JP2884603B2 - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JP2884603B2
JP2884603B2 JP1184316A JP18431689A JP2884603B2 JP 2884603 B2 JP2884603 B2 JP 2884603B2 JP 1184316 A JP1184316 A JP 1184316A JP 18431689 A JP18431689 A JP 18431689A JP 2884603 B2 JP2884603 B2 JP 2884603B2
Authority
JP
Japan
Prior art keywords
film
dielectric
semiconductor laser
sin
dielectric multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1184316A
Other languages
Japanese (ja)
Other versions
JPH0349281A (en
Inventor
裕美 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16151204&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2884603(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1184316A priority Critical patent/JP2884603B2/en
Publication of JPH0349281A publication Critical patent/JPH0349281A/en
Application granted granted Critical
Publication of JP2884603B2 publication Critical patent/JP2884603B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【産業上の利用分野】[Industrial applications]

本発明は、端面を光取り出し面とする半導体レーザ素
子の、端面の酸化抑制のため誘電体膜を端面に設けた半
導体レーザに関する。
The present invention relates to a semiconductor laser in which a dielectric film is provided on an end face for suppressing oxidation of the end face of a semiconductor laser element having an end face as a light extraction surface.

【従来の技術】[Prior art]

半導体レーザは、半導体基板の上にpn接合を形成し、
電流を接合に注入して光を発生させ、共振器で繰り返し
反射させ、誘導増幅し、端面から光を放出させるもので
ある。 端面の劈開面が共振器の反射面になっているものがあ
る。これは半導体レーザの最も一般的なものである。こ
れとは異なり、回折格子を光導波路に沿って形成し、こ
れを共振器の反射器とするものもある。いずれの形式に
おいても光は端面から外部へ出射される。 端面は高密度の光エネルギーを通さなければならな
い。端面が共振器の反射面を構成するときは、端面は高
密度の光を反射しなければならない。 半導体レーザの端面に欠陥が生ずると欠陥は増大し、
特性が急速に劣化する。そこで端面が酸化しないように
誘電体膜によって被覆する。 特開昭61−207091(S61.9.13)は、半導体レーザの端
面に、SiN/Auの繰り返しよりなる誘電体多層膜を形成し
ている。端面の酸化を防止するためである。 特公昭64−7515(S64.2.9)は、半導体レーザのチッ
プの4周に2層の誘電体膜を付け酸化防止したものを開
示している。誘電体膜は、SiN、SiO2、Al2O3などであ
る。
A semiconductor laser forms a pn junction on a semiconductor substrate,
A current is injected into a junction to generate light, which is repeatedly reflected by a resonator, induced and amplified, and emitted from an end face. In some cases, the cleavage plane at the end face is the reflection plane of the resonator. This is the most common type of semiconductor laser. On the other hand, in some cases, a diffraction grating is formed along an optical waveguide, and this is used as a reflector of a resonator. In each case, light is emitted from the end face to the outside. The end faces must be able to pass high density light energy. When the end faces constitute the reflecting surface of the resonator, the end faces must reflect a high density of light. When a defect occurs on the end face of the semiconductor laser, the defect increases,
Characteristics deteriorate rapidly. Therefore, the end face is covered with a dielectric film so as not to be oxidized. Japanese Patent Application Laid-Open No. 61-207091 (S61.9.13) forms a dielectric multilayer film composed of SiN / Au repetition on the end face of a semiconductor laser. This is for preventing oxidation of the end face. Japanese Patent Publication No. 64-7515 (S64.2.9) discloses a semiconductor laser chip in which two layers of dielectric films are provided around four circumferences of a chip to prevent oxidation. The dielectric film is made of SiN, SiO 2 , Al 2 O 3 or the like.

【発明が解決しようとする課題】[Problems to be solved by the invention]

特開昭61−207091のように半導体レーザの端面にSiN/
Auの多層膜を形成したものは、Auが導体であるため半導
体レーザ駆動用電極がショートしやすい、という難点が
ある。 特公昭64−7515のように、Al2O3/Siの多層膜を付ける
ものは次の難点がある。 Al2O3とSiは、全く違った構成元素からなるので、膜
形成作業が容易でない。 また形成時に相互の膜質に悪い影響を及ぼしあう。こ
のため膜形成工程の歩留まりが悪い。 さらにこのようにして作った多層膜は安定でない。経
年変化が大きい。 端面酸化防止のため、歩留まり良く安定した誘電体多
層膜を形成した半導体レーザ素子を与えることが本発明
の目的である。
As disclosed in Japanese Patent Application Laid-Open No. 61-207091, the end face of a semiconductor laser is
In the case where a multilayer film of Au is formed, there is a drawback that a semiconductor laser driving electrode is easily short-circuited because Au is a conductor. As shown in Japanese Patent Publication No. 64-7515, a device having a multilayer film of Al 2 O 3 / Si has the following problems. Since Al 2 O 3 and Si are composed of completely different constituent elements, the film forming operation is not easy. In addition, they adversely affect each other's film quality during formation. For this reason, the yield of the film forming process is poor. Further, the multilayer film thus produced is not stable. Large secular change. SUMMARY OF THE INVENTION It is an object of the present invention to provide a semiconductor laser device in which a stable dielectric multilayer film is formed with a good yield in order to prevent edge oxidation.

【発明が解決するための手段】Means for Solving the Invention

本発明の半導体レーザ素子は、 半導体基板と、この上に形成されたpn接合と、pn接合
の中に設けられた活性層と、pn接合の上に設けられたコ
ンタクト層と、コンタクト層と基板とに設けられた電極
と、共振器とを有し、pn接合面に電流を流し光を発生さ
せ共振器で反射させ活性層の中を往復させ増幅して端面
から光を取り出す半導体レーザ素子において、 光を取り出す端面の両側或は片側に、 SiとHとを含み、 SiO2/Siの繰り返す誘電体多層膜、SiN/Siの繰り返す
誘電体多層膜、SiON/Siの繰り返す誘電体多層膜、SiNよ
りなる誘電体膜、またはSiO2よりなる誘電体膜、或はSi
ONよりなる誘電体膜を形成したものである。 さらに望ましくは、 端面に設けた誘電体膜或は誘電多層膜の最表面層は、
SiO2、SiN、SiONの何れかであるようにする。 より望ましくは、 誘電体膜或は誘電体多層膜の屈折率をnとし、誘電体
膜或は誘電体多層膜の厚さは、レーザ発振波長の1/4nで
あるようにする。 第1図に本発明の具体例を示す。 誘電体多層膜は、Si/SiN或はSi/SiO2といった誘電体
から構成される。ここでは一方の端面にはSiNの単層誘
電体膜を、他方の端面にはSiN/Siよりなる誘電体多層膜
を形成している。いずれの誘電体膜、誘電体多層膜も、
作製のため、Hを含むSiH4、或はSi2H6、H2ガスを用
い、内部にHを含む薄膜とする。 Si、SiN、SiO2といった誘電体は、109Ω・cm以上の高
抵抗率のものを形成できる。Au等と違い、電気的には、
半導体レーザ素子になんら影響を与えない。
A semiconductor laser device according to the present invention includes a semiconductor substrate, a pn junction formed thereon, an active layer provided in the pn junction, a contact layer provided on the pn junction, a contact layer and a substrate. A semiconductor laser device having an electrode and a resonator provided, and a current flowing through the pn junction surface to generate light, reflected by the resonator, reciprocated in the active layer, amplified, and takes out light from the end surface. , On both sides or one side of the end face from which light is extracted, containing Si and H, repeating SiO 2 / Si dielectric multilayer, SiN / Si repeating dielectric multilayer, SiON / Si repeating dielectric multilayer, a dielectric film, or of SiO 2 dielectric film made of SiN, or Si
A dielectric film made of ON is formed. More preferably, the outermost surface layer of the dielectric film or the dielectric multilayer film provided on the end face is
It should be one of SiO 2 , SiN and SiON. More preferably, the refractive index of the dielectric film or the dielectric multilayer film is n, and the thickness of the dielectric film or the dielectric multilayer film is 1 / 4n of the laser oscillation wavelength. FIG. 1 shows a specific example of the present invention. Dielectric multilayer film is composed of a dielectric such as Si / SiN or Si / SiO 2. Here, a single-layer dielectric film of SiN is formed on one end surface, and a dielectric multilayer film of SiN / Si is formed on the other end surface. Any dielectric film, dielectric multilayer film,
For fabrication, a thin film containing H is used by using SiH 4 containing H, or Si 2 H 6 , and H 2 gas. Dielectrics such as Si, SiN and SiO 2 can be formed with a high resistivity of 10 9 Ω · cm or more. Unlike Au etc., electrically
It has no effect on the semiconductor laser device.

【作用】[Action]

(1)先ず形成方法に関して述べる。 例えばプラズマCVD装置或はスパッタリングにより誘
電体多層膜あるいは誘電体膜を形成できる。 プラズマCVDの場合、 SiH4ガスと、O2といったガスを用い、Si/SiO2/Si/SiO
2………の誘電体多層膜を形成できる。 SiH4ガスと、N2或はNH3ガスを用い、Si/SiN/Si/SiN…
の誘電体多層膜を形成することができる。 SiH4ガスと、O2或はN2Oといったガスを用い、Si/SiON
/Si/SiON………の誘電体多層膜を形成できる。 Siとその化合物の誘電体多層膜を作るので、N2或はN2
O、NH3、O2の流量を変化させることによって、Si層もそ
の化合物層も、連続的に容易に形成できる。形成層を切
り換えるとき、ガスを全て置き換える必要がない。従っ
てSi層とその化合物層とが、相互の膜質に及ぼし得る悪
い影響がほとんどない。このため安定した多層膜ができ
る。 スパッタリングの場合 ターゲットにSi、キャリヤガスにH2、反応ガスにO2
いったガスを用い、Si/SiO2/Si/SiO2………の誘電体多
層膜を形成できる ターゲットにSi、キャリヤガスにH2、反応ガスにN2
はNH3ガスを用い、Si/SiN/Si/SiN…の誘電体多層膜を形
成することができる。 ターゲットにSi、キャリヤガスにH2、反応ガスにO2
はN2Oといったガスを用い、Si/SiON/Si/SiON………の誘
電体多層膜を形成できる。 N2或はN2O、NH3、O2の流量を変化させることによっ
て、Si層もその化合物層も、連続的に容易に形成でき
る。プラズマCVDの場合と同じことがいえる。 (2)このように形成した誘電体多層膜、誘電体膜の構
成は、最終層をSi以外の誘電体膜(例えばSiN、SiO2、S
iON)にする。 Siを最終層とした場合、Si元素は、SiN、SiO2、SiON
といった誘電体膜に比べて、酸化或は窒化しやすい。そ
のため、膜特性が変化し信頼性がなくなる。それで最終
層はSi以外とする。 (3)誘電体膜の膜厚は、レーザ発振波長の1/4nの時、
最も有効的(多層の場合少ない層数で)に膜形成を行え
る。第2図によってこれを説明する。横軸は膜厚
(Å)、縦軸は反射率(%)である。誘電体多層膜の膜
厚dを3/10nとしたものと、1/4nとしたものについて、
反射率の膜厚依存性を計算し結果を示している。奇数層
の場合に反射率が大きく、偶数層の場合反射率が小さ
い。1/4nの場合の方が反射率の高まりが速い。1/4nの場
合について膜厚にSiO2、Siを対応させている。共振器の
一方の端面であれば、反射率が高い方が良い。この場合
はd=1/4nとした方が反射率を高くするには、少ない層
数で行え、かつ膜厚の制御範囲が広くなる。
(1) First, the formation method will be described. For example, a dielectric multilayer film or a dielectric film can be formed by a plasma CVD apparatus or sputtering. In the case of plasma CVD, a gas such as SiH 4 gas and O 2 is used, and Si / SiO 2 / Si / SiO
2 A dielectric multilayer film of ...... can be formed. Using SiH 4 gas and N 2 or NH 3 gas, Si / SiN / Si / SiN…
Can be formed. Si / SiON using SiH 4 gas and gas such as O 2 or N 2 O
/ Si / SiON dielectric multilayer film can be formed. Since a dielectric multilayer film of Si and its compound is made, N 2 or N 2
By changing the flow rates of O, NH 3 and O 2 , both the Si layer and its compound layer can be continuously and easily formed. When switching formation layers, it is not necessary to replace all gases. Therefore, the Si layer and its compound layer have almost no adverse effect on the mutual film quality. Therefore, a stable multilayer film can be formed. In the case of sputtering, a gas such as Si as a target, H 2 as a carrier gas, and O 2 as a reaction gas can be used to form a dielectric multilayer film of Si / SiO 2 / Si / SiO 2 … Si as a target, Si as a carrier gas Using H 2 and N 2 or NH 3 gas as a reaction gas, a dielectric multilayer film of Si / SiN / Si / SiN... Can be formed. Using a gas such as Si as a target, H 2 as a carrier gas, and O 2 or N 2 O as a reaction gas, a dielectric multilayer film of Si / SiON / Si / SiON can be formed. By changing the flow rate of N 2 or N 2 O, NH 3 and O 2 , both the Si layer and its compound layer can be continuously and easily formed. The same can be said for plasma CVD. (2) The structure of the dielectric multilayer film and the dielectric film thus formed is such that the final layer is a dielectric film other than Si (for example, SiN, SiO 2 , S
iON). When Si is used as the final layer, the Si element is SiN, SiO 2 , SiON
Oxidation or nitridation is easier than that of a dielectric film. Therefore, the film characteristics change and reliability is lost. So the final layer is made of something other than Si. (3) When the thickness of the dielectric film is 1 / 4n of the laser oscillation wavelength,
The film can be formed most effectively (with a small number of layers in the case of a multilayer). This will be described with reference to FIG. The horizontal axis represents the film thickness (Å), and the vertical axis represents the reflectance (%). For the dielectric multilayer film having a thickness d of 3 / 10n and 1 / 4n,
The results are shown by calculating the film thickness dependence of the reflectance. The reflectance is large in the case of an odd-numbered layer, and small in the case of an even-numbered layer. In the case of 1 / 4n, the increase in reflectance is faster. SiO 2 and Si correspond to the film thickness in the case of 1 / 4n. If it is one end face of the resonator, the higher the reflectivity, the better. In this case, when d = 1 / 4n, the reflectance can be increased with a small number of layers, and the control range of the film thickness is widened.

【実施例】【Example】

本発明の実施例を述べる。 一般に良く知られている液相エピタキシャル成長法で
第3図に示したごとく、InP基板上1に、p−InP層2、
p−InGaAsP層3、InGaAsP活性層4、n−InGaAsP5、n
−InP層6、n−InGaAsPコンタクト層7を成長させる。 臭素とメタノールの混合液で、SiO2のマスクで発光部
を残して、逆メサ型にエッチングする。 発光部の両側を、p−InP層8、n−InP層9、p−In
P層10、n−InP層11によって埋込む。 絶縁膜12を被覆し、発光部となる部分のみに溝を穿
つ。 InP基板側とエピ成長側に電極14、13を形成、劈開に
よりレーザ端面を形成して、半導体レーザを作製する。 このようにして作られたいわゆるInPダブルヘテロ接
合レーザの劈開された端面に誘電体膜、誘電体多層膜を
形成する。 例えば、プラズマCVD装置を用いて、チャンバー内を
1×10-6Torr以下に真空排気した後、SiH4ガスとNH3
スをそれぞれ60sccm、60sccm流し、高周波出力50WでSiN
膜をレーザ発振波長の1/4nの膜厚形成する。 いったん高周波出力を切り、ガスもすべて真空排気す
る。続いて次にSiH4ガスだけを60Sccm流し、Si膜を形成
する。 以下同様にして、SiN/Si………の誘電体多層膜を形成
する。そして最後の層は、SiN膜とし、例えば5層の場
合、SiN/Si/SiN/Si/SiNの構造となる。 SiN膜の代わりにSiO2膜でもよい。その時は、SiN膜形
成時に使用したN2ガスのかわりにO2ガスを用いれば良
い。 その他は同様である。 ここではInP系の半導体レーザを例にしたが、GaAs
系、GaAlAs系などの半導体レーザにも本発明を適用でき
る。
An embodiment of the present invention will be described. As shown in FIG. 3 by a well-known liquid phase epitaxial growth method, a p-InP layer 2 is formed on an InP substrate 1.
p-InGaAsP layer 3, InGaAsP active layer 4, n-InGaAsP5, n
-InP layer 6 and n-InGaAsP contact layer 7 are grown. Using a mixture of bromine and methanol, etching is performed in an inverted mesa shape, leaving a light emitting portion with a mask of SiO 2 . P-InP layer 8, n-InP layer 9, p-InP
It is buried with a P layer 10 and an n-InP layer 11. The insulating film 12 is covered, and a groove is formed only in a portion to be a light emitting portion. Electrodes 14 and 13 are formed on the InP substrate side and the epi growth side, and a laser end face is formed by cleavage to produce a semiconductor laser. A dielectric film and a dielectric multilayer film are formed on the cleaved end faces of the so-called InP double heterojunction laser produced in this manner. For example, the chamber is evacuated to 1 × 10 −6 Torr or less using a plasma CVD apparatus, and then SiH 4 gas and NH 3 gas are flowed at 60 sccm and 60 sccm, respectively.
The film is formed to have a thickness of 1 / 4n of the laser oscillation wavelength. Once the high frequency output is turned off, all gases are evacuated. Subsequently, only SiH 4 gas is flowed at 60 Sccm to form a Si film. Hereinafter, similarly, a dielectric multilayer film of SiN / Si is formed. The last layer is a SiN film. For example, in the case of five layers, the structure is SiN / Si / SiN / Si / SiN. An SiO 2 film may be used instead of the SiN film. In that case, an O 2 gas may be used instead of the N 2 gas used in forming the SiN film. Others are the same. Here, an InP-based semiconductor laser is used as an example, but GaAs
The present invention is also applicable to semiconductor lasers of GaAlAs type and the like.

【発明の効果】【The invention's effect】

(1)単層誘電体膜或は、多層誘電体膜形成にあたり、
その構成元素をSi−H系(例えばa−Si:H,SiN:H,SiO2:
H,SiOH:H)にする事によって、誘電体膜形成時に膜相互
の汚染を少なくできる。そのため膜特性の劣化が少な
い。 (2)上記誘電体膜を形成するために、例えばプラズマ
CVD法或は、スパッタリング法を用いる場合、SiH4ガス
をベースとして、その他にN2、NH3、N2O、O2といったガ
スを膜によって選択し、そのガスの切り換えによってSi
N/Si……、SiO2/Si……、SiON/Si……といった多層誘電
体膜を形成できる。その結果、スループットの向上が期
待できる。 (3)半導体レーザ素子の端面に誘電体膜を形成する事
によって、端面酸化が抑制される。 (4)最終面をSi以外のものとすると、安定した誘電体
膜を形成することができる。
(1) In forming a single-layer dielectric film or a multilayer dielectric film,
The constituent elements are Si-H based (for example, a-Si: H, SiN: H, SiO 2 :
H, SiOH: H), contamination of the dielectric film can be reduced during the formation of the dielectric film. Therefore, deterioration of film characteristics is small. (2) To form the dielectric film, for example, a plasma
When the CVD method or the sputtering method is used, a gas such as N 2 , NH 3 , N 2 O, O 2 is selected based on the SiH 4 gas, and the gas is switched.
Multilayer dielectric films such as N / Si, SiO 2 / Si, and SiON / Si can be formed. As a result, an improvement in throughput can be expected. (3) By forming a dielectric film on the end face of the semiconductor laser device, end face oxidation is suppressed. (4) If the final surface is made of a material other than Si, a stable dielectric film can be formed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の半導体レーザの長手方向の構造を示す
概略断面図。 第2図はSiO2/Si誘電体多層膜において多層膜の1層の
膜厚dを3/10nにしたときと、1/4にしたときの誘電体多
層膜全体の膜厚と反射率の関係を計算したものの結果を
示すグラフ。 第3図はダブルヘテロ半導体レーザの断面図。 1……InP基板 2……p−InP層 3……p−InGaAsP層 4……InGaAsP活性層 5……n−InP層 6……n−InP層 7……n−InPコンタクト層 8……p−InP層 9……n−InP層 10……p−InP層 11……n−InP層 12……絶縁膜 13……n側電極 14……p側電極
FIG. 1 is a schematic sectional view showing a structure of a semiconductor laser of the present invention in a longitudinal direction. FIG. 2 shows the relationship between the film thickness and the reflectance of the entire dielectric multilayer film when the thickness d of one layer of the SiO 2 / Si dielectric multilayer film is 3 / 10n and when it is 1/4. A graph showing the result of calculating the relationship. FIG. 3 is a cross-sectional view of a double hetero semiconductor laser. DESCRIPTION OF SYMBOLS 1 ... InP board 2 ... p-InP layer 3 ... p-InGaAsP layer 4 ... InGaAsP active layer 5 ... n-InP layer 6 ... n-InP layer 7 ... n-InP contact layer 8 ... p-InP layer 9 n-InP layer 10 p-InP layer 11 n-InP layer 12 insulating film 13 n-side electrode 14 p-side electrode

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体基板と、この上に形成されたpn接合
と、pn接合の中に設けられた活性層と、pn接合の上に設
けられたコンタクト層と、コンタクト層と基板とに設け
られた電極と、共振器とを有し、pn接合面に電流を流し
光を発生させ共振器で反射させ活性層の中を往復させ増
幅して端面から光を取り出す半導体レーザ素子におい
て、光を取り出す端面の両側或は片側に、SiとHとを含
み、SiO2/Siの繰り返す誘電体多層膜、SiN/Siの繰り返
す誘電体多層膜、SiON/Siの繰り返す誘電体多層膜、SiN
よりなる誘電体膜、またはSiO2よりなる誘電体膜、或は
SiONよりなる誘電体膜を形成したことを特徴とする半導
体レーザ素子。
1. A semiconductor substrate, a pn junction formed thereon, an active layer provided in the pn junction, a contact layer provided on the pn junction, and a contact layer provided on the contact layer and the substrate. A semiconductor laser device having a current-carrying electrode and a resonator, causing a current to flow through the pn junction surface to generate light, reflecting the light by the resonator, reciprocating in the active layer, amplifying light and extracting light from the end face. On both sides or one side of the end face to be taken out, containing Si and H, SiO 2 / Si repeating dielectric multilayer, SiN / Si repeating dielectric multilayer, SiON / Si repeating dielectric multilayer, SiN
Or a dielectric film made of SiO 2 , or
A semiconductor laser device comprising a dielectric film made of SiON.
【請求項2】端面に設けた誘電体膜或は誘電多層膜の最
表面層は、SiO2、SiN、SiONの何れかであることを特徴
とする請求項1に記載の半導体レーザ素子。
2. The semiconductor laser device according to claim 1, wherein the outermost surface layer of the dielectric film or the dielectric multilayer film provided on the end face is any one of SiO 2 , SiN, and SiON.
【請求項3】誘電体膜或は誘電体多層膜の屈折率をnと
し、誘電体膜或は誘電体多層膜の厚さは、レーザ発振波
長の1/4nであることを特徴とする請求項2に記載の半導
体レーザ素子。
3. The method according to claim 1, wherein the refractive index of the dielectric film or the dielectric multilayer film is n, and the thickness of the dielectric film or the dielectric multilayer film is 1 / 4n of the laser oscillation wavelength. Item 3. A semiconductor laser device according to item 2.
JP1184316A 1989-07-17 1989-07-17 Semiconductor laser device Expired - Lifetime JP2884603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1184316A JP2884603B2 (en) 1989-07-17 1989-07-17 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1184316A JP2884603B2 (en) 1989-07-17 1989-07-17 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH0349281A JPH0349281A (en) 1991-03-04
JP2884603B2 true JP2884603B2 (en) 1999-04-19

Family

ID=16151204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1184316A Expired - Lifetime JP2884603B2 (en) 1989-07-17 1989-07-17 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2884603B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100898958B1 (en) * 2005-12-16 2009-05-25 샤프 가부시키가이샤 Nitride Semiconductor Light Emitting Device and Method of Fabricating Nitride Semiconductor Laser Device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454016A (en) * 1987-08-26 1989-03-01 Asahi Chemical Ind Recovery of polymer
JPH04177783A (en) * 1990-11-11 1992-06-24 Canon Inc Semiconductor device
CA2326723A1 (en) 1999-02-03 2000-08-10 Takeshi Aikiyo Semiconductor laser device and semiconductor laser module using the same
US6810063B1 (en) 1999-06-09 2004-10-26 The Furukawa Electric Co., Ltd. Semiconductor laser device
US6870871B2 (en) 2000-02-03 2005-03-22 The Furukawa Electric Co., Ltd. Semiconductor laser devices, and semiconductor laser modules and optical communication systems using the same
US6614822B2 (en) 2000-02-03 2003-09-02 The Furukawa Electric Co., Ltd. Semiconductor laser devices, and semiconductor laser modules and optical communication systems using the same
RU2254344C2 (en) 2000-02-11 2005-06-20 Кратон Полимерс Рисерч Б.В. Method of removing hydrogenation catalyst residues from hydrogenised polymers
JP2002111135A (en) 2000-10-02 2002-04-12 Furukawa Electric Co Ltd:The Semiconductor laser device and optical fiber amplifier exciting light source using the same
JP2003243764A (en) 2002-02-19 2003-08-29 Matsushita Electric Ind Co Ltd Semiconductor laser and its manufacturing method
JP2007103814A (en) 2005-10-07 2007-04-19 Sharp Corp Nitride semiconductor light emitting device and its manufacturing method
KR100853241B1 (en) 2005-12-16 2008-08-20 샤프 가부시키가이샤 Nitride Semiconductor Light Emitting Device and Method of Fabricating Nitride Semiconductor Laser Device
JP5004597B2 (en) 2006-03-06 2012-08-22 シャープ株式会社 Nitride semiconductor light emitting device and method for manufacturing nitride semiconductor light emitting device
JP5430826B2 (en) 2006-03-08 2014-03-05 シャープ株式会社 Nitride semiconductor laser device
JP4444304B2 (en) 2006-04-24 2010-03-31 シャープ株式会社 Nitride semiconductor light emitting device and method for manufacturing nitride semiconductor light emitting device
JP2007317804A (en) * 2006-05-24 2007-12-06 Advanced Telecommunication Research Institute International Semiconductor laser device, manufacturing method therefor, and semiconductor laser gyro using the same
JP4580899B2 (en) * 2006-06-08 2010-11-17 株式会社東芝 Semiconductor memory device and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014489A (en) * 1983-07-05 1985-01-25 Mitsubishi Electric Corp Semiconductor light emitting device
JPS61207091A (en) * 1985-03-11 1986-09-13 Sharp Corp Semiconductor laser element
JPH07105558B2 (en) * 1987-03-19 1995-11-13 三洋電機株式会社 Semiconductor laser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100898958B1 (en) * 2005-12-16 2009-05-25 샤프 가부시키가이샤 Nitride Semiconductor Light Emitting Device and Method of Fabricating Nitride Semiconductor Laser Device
KR100924500B1 (en) * 2005-12-16 2009-11-02 샤프 가부시키가이샤 Nitride Semiconductor Light Emitting Device and Method of Fabricating Nitride Semiconductor Laser Device
KR100924498B1 (en) * 2005-12-16 2009-11-03 샤프 가부시키가이샤 Nitride Semiconductor Light Emitting Device and Method of Fabricating Nitride Semiconductor Laser Device

Also Published As

Publication number Publication date
JPH0349281A (en) 1991-03-04

Similar Documents

Publication Publication Date Title
JP2884603B2 (en) Semiconductor laser device
US6720583B2 (en) Optical device, surface emitting type device and method for manufacturing the same
EP1437809B1 (en) Compound semiconductor laser
KR100523484B1 (en) Method for fabricating semiconductor optical devices having current-confined structure
KR101608542B1 (en) Optoelectronic component
JP2007036233A (en) Vcsel system with lateral p-n juunction
US6888866B2 (en) Semiconductor laser device with a current non-injection region near a resonator end face, and fabrication method thereof
JPH09186400A (en) Fabrication of surface emission semiconductor laser
US6754245B2 (en) GaN series surface-emitting laser diode having spacer for effective diffusion of holes between p-type electrode and active layer, and method for manufacturing the same
JPH0758418A (en) Optoelectronic semiconductor device
EP0918384B1 (en) Semiconductor light emitting device and method for fabricating the same
US6678302B2 (en) Semiconductor device and manufacturing method thereof
US4835783A (en) Semiconductor laser
US20020064196A1 (en) Semiconductor laser, method for fabricating thereof, and method for mounting thereof
US6696308B1 (en) Electrically pumped long-wavelength VCSEL with air gap DBR and methods of fabrication
US20040042523A1 (en) Optically pumped semiconductor laser device
JPH1070338A (en) Manufacture of semiconductor laser element
EP0284684B1 (en) Inverted channel substrate planar semiconductor laser
JP2018098264A (en) Quantum cascade semiconductor laser
KR100576299B1 (en) Semiconductor laser and element for optical communication
US6707835B2 (en) Process for producing semiconductor laser element including S-ARROW structure formed by etching through mask having pair of parallel openings
US6553046B2 (en) High-power semiconductor laser device including resistance reduction layer which has intermediate energy gap
JPH0878773A (en) Surface-emitting semiconductor laser
JPH11112096A (en) Semiconductor laser device, and optical communication system using the same
CN115000808A (en) VCSEL coherent array chip based on gain guidance