱交換器は、全て暖房時の冷媒流
路の出口側の冷媒流速のアップによる過冷却増加による
能力の向上を図ることと同時に冷房時には冷媒流路の入
口側の冷媒流れ音の防止が目的である。この過冷却増加
による能力の向上を行うには上述したように暖房時の室
内熱交換器の冷媒流路の出口側での冷媒流速をアップす
れば達成できる。しかし冷媒流路の入口側の冷媒流れ音
の防止のためには、冷房時の入口側(暖房時の出口側)
の伝熱管の管径は細径化すると音が大きくなるため、あ
る程度の大きさを保つ必要がある。従って冷媒流路の出
口側の冷媒流速のアップによる過冷却増加による能力の
向上を図れば、より冷媒音が大きくなり、また逆に冷房
時の入口側の冷媒流れ音の防止のために、その入口側管
径を大きくすれば暖房能力の向上を図ることができない
問題が生じる。
(Problems to be Solved by the Invention) By the way, all of the above-mentioned heat exchangers improve the capacity by increasing the supercooling by increasing the flow velocity of the refrigerant at the outlet side of the refrigerant flow path at the time of heating, and at the same time, at the same time as the refrigerant flow at the time of cooling. The purpose is to prevent refrigerant flow noise on the entrance side of the road. As described above, the performance can be improved by increasing the supercooling by increasing the flow rate of the refrigerant at the outlet side of the refrigerant flow path of the indoor heat exchanger during heating. However, in order to prevent the flow noise of the refrigerant at the inlet side of the refrigerant channel, the inlet side during cooling (the outlet side during heating)
When the diameter of the heat transfer tube is reduced, the sound becomes louder when the diameter is reduced, so that it is necessary to maintain a certain size. Therefore, if the performance is improved by increasing the supercooling by increasing the flow velocity of the refrigerant on the outlet side of the refrigerant flow path, the refrigerant noise becomes larger, and conversely, in order to prevent the refrigerant flow noise on the inlet side during cooling, the If the diameter of the inlet side pipe is increased, there arises a problem that the heating capacity cannot be improved.

さらに、この室内熱交換器は、暖房時に凝縮器とな
り、また冷房時に蒸発器となるが、第5図に示すよう
に、凝縮器と蒸発器の管内径に対する冷媒流量は、図示
のa,bに示した関係にある。すなわち管内径が決まれば
凝縮器aと蒸発器bの適正冷媒流量は、おおよそ決まっ
てしまう。従って、上述のように暖房時の冷媒流路の出
口側の冷媒流速のアップと同時に冷房時には冷媒流路の
入口側の冷媒流れ音の防止のため、異径の伝熱管を用い
たり、冷媒流路のパス数を変えても上述のように関係に
対する適性冷媒流量は決まっているため両者の目的を同
時に満足することは困難である。
Further, the indoor heat exchanger functions as a condenser during heating and as an evaporator during cooling. As shown in FIG. 5, the refrigerant flow rates with respect to the inner diameters of the condenser and the evaporator are shown by a and b in FIG. The relationship is shown in FIG. That is, if the inner diameter of the pipe is determined, the appropriate refrigerant flow rates of the condenser a and the evaporator b are roughly determined. Therefore, as described above, in order to increase the flow rate of the refrigerant at the outlet side of the refrigerant flow path at the time of heating and to prevent the sound of the refrigerant flow at the inlet side of the refrigerant flow path at the time of cooling, a heat transfer tube having a different diameter may be used, Even if the number of paths on the road is changed, the appropriate refrigerant flow rate for the relationship is determined as described above, so that it is difficult to satisfy both purposes simultaneously.

本発明は上記事情を考慮してなされたもので、暖房時
の冷媒流路の出口側の冷媒流速のアップによる過冷却増
加による能力の向上を図ることと同時に冷房時には冷媒
流路の入口側の冷媒流れ音の防止の双方を満足できる空
気調和機の室内熱交換器を提供することを目的とする。
The present invention has been made in view of the above circumstances, while improving the capacity by increasing the supercooling by increasing the refrigerant flow rate on the outlet side of the refrigerant flow path during heating, and at the same time, at the time of cooling, on the inlet side of the refrigerant flow path. An object of the present invention is to provide an indoor heat exchanger of an air conditioner that can satisfy both of the prevention of the refrigerant flow noise.

[発明の構成] (課題を解決するための手段) 本発明は、上記の目的を達成するために、平行に配置
した複数のフィンに、冷媒流路を形成すべく複数の伝熱
管を挿通し、暖房時に高圧冷媒を第1冷媒流路から第2
冷媒流路に流して凝縮させ、冷房時に低圧冷媒を第2冷
媒流路から第1冷媒流路に流して蒸発させる空気調和機
の室内熱交換器において、第1冷媒流路の伝熱管を小
径、第2冷媒流路の伝熱管を大径にすると共に、第2冷
媒流路のパス数を第1冷媒流路のパス数よりも少なく、
かつさらに、暖房時に第2冷媒流路の伝熱管を流れる冷
媒の流速が第1冷媒流路の伝熱管を流れる冷媒の流速よ
りも大となるように第1冷媒流路、第2冷媒流路のパス
数を設定した空気調和機の室内熱交換器である。
[Constitution of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention provides a method in which a plurality of heat transfer tubes are inserted into a plurality of fins arranged in parallel so as to form a refrigerant flow path. During heating, the high-pressure refrigerant flows from the first refrigerant flow path to the second refrigerant flow.
In the indoor heat exchanger of the air conditioner, in which the low pressure refrigerant flows from the second refrigerant flow path to the first refrigerant flow path and evaporates during cooling, the heat transfer tube of the first refrigerant flow path has a small diameter. The diameter of the heat transfer tube of the second refrigerant flow path is increased, and the number of passes of the second refrigerant flow path is smaller than the number of passes of the first refrigerant flow path;
Further, the first refrigerant flow path and the second refrigerant flow path such that the flow rate of the refrigerant flowing through the heat transfer pipe of the second refrigerant flow path during heating is higher than the flow rate of the refrigerant flowing through the heat transfer pipe of the first refrigerant flow path. An indoor heat exchanger of an air conditioner in which the number of passes is set.

(作用) 上記の構成によれば、第1,第2冷媒流路を形成する伝
熱管を大径と小径の2種を用い、暖房時出口側で、冷房
時入口側となる第2冷媒流路を大径の伝熱管とし、暖房
時入口側で、冷房時出口側となる第1冷媒通路を小径の
伝熱管とし、かつ第2冷媒流路のパス数を第1冷媒流路
のパス数よりも少なくし、第1冷媒流路の小径の伝熱管
とパス数により適正な冷媒流量となるように設定し、し
かも第2冷媒流路となる大径の伝熱管は、暖房時に第2
冷媒流路の伝熱管を流れる凝縮冷媒の過冷却度が増大す
るよう、冷房時に第2冷媒流路の伝熱管に低圧冷媒が流
入する際の冷媒音が生じないようにその径を設定できる
ため、暖房時に過冷却増加による能力の向上を図ること
ができると共に冷房時の冷媒の流れ音の発生を防止する
ことができる。
(Operation) According to the above configuration, the heat transfer tubes forming the first and second refrigerant flow paths use two types, a large diameter and a small diameter, and the second refrigerant flow which is on the heating-side outlet side and on the cooling-side inlet side is used. The path is a large-diameter heat transfer tube, the first refrigerant passage on the inlet side during heating and the outlet side on cooling is a small-diameter heat transfer tube, and the number of passes of the second refrigerant flow path is the number of passes of the first refrigerant flow path. It is set so as to have an appropriate refrigerant flow rate by the small-diameter heat transfer tube of the first refrigerant flow passage and the number of passes, and the large-diameter heat transfer tube serving as the second refrigerant flow passage is the second heat transfer tube during heating.
Since the degree of supercooling of the condensed refrigerant flowing through the heat transfer tube of the refrigerant flow path is increased, the diameter of the second refrigerant flow path can be set so that the sound of the refrigerant does not occur when the low-pressure refrigerant flows into the heat transfer pipe during cooling. In addition, it is possible to improve the capacity by increasing the supercooling at the time of heating and to prevent the generation of the flow noise of the refrigerant at the time of cooling.

(実施例) 以下、本発明の好適実施例を添付図面に基づいて説明
する。
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

第1図において、10はフィンで、多数枚平行に積層さ
れ、その積層したフィン10の上部10aに、例えば2列で
3段となるようU字状に形成された小径の伝熱管11が挿
通され、下部10bに、例えば1列1段のU字状に形成さ
れた大径の伝熱管12が挿通される。これらU字状に形成
された大小の伝熱管11,12は第1図で見て紙面の裏側の
方向からフィン10に挿入され、開放端が紙面の表側に突
出するようにされると共に拡径されて固定される。上部
10aの小径の伝熱管11は、その各段の列の前後がリター
ンベンド13で接続され、また各段ごと冷媒流路が独立し
た3つのパス11A,11B,11Cを形成するよう、それぞれ前
列上部の開放端が上部接続パイプ14に上部分岐管15A,15
B,15Cを介して接続され、後列下部の開放端が中間接続
パイプ16にそれぞれ下部分岐管17A,17B,17Cを介して接
続される。この中間接続パイプ16の他端は大径の伝熱管
12の上部開放端に接続され、下部開放端が下部接続パイ
プ18に接続される。
In FIG. 1, a number of fins 10 are stacked in parallel, and a small-diameter heat transfer tube 11 formed in, for example, a U-shape so as to have two rows and three steps is inserted into an upper portion 10a of the stacked fins 10. Then, a large-diameter heat transfer tube 12 formed in, for example, a U-shape with one row and one stage is inserted into the lower portion 10b. These U-shaped large and small heat transfer tubes 11 and 12 are inserted into the fins 10 from the back side of the paper as viewed in FIG. 1 so that the open ends protrude to the front side of the paper and the diameter is increased. It is fixed. Upper part
The small-diameter heat transfer tube 11 of 10a is connected to the front and rear of each row by a return bend 13, and the upper portion of the front row is formed so that three paths 11A, 11B, and 11C are formed independently for each stage. The open ends of the upper connecting pipe 14 are connected to the upper branch pipes 15A and 15A.
B, 15C, and the open end of the lower rear row is connected to the intermediate connection pipe 16 via lower branch pipes 17A, 17B, 17C, respectively. The other end of this intermediate connection pipe 16 is a large diameter heat transfer tube
12 is connected to an upper open end, and a lower open end is connected to a lower connecting pipe 18.

上部接続パイプ14は、暖房時に冷媒の入口で冷房時に
は出口となるよう、また下部接続パイプ18は、暖房時に
出口で冷房時には入口となるよう冷凍サイクル(図示せ
ず)に接続される。
The upper connection pipe 14 is connected to a refrigeration cycle (not shown) such that the upper connection pipe 14 is an inlet of the refrigerant during heating and an outlet during cooling, and the lower connection pipe 18 is an outlet during heating and an inlet during cooling.

大小の伝熱管11,12の管径d1,d2は、例えば、大径側d
2が8又は7mmφ小径側d1が5.3又は4mmφのものを適宜組
み合わせて用いる。また、小径側の第1冷媒流路のパス
数と大径側のパス数とは、大径側の第2冷媒流路のパス
数を小径側の冷媒流路のパス数より少なくなるよう図示
の例では、大径側が1パスで、小径側が3パスとなると
なるようにしているが、暖房時に大径側伝熱管12内を流
れる冷媒の流速が、小径側の各伝熱管11内を流れる流速
より大で、かつ冷房時に大径側伝熱管12に冷媒が流入す
る際冷媒音が生じないものであれば、これらパス数は大
径及び小径側ともそれぞれの管径に応じていづれのパス
数にしても良い。
The tube diameters d 1 and d 2 of the large and small heat transfer tubes 11 and 12 are, for example, the large diameter side d
2 is 8 or 7mmφ smaller diameter d 1 is used in combination appropriately as 5.3 or 4 mm diameter. In addition, the number of passes of the first refrigerant flow path on the small diameter side and the number of passes on the large diameter side are illustrated such that the number of passes of the second refrigerant flow path on the large diameter side is smaller than the number of passes of the small diameter refrigerant flow path. In the example, the large-diameter side has one pass and the small-diameter side has three passes, but the flow rate of the refrigerant flowing through the large-diameter heat transfer tube 12 during heating flows through each of the small-diameter heat transfer tubes 11. As long as the flow rate is larger than the flow rate and the refrigerant noise does not occur when the refrigerant flows into the large-diameter heat transfer tube 12 during cooling, the number of these passes is different depending on the respective pipe diameters on the large-diameter and small-diameter sides. It may be a number.

なお、図中19は横流ファン、20は、横流ファン19の近
傍の空気調和機のケーシングを示している。
In the figure, reference numeral 19 denotes a cross flow fan, and reference numeral 20 denotes a casing of the air conditioner near the cross flow fan 19.

次に本実施例の作用を説明する。 Next, the operation of the present embodiment will be described.

先ず、暖房運転される時には圧縮機からの高温高圧冷
媒は、上部接続パイプ14より各上部分岐管15A,15B,15C
より、各段の小径側の第1冷媒流路を形成する伝熱管11
で形成されるパス11A,11B,11Cを通り、下部分岐管17A,1
7B,17Cより中間パイプ16に流れて合流した後、大径側の
第2冷媒流路を形成する伝熱管12に流入し、下部接続パ
イプ18から凝縮液として出ていく。この際、各段の小径
側伝熱管11で形成されるパス11A,11B,11Cを通る間に冷
媒は凝縮し、大径側の伝熱管12に流入する時には、ほぼ
凝縮液となるが、その伝熱管12内での流速が大のため、
熱交換が良好となり過冷却度が増大し、暖房性能が向上
する。
First, when the heating operation is performed, the high-temperature and high-pressure refrigerant from the compressor is supplied from the upper connection pipe 14 to each of the upper branch pipes 15A, 15B, 15C.
Thus, the heat transfer tubes 11 forming the first refrigerant flow path on the small diameter side of each stage
Through the paths 11A, 11B, 11C formed by the lower branch pipes 17A, 1
After flowing from 7B and 17C to the intermediate pipe 16 and joining, it flows into the heat transfer tube 12 forming the second refrigerant flow path on the large diameter side, and exits from the lower connection pipe 18 as condensate. At this time, the refrigerant is condensed while passing through the paths 11A, 11B, and 11C formed by the small-diameter heat transfer tubes 11 of each stage, and when flowing into the large-diameter heat transfer tubes 12, almost becomes a condensed liquid. Because the flow velocity in the heat transfer tube 12 is large,
The heat exchange becomes good, the degree of supercooling increases, and the heating performance improves.

また冷房運転される時には減圧装置(図示なし)で減
圧された冷媒が、下部接続パイプ18より大径側の伝熱管
12に流入するが、この際、下部接続パイプ18と大径側の
伝熱管12の管径に余り変化がなくかつ大径側の伝熱管12
が、8又は7mmφの径に形成されるため、冷媒音の生じ
ない。
When the cooling operation is performed, the refrigerant decompressed by the decompression device (not shown) is supplied to the heat transfer tube on the larger diameter side than the lower connection pipe 18.
At this time, the pipe diameters of the lower connection pipe 18 and the large-diameter heat transfer tube 12 do not change much and the large-diameter heat transfer tube 12
Is formed with a diameter of 8 or 7 mmφ, so that no refrigerant noise is generated.

以上のように大径と小径の伝熱管11,12を用いると共
にそれらのパス数を選ぶことにより、その各管11,12を
流れる冷媒の流速を適正に保つことができると共に暖房
性能の向上が図れると共に冷房時の冷媒音の発生を防止
できる。
As described above, by using the large-diameter and small-diameter heat transfer tubes 11 and 12 and selecting the number of passes thereof, it is possible to appropriately maintain the flow velocity of the refrigerant flowing through each of the tubes 11 and 12 and to improve the heating performance. In addition, it is possible to prevent the generation of refrigerant noise during cooling.

また小径の伝熱管11を前後に2列、大径の伝熱管を1
列とすることで、そのフィン10の前後幅W、すなわち熱
交換器の厚さを極力薄くできる。
Two rows of small-diameter heat transfer tubes 11 are arranged in front and back, and one large-diameter heat transfer tube is
By forming the rows, the front and rear width W of the fin 10, that is, the thickness of the heat exchanger can be reduced as much as possible.

なお上述の実施例においては、大径と小径の伝熱管1
1,12を積層したフィン10に、挿通する例で説明したが、
このフィン10は、図示の点線Pで示したように分割した
もので形成し、それぞれ大径側と小径側を別体の熱交換
器で構成するようにしても良い。またフィン10の詳細は
図示していないが、第3図で説明したように多数の切り
起こしたスリットフィンが形成されている。さらに圧縮
機はインバータ装置で能力可変に運転される。
In the above-described embodiment, the large-diameter and small-diameter heat transfer tubes 1 are used.
Although described in the example of inserting into the fin 10 in which 1, 12 are laminated,
The fins 10 may be formed by being divided as shown by a dotted line P in the drawing, and the large-diameter side and the small-diameter side may be constituted by separate heat exchangers. Although the details of the fin 10 are not shown, a large number of cut and raised slit fins are formed as described with reference to FIG. Further, the compressor is operated with variable capacity by an inverter device.

[発明の効果] 以上説明したことから明らかなように本発明によれば
次のごとき優れた効果を発揮する。
[Effects of the Invention] As is clear from the above description, according to the present invention, the following excellent effects are exhibited.

(1)冷媒流路を形成する伝熱管を大径と小径の2種を
用い、暖房時出口側で、冷房時入口側となる第2冷媒流
路を大径の伝熱管とし、暖房時入口側で、冷房時出口側
となる第2冷媒通路を小径の伝熱管とし、かつ第1冷媒
通路を複数のパスとすることで、小径の伝熱管とパス数
により適正な冷媒流量となるように設定できる。
(1) A heat transfer tube forming a refrigerant flow passage is formed of a large diameter and a small diameter, and a second refrigerant flow passage which is an outlet side at the time of heating and an inlet side at the time of cooling is a heat transfer tube having a large diameter. On the side, the second refrigerant passage, which is the outlet side at the time of cooling, is a small-diameter heat transfer tube, and the first refrigerant passage is a plurality of paths, so that an appropriate refrigerant flow rate is obtained by the small-diameter heat transfer tube and the number of passes. Can be set.

(2)第2冷媒流路となる大径の伝熱管は、暖房時に第
2冷媒流路の伝熱管を流れる凝縮冷媒の過冷却度が増大
するよう、冷房時に第2冷媒流路の伝熱管に低圧冷媒が
流入する際の冷媒音が生じないようにその径を設定でき
るため、暖房時に過冷却増加による能力の向上を図るこ
とができると共に冷房時の冷媒の流れ音の発生を防止す
ることができる。
(2) The large-diameter heat transfer tube serving as the second refrigerant flow passage has a heat transfer tube of the second refrigerant flow passage during cooling such that the degree of supercooling of the condensed refrigerant flowing through the heat transfer tube of the second refrigerant flow passage during heating is increased. Since the diameter can be set so as not to generate the refrigerant noise when the low-pressure refrigerant flows into the air, it is possible to improve the performance by increasing the supercooling at the time of heating and to prevent the generation of the refrigerant flow noise at the time of cooling. Can be.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す側面図、第2図は従来
の室内熱交換器の側面図、第3図は第2図のフィンの詳
細図、第4図は凝縮液の過冷却による暖房性能の向上を
説明するためのモリエル線図上の冷凍サイクルを示す
図、第5図は凝縮器及び蒸発器の管径に対する適正な冷
媒流量の関係を示す図である。 図中、10はフィン、11は小径側伝熱管、12は大径側伝熱
管である。
FIG. 1 is a side view showing an embodiment of the present invention, FIG. 2 is a side view of a conventional indoor heat exchanger, FIG. 3 is a detailed view of a fin in FIG. 2, and FIG. FIG. 5 is a diagram showing a refrigeration cycle on a Mollier diagram for explaining improvement of heating performance by cooling, and FIG. 5 is a diagram showing a relationship between an appropriate refrigerant flow rate and a pipe diameter of a condenser and an evaporator. In the figure, 10 is a fin, 11 is a small-diameter heat transfer tube, and 12 is a large-diameter heat transfer tube.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】平行に配置した複数のフィンに、冷媒流路
を形成すべく複数の伝熱管を挿通し、暖房時に高圧冷媒
を第1冷媒流路から第2冷媒流路に流して凝縮させ、冷
房時に低圧冷媒を第2冷媒流路から第1冷媒流路に流し
て蒸発させる空気調和機の室内熱交換器において、第1
冷媒流路の伝熱管を小径、第2冷媒流路の伝熱管を大径
にすると共に、第2冷媒流路のパス数を第1冷媒流路の
パス数よりも少なく、かつさらに、暖房時に第2冷媒流
路の伝熱管を流れる冷媒の流速が第1冷媒流路の伝熱管
を流れる冷媒の流速よりも大となるように第1冷媒流
路、第2冷媒流路のパス数を設定したことを特徴とする
空気調和機の室内熱交換器。
1. A plurality of heat transfer tubes are inserted through a plurality of fins arranged in parallel to form a refrigerant flow path, and high-pressure refrigerant flows from the first refrigerant flow path to the second refrigerant flow path during heating to condense. In the indoor heat exchanger of the air conditioner, the low-pressure refrigerant flows from the second refrigerant flow path to the first refrigerant flow path during cooling to evaporate.
The heat transfer tube of the refrigerant flow path has a small diameter, the heat transfer tube of the second refrigerant flow path has a large diameter, and the number of passes of the second refrigerant flow path is smaller than the number of passes of the first refrigerant flow path. The number of passes of the first refrigerant flow path and the second refrigerant flow path is set so that the flow velocity of the refrigerant flowing through the heat transfer tubes of the second refrigerant flow path is higher than the flow velocity of the refrigerant flowing through the heat transfer tubes of the first refrigerant flow path. An indoor heat exchanger for an air conditioner, characterized in that:
JP1041798A 1989-02-23 1989-02-23 Indoor heat exchanger of air conditioner Expired - Lifetime JP2886544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1041798A JP2886544B2 (en) 1989-02-23 1989-02-23 Indoor heat exchanger of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1041798A JP2886544B2 (en) 1989-02-23 1989-02-23 Indoor heat exchanger of air conditioner

Publications (2)

Publication Number Publication Date
JPH02223791A JPH02223791A (en) 1990-09-06
JP2886544B2 true JP2886544B2 (en) 1999-04-26

Family

ID=12618355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1041798A Expired - Lifetime JP2886544B2 (en) 1989-02-23 1989-02-23 Indoor heat exchanger of air conditioner

Country Status (1)

Country Link
JP (1) JP2886544B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4612001B2 (en) * 1993-06-01 2011-01-12 日立アプライアンス株式会社 Air conditioner
KR100261476B1 (en) * 1998-03-06 2000-07-01 윤종용 Evaporator of separating type airconditioner
KR100656083B1 (en) * 2005-01-31 2006-12-11 엘지전자 주식회사 Heat exchanger in an air harmonizing system
JP4902625B2 (en) * 2008-11-28 2012-03-21 三菱電機株式会社 Heat pump water heater and refrigeration equipment
JP6678413B2 (en) * 2015-09-01 2020-04-08 日立ジョンソンコントロールズ空調株式会社 Air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5675685U (en) * 1979-11-15 1981-06-20

Also Published As

Publication number Publication date
JPH02223791A (en) 1990-09-06

Similar Documents

Publication Publication Date Title
TW448278B (en) Combined evaporator/accumulator/suction line heat exchanger
JP3965387B2 (en) Split fin for heat exchanger
JP2001174047A (en) Indoor unit of air conditioner
JP2003254555A (en) Air conditioner
JPH10205919A (en) Condenser of air-cooling apparatus
TW201430300A (en) Air conditioner
JP2886544B2 (en) Indoor heat exchanger of air conditioner
JPH10325630A (en) Air conditioner
JP2003232553A (en) Air conditioner
KR20000031340A (en) Indoor heat exchanger
JP4300502B2 (en) Parallel flow type heat exchanger for air conditioning
JP3083385B2 (en) Heat exchanger
JPH10196984A (en) Air conditioner
JPH06194003A (en) Air conditioner
JPH1151412A (en) Indoor unit for air-conditioner, and its indoor heat exchanger
TW201945671A (en) Air conditioner characterized in reducing heat loss of a four-way valve and improving COP by heating a gas-liquid two-phase refrigerant flowing out of an evaporator to a gas single phase before reaching the four-way valve
JPH05157402A (en) Heat exchanger
JP2002235994A (en) Heat transfer tube for heat exchanger, its manufacturing method, heat exchanger and refrigeration air conditioning device using it
JP2006258306A (en) Indoor unit for air conditioner
JPH0539969A (en) Condenser for refrigerant
JP3021226B2 (en) Air conditioner
JP3621758B2 (en) Heat exchanger
JPH10318618A (en) Air conditioner
JPH04240364A (en) Heat exchanger
JPH09152192A (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090212

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090212

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090212

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100212

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100212

Year of fee payment: 11