JP2882149B2 - Vehicle plane behavior control device - Google Patents

Vehicle plane behavior control device

Info

Publication number
JP2882149B2
JP2882149B2 JP34112691A JP34112691A JP2882149B2 JP 2882149 B2 JP2882149 B2 JP 2882149B2 JP 34112691 A JP34112691 A JP 34112691A JP 34112691 A JP34112691 A JP 34112691A JP 2882149 B2 JP2882149 B2 JP 2882149B2
Authority
JP
Japan
Prior art keywords
vehicle
behavior
yaw rate
control
reference model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34112691A
Other languages
Japanese (ja)
Other versions
JPH05170116A (en
Inventor
太平 松本
健 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP34112691A priority Critical patent/JP2882149B2/en
Publication of JPH05170116A publication Critical patent/JPH05170116A/en
Application granted granted Critical
Publication of JP2882149B2 publication Critical patent/JP2882149B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は車両のヨーレイト、又は
横加速度、若しくは横滑り角で表される平面挙動を制御
する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for controlling a plane behavior represented by a yaw rate, a lateral acceleration, or a side slip angle of a vehicle.

【0002】[0002]

【従来の技術】この種車両の平面挙動制御装置としては
従来例えば、昭和62年8月発行、計測自動制御学会論
文集Vol.23,No.8 ”四輪操舵車両の新しい
制御法”中 ”3.1 ヨーレイトのモデル適合制御”
に示された如きものがある。この提案技術によれば、操
舵入力に対するヨーレイト応答を任意に設定し得る規範
モデルで与え、よく知られた線形2自由度モデルで表さ
れる操舵角・ヨーレイト伝達特性と、後輪舵角・ヨーレ
イト伝達特性とを用いて、実際のヨーレイト応答が規範
モデルで狙ったヨーレイト応答に一致するよう後輪舵角
をフィードフォワード制御する。
2. Description of the Related Art Conventionally, a planar behavior control device for a vehicle of this type has been disclosed in, for example, August 1987, Transactions of the Society of Instrument and Control Engineers Vol. 23, no. 8 "New control method for four-wheel steering vehicle""Medium" 3.1 Yaw rate model adaptation control
There is a thing as shown in. According to this proposed technique, a yaw rate response to a steering input is given by a reference model that can be set arbitrarily, and a steering angle / yaw rate transfer characteristic represented by a well-known linear two-degree-of-freedom model and a rear wheel steering angle / yaw rate Using the transfer characteristics, the rear wheel steering angle is feedforward controlled so that the actual yaw rate response matches the yaw rate response aimed by the reference model.

【0003】ところで、上記規範モデルは1次遅れで設
定するのが有利であり、その理由は次の通りである。即
ち、先ず1次遅れ特性は制御が非振動的で、発散しな
い。又、制御に当たって微分演算が必要であるが、この
場合今日多用されているディジタル制御においては純微
分は好ましくない。よって、設定する伝達関数の分子次
数ー分母次数の差を1次にするのが良いが、1次遅れ特
性はこの要求にマッチしている。これらの理由から上記
規範モデルは1次遅れで設定するのが良い。
Incidentally, it is advantageous to set the above-mentioned reference model with a first-order lag, for the following reason. That is, first, the first-order lag characteristic is non-oscillating in control and does not diverge. In addition, a differential operation is required for control. In this case, pure differentiation is not preferable in digital control which is frequently used today. Therefore, it is preferable that the difference between the numerator order and the denominator order of the transfer function to be set be first order, but the first-order lag characteristic matches this requirement. For these reasons, it is preferable to set the above reference model with a first-order delay.

【0004】[0004]

【発明が解決しようとする課題】しかし、このような1
次遅れの規範モデルで操舵入力に対する目標とすべきヨ
ーレイト応答を与え、この規範モデルで狙ったヨーレイ
ト応答に実際のヨーレイト応答が一致するよう後輪舵角
をフィードフォワード制御する場合、制御結果のヨーレ
イト応答特性が図5に示す如きものとなる。
SUMMARY OF THE INVENTION
When the target yaw rate response to the steering input is given by the reference model of the next delay, and the rear wheel steering angle is feedforward controlled so that the actual yaw rate response matches the target yaw rate response by the reference model, the yaw rate of the control result is obtained. The response characteristics are as shown in FIG.

【0005】この図中(a)は車速が140Km/hの
高車速時における特性を、又(b)は車速が80Km/
hの低車速時の特性を夫々示し、これらにおいて2WS
車とは上記の後輪操舵を行わない2輪操舵車を、又4W
S車とは上記の後輪操舵を行う4輪操舵車を意味するも
のとする。これら特性から明らかなように、高車速で操
舵入力が低周波の場合、上記の如く1次遅れの規範モデ
ルのヨーレイト応答に実際のヨーレイト応答が一致する
よう後輪舵角をフィードフォワード制御する従来の4W
S車にあっては、後輪操舵を一切行わない2WS車より
も位相遅れが大きくなり(操舵周波数O.6 付近で位相遅
れが最大となり)、後輪操舵によりかえって操舵フィー
リングが悪化するといった問題を生ずる。本発明は、上
記規範モデルに追従するための車両挙動目標値に位相進
みを加えることで上述の問題を解消することを目的とす
る。
[0005] In the figure, (a) shows the characteristics at a high vehicle speed of 140 km / h, and (b) shows the characteristics at a vehicle speed of 80 km / h.
h at low vehicle speed, respectively, in which 2WS
A car is a two-wheel steered vehicle that does not perform the above-mentioned rear wheel steering.
The S vehicle means a four-wheel steering vehicle that performs the rear wheel steering described above. As is apparent from these characteristics, when the steering input is high at a high vehicle speed and the frequency is low, as described above, the feedforward control of the rear wheel steering angle is performed so that the actual yaw rate response matches the yaw rate response of the reference model of the first-order lag. 4W
In the S car, the phase lag is larger than in the 2WS car that does not perform any rear wheel steering (the phase lag is maximum near the steering frequency of 0.6), and the steering feeling worsens due to the rear wheel steering. Cause problems. An object of the present invention is to solve the above-described problem by adding a phase advance to a vehicle behavior target value for following the reference model.

【0006】[0006]

【課題を解決するための手段】この目的のため本発明
は、1次遅れ特性で設定した規範モデルに基づき操舵入
力及び車速からヨーレイト、又は横加速度、若しくは横
滑り角で表される車両の平面挙動に関した目標とすべき
定常特性及び過渡特性を得るための車両挙動目標値を演
算する目標車両挙動演算手段と、該手段で求めた車両挙
動目標値に車両の実挙動を一致させるためのフィードフ
ォワード制御量を求める制御量演算手段と、このフィー
ドフォワード制御量に基づいた制御を実行する制御実行
手段とを具えた車両の平面挙動制御装置において、前記
操舵入力に対する車両平面挙動の位相遅れが問題となる
高車速時に機能し、且つ、該位相遅れの問題を生ずる操
舵周波数を位相進みの中心周波数とする進み要素を前記
規範モデルに加えたことを特徴とするものである。
SUMMARY OF THE INVENTION For this purpose, the present invention relates to a plane behavior of a vehicle represented by a yaw rate, a lateral acceleration, or a side slip angle from a steering input and a vehicle speed based on a reference model set by a first-order lag characteristic. Target vehicle behavior calculating means for calculating a vehicle behavior target value for obtaining steady-state characteristics and transient characteristics to be set as a target, and a feedforward for matching the actual behavior of the vehicle to the vehicle behavior target value obtained by the means. In a vehicle plane behavior control device including a control amount calculation unit for obtaining a control amount and a control execution unit for performing control based on the feedforward control amount, a phase lag of a vehicle plane behavior with respect to the steering input is a problem. A leading element that functions at a high vehicle speed and has a steering frequency that causes the phase delay problem as a center frequency of the phase lead is added to the reference model. And it is characterized in and.

【0007】[0007]

【作用】目標車両挙動演算手段は、1次遅れ特性で設定
した規範モデルに基づき操舵入力及び車速からヨーレイ
ト、又は横加速度、若しくは横滑り角で表される車両の
平面挙動に関した目標とすべき定常特性及び過渡特性に
照らして、これを達成するための車両挙動目標値を演算
する。そして制御量演算手段は、上記目標車両挙動演算
手段で求めた車両挙動目標値に車両の実挙動を一致させ
るためのフィードフォワード制御量を求め、制御実行手
段はこのフィードフォワード制御量に基づく制御を実行
することにより車両の実挙動を上記車両挙動目標値に一
致させて目標とすべき車両平面挙動に関する定常特性及
び過渡特性を達成する。ところで規範モデルに上記のご
とく、前記位相遅れの問題を生ずる高車速時に機能し、
且つ、該位相遅れの問題を生ずる操舵周波数を位相進み
の中心周波数とする進み要素を加えたことから、該規範
モデルがもともと1次遅れ特性で設定されているが故に
車両平面挙動の位相遅れが問題となる高車速領域および
低操舵周波数領域で当該位相遅れの問題を解消すること
ができ、当該高車速領域および低操舵周波数領域で上記
の平面挙動制御を行わない場合よりもかえって位相遅れ
が大きくなるといったような弊害を生ずることがなくな
り、当該挙動制御でかえって操舵フィーリングが悪化す
るような事態の発生を回避することができる。
The target vehicle behavior calculating means is based on a reference model set by the first-order lag characteristic, and calculates a steady state to be a target relating to the plane behavior of the vehicle represented by the yaw rate or the lateral acceleration or the side slip angle from the steering input and the vehicle speed. A vehicle behavior target value for achieving this is calculated based on the characteristics and the transient characteristics. Then, the control amount calculating means obtains a feedforward control amount for matching the actual behavior of the vehicle with the vehicle behavior target value obtained by the target vehicle behavior calculating means, and the control executing means performs control based on the feedforward control amount. By executing this, the actual behavior of the vehicle is made to coincide with the above-mentioned vehicle behavior target value, thereby achieving the steady-state characteristics and the transient characteristics relating to the target vehicle plane behavior. By the way, as described above, the reference model functions at a high vehicle speed that causes the problem of the phase delay,
In addition, since a lead element having a steering frequency causing the phase delay problem as a center frequency of the phase lead is added, the phase delay of the vehicle plane behavior is reduced because the reference model is originally set by the first-order delay characteristic. The problem of the phase lag can be solved in the high vehicle speed region and the low steering frequency region, which is a problem, and the phase lag is larger than in the case where the above-described planar behavior control is not performed in the high vehicle speed region and the low steering frequency region. Such a problem does not occur, and it is possible to avoid occurrence of a situation in which the steering feeling is rather deteriorated by the behavior control.

【0008】[0008]

【実施例】以下、本発明の実施例を図面に基づき詳細に
説明する。図1は本発明車両平面挙動制御装置の一実施
例を示し、本例ではステアリングホイールの操舵角(操
舵入力)θを検出する操舵角センサ1及び車速Vを検出
する車速センサ2からの信号を基に車両3の平面挙動の
1つであるヨーレイト(d/dt)φを、規範モデルで
狙ったヨーレイト応答が達成されるようなものにする制
御を、後輪操舵によって実行するものとする。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows an embodiment of a vehicle plane behavior control device according to the present invention. In this embodiment, signals from a steering angle sensor 1 for detecting a steering angle (steering input) θ of a steering wheel and a vehicle speed sensor 2 for detecting a vehicle speed V are provided. Based on this, it is assumed that control to make the yaw rate (d / dt) φ, which is one of the plane behaviors of the vehicle 3, such that the yaw rate response targeted by the reference model is achieved is performed by rear wheel steering.

【0009】図中4はマイクロコンピュータで、このマ
イクロコンピュータは実際には制御プログラムとして構
成されるが、ここでは便宜上その制御内容を機能別にブ
ロック化して示し、従ってマイクロコンピュータ4は目
標車両挙動演算部4a及び後輪舵角演算部4bより成る
ものとして示した。目標車両挙動演算部4aは、本発明
の前記目的に照らして設定した後述する進み要素を含む
規範モデルを基に、この規範モデルで狙ったヨーレイト
応答を実現するためのヨーイング運動目標値、つまりヨ
ーレイト目標値(d/dt)φm及びヨー角加速度目標
値(d2 /dt 2 )φmを、上記両センサ1,2で検出
した操舵角θ及び車速Vに基づき演算する。後輪舵角演
算部4bはこれらヨーイング運動目標値を実現するため
の後輪舵角目標値δrmを、操舵角θ及び車速Vから自
車のヨーイング動特性を用いて演算する。
In the figure, reference numeral 4 denotes a microcomputer, which is a microcomputer.
The microcomputer is actually configured as a control program.
However, here, for convenience, the control contents are broken down by function.
Locked and shown, therefore the microcomputer 4
A target vehicle behavior calculation unit 4a and a rear wheel steering angle calculation unit 4b
As shown. The target vehicle behavior calculation unit 4a is provided by the present invention.
Includes advancing elements set below in light of the above objective
Based on the reference model, the yaw rate targeted by this reference model
The yawing movement target value for realizing the response,
-Rate target value (d / dt) φm and yaw angular acceleration target
Value (dTwo / Dt Two) Φm is detected by both sensors 1 and 2
It is calculated based on the steering angle θ and the vehicle speed V thus obtained. Rear wheel steering angle performance
The calculation unit 4b is used to realize these yawing motion target values.
From the steering angle θ and the vehicle speed V.
The calculation is performed using the yawing dynamic characteristics of the vehicle.

【0010】アクチュエータ6はこの後輪舵角目標値δ
rmを入力されてこれに応動し、後輪操舵機構7を介し
て車両3の後輪を目標値に向け操舵する(実舵角をδr
として示す)ことにより、車両3のヨーレイト(d/d
t)φをヨーレイト目標値(d/dt)φmに一致させ
る。ここで、上記規範モデルを考察する。まず、上記進
み要素を含まない従来の規範モデルを説明するに、線形
2自由度モデルに基づき操舵角θ及び後輪舵角δrと、
ヨーレイト(d/dt)φとの間の伝達特性を表すと次
のようになる。
The actuator 6 has a rear wheel steering angle target value δ
rm is input and responsive thereto, and the rear wheels of the vehicle 3 are steered toward the target value via the rear wheel steering mechanism 7 (the actual steering angle is set to δr
), The yaw rate of the vehicle 3 (d / d
t) φ is matched with the yaw rate target value (d / dt) φm. Here, the above reference model is considered. First, to explain a conventional reference model that does not include the advance element, a steering angle θ and a rear wheel steering angle δr, based on a linear two-degree-of-freedom model,
The transfer characteristic between the yaw rate (d / dt) φ is as follows.

【0011】[0011]

【数1】 (d/dt)φ= (H f (S)/G(S)) θ+(H r(S)/G(S)) δr ---- (1) 但し、(D / dt) φ = (H f (S) / G (S)) θ + (H r (S) / G (S)) δ r ---- (1)

【数2】 G(s)=S2+ [ 2(eK f + K r )/M + 2(L f 2eK f + L r 2K r ) /Iz](1/V)S + 4eK f K r ( L f + L r )2/IzMV2 + 2(L r K r −L f eKf )/Iz H f (S) =1/N [(2L f eKf /Iz)S + 4eK f K r (Lf + L r )/IzMV] H r (S) =−[(2L r K r /Iz)S + 4eK f K r (Lf + L r )/IzMV] S = (d/dt) eK f:前輪等価コーナリングパワー K r :後輪コーナリングパワー L f :前輪・車両重心点間距離 L r :後輪・車両重心点間距離 Iz :ヨー慣性モーメント M :車両質量 N :ステアリングギヤ比 上記の(1) 式に対応して、ヨーレイト1次遅れの規範モ
デルを次のように与える。
[Number 2] G (s) = S 2 + [2 (eK f + K r) / M + 2 (L f 2 eK f + L r 2 K r) / Iz] (1 / V) S + 4eK f K r (L f + L r ) 2 / IzMV 2 + 2 (L r K r -L f eK f) / Iz H f (S) = 1 / N [(2L f eK f / Iz) S + 4eK f K r (L f + L r ) / IzMV] H r (S) = - [(2L r K r / Iz) S + 4eK f K r (L f + L r) / IzMV] S = (d / dt ) eK f : Front wheel equivalent cornering power K r : Rear wheel cornering power L f : Distance between front wheel and vehicle center of gravity L r : Distance between rear wheel and vehicle center of gravity Iz: Yaw inertia moment M: Vehicle mass N: Steering gear ratio In accordance with the above equation (1), a reference model of the first-order yaw rate delay is given as follows.

【数3】 (d/dt)φm =G m (S) θ ------ (2) 但し、(3) (d / dt) φ m = G m (S) θ ------ (2) where

【数4】 G m (S) =G m ・1/(1+τS ) τ: 時定数G m (S) = G m · 1 / (1 + τS) τ: time constant

【0012】ここで実ヨーレイトを目標ヨーレイトにマ
ッチさせるための(d/dt)φ=(d/dt)φm を満足する操舵
角θ−後輪舵角δr 間の伝達特性は(1),(2) 式より次の
ように表される。
[0012] for matching where the actual yaw rate to the target yaw rate (d / dt) φ = ( d / dt) transmission characteristic between the steering angle θ- rear wheel steering angle [delta] r that satisfies phi m is (1) , (2) is expressed as follows.

【数5】 δr /θ= (G(S)G m (S) −H f (S))/H r (S) ----- (3) 従って(3) で与えられる伝達特性に基づいて後輪舵角を
制御することで規範モデルに一致した車両ヨーレイト応
答特性が得られる。
Δ r / θ = (G (S) G m (S) −H f (S)) / H r (S) (3) Therefore, the transfer characteristic given by (3) By controlling the rear wheel steering angle based on this, a vehicle yaw rate response characteristic that matches the reference model can be obtained.

【0013】しかしてこの制御では前記したように、高
車速且つ低操舵周波数の基で位相遅れが、後輪操舵を行
わない2輪操舵車よりも大きくなるという問題に鑑み、
本例では、この問題を解消しようとする前記本発明の目
的に照らして前記規範モデルに、詳しくは以下に説明す
る(1+τ2 S )/(1+τ1 S)の位相進み要素を加
え(τ1 ,τ2 は夫々時定数で、τ2 >τ1 )、規範モ
デルを以下の如くに設定する。
However, in this control, as described above, in view of the problem that the phase lag under a high vehicle speed and a low steering frequency is larger than that in a two-wheel steering vehicle that does not perform rear wheel steering,
In this example, in order to solve this problem, in light of the object of the present invention, a phase lead element of (1 + τ 2 S) / (1 + τ 1 S) described below is added to the reference model (τ 1). , Τ 2 are time constants, respectively, τ 2 > τ 1 ), and the reference model is set as follows.

【数6】 (d/dt)φm =〔G m (1/(1 +τS)) 〕・ (1+τ2S) /(1 +τ1S) ---- (4) なお、この式から明らかなように位相進み要素を成すτ
1 及びτ2 がτ1 =τ2 である時、位相進み要素が1と
なって機能しないこととなり、位相進み要素を加えない
従来の制御と同じになることから、上記位相遅れの問題
が発生する高車速域において位相進み要素が機能するよ
うτ1 及びτ2 をそれぞれ車速に応じ変化させる。
(D / dt) φ m = [G m (1 / (1 + τS))] · (1 + τ 2 S) / (1 + τ 1 S) ---- (4) As is apparent from this equation, τ which forms a phase lead element
When 1 and τ 2 are τ 1 = τ 2 , the phase lead element becomes 1 and does not function, which is the same as the conventional control without the phase lead element. Τ 1 and τ 2 are changed in accordance with the vehicle speed so that the phase lead element functions in the high vehicle speed range.

【0014】ここで、上記位相遅れの問題を解消するた
めに当該位相遅れを変更したい領域の中心周波数をωC
とし、τ1 ,τ2 の各々に対応して定まる周波数を
ω1 ,ω2 (ω1 =1/τ1 ,ω2 =1/τ2 )とする
と、ωC ,ω1 ,ω2 が例えば対数軸上でωC を中心と
して等間隔となるように設定する場合、次の式が成り立
つ。
Here, in order to solve the problem of the phase delay, the center frequency of the region where the phase delay is to be changed is ω C
And ω 1 , ω 21 = 1 / τ 1 , ω 2 = 1 / τ 2 ), and the frequencies determined corresponding to τ 1 , τ 2 are ω C , ω 1 , ω 2 For example, if the intervals are set so as to be equally spaced around ω C on the logarithmic axis, the following equation is established.

【数7】 L n ω1-L n ωC =L n ωC - L n ω2 またτ2 /τ1 =K H (高周波ゲイン)としてこの式を
解くと、
Equation 7] L n ω 1 -L n ω C = L n ω C - Solving this equation as L n omega 2 also τ 2 / τ 1 = K H ( high frequency gain),

【数8】 L n ( K H ω2)- L n ωC =L n ωC - L n ω2 L n ω2 2=L n ( ωC 2 /K H ) ω2 =(1/√K H )ωC ----- (5) 同様にしてEquation 8] L n (K H ω 2) - L n ω C = L n ω C - L n ω 2 L n ω 2 2 = L n (ω C 2 / K H) ω 2 = (1 / √ K H ) ω C ----- (5) Similarly

【数9】 ω1 =√K H ・ωC ----- (5) が得られる。ちなみに上記両(5) 式においてωC を、図
5につき前述したヨーレイト位相遅れが最も大きくなる
周波数の4rad /sec (0.636Hz) とし、K H を1.2 〜2.
0 の範囲で0.2 毎に変化させた場合の位相の進み具合は
図2の如きものとなる。
Ω 1 = √K H · ω C ----- (5) is obtained. Incidentally, in both equations (5), ω C is set to 4 rad / sec (0.636 Hz), which is the frequency at which the yaw rate phase delay described above with reference to FIG. 5 is the largest, and K H is set to 1.2 to 2.
FIG. 2 shows the progress of the phase when the phase is changed every 0.2 in the range of 0.

【0015】かようにして位相進み要素を、目標車両挙
動演算部4aで用いる規範モデルに設定した場合、位相進
みの中心周波数ωC を、図5につき前述したヨーレイト
位相遅れが最も大きくなる周波数の4rad /sec (0.636
Hz) とし、又高周波ゲインK H を1.0 〜2.0 まで0.2 毎
に変化させた時を例にとると、周波数応答特性が高車速
時において図3の如くに改善され、K H が大きいほど位
相遅れを中心周波数ωC 付近で小さくして本発明の目的
を達成することができる。
When the phase advance element is set in the reference model used in the target vehicle behavior calculation unit 4a in this manner, the center frequency ω C of the phase advance is set to the frequency at which the yaw rate phase delay described above with reference to FIG. 4 rad / sec (0.636
Hz) and the high-frequency gain K H is changed from 1.0 to 2.0 in steps of 0.2, the frequency response characteristic is improved at high vehicle speeds as shown in FIG. 3, and the phase delay increases as K H increases. Can be reduced near the center frequency ω C to achieve the object of the present invention.

【0016】図4は、上述した図1の構成に例えば特開
昭62ー91172号公報に示されるようなフィードバ
ック制御を付加した例で、後輪舵角演算部4b及びアク
チュエータ6間に加算器11を設定すると共に、この加
算器に接続して修正後輪舵角演算部12を設定する。修
正後輪舵角演算部12はヨーレイトセンサ13で検出し
た車両3の実ヨーレイト(d/dt)φと、目標車両挙
動演算部4aで前述したようにして求めたヨーレイト目
標値(d/dt)φmとの偏差eからフィードバック制
御ゲインH(S)に基づいて、当該ヨーレイト偏差eを
なくすための修正後輪舵角△δrmを演算し、これを上
限がリミッタ12aで設定した値を越えないようにしつ
つ加算器11に入力する。加算器11は、後輪舵角演算
部4bで前述したように求めた後輪舵角目標値δrmを
△δrmだけ修正して最終的な後輪舵角目標値δRm
し、これをアクチュエータ6に指令する。
FIG. 4 shows an example in which feedback control as shown in, for example, Japanese Patent Application Laid-Open No. 62-91172 is added to the configuration of FIG. 1 described above. An adder is provided between the rear wheel steering angle calculation unit 4b and the actuator 6. 11 and connected to this adder to set the corrected wheel steering angle calculation unit 12. The corrected wheel steering angle calculator 12 calculates the actual yaw rate (d / dt) φ of the vehicle 3 detected by the yaw rate sensor 13 and the target yaw rate value (d / dt) obtained by the target vehicle behavior calculator 4a as described above. A corrected wheel steering angle △ δrm for eliminating the yaw rate deviation e is calculated based on the feedback control gain H (S) from the deviation e from φm, so that the upper limit does not exceed the value set by the limiter 12a. And input to the adder 11. The adder 11 corrects the rear wheel steering angle target value δrm obtained by the rear wheel steering angle calculation unit 4b as described above by △ δrm to obtain a final rear wheel steering angle target value δ Rm , Command.

【0017】かかるフィードバック制御系を持った車両
平面挙動制御装置においても、目標車両挙動演算部4a
で用いる規範モデルに前述した例と同様な進み要素を加
えることにより、同様の作用効果を達成することができ
る。また、前述の計測自動制御学会論文集Vol.2
3,No.8 ”四輪操舵車両の新しい制御法”中 ”
横加速度のモデル追従制御”等に記載された、他の車両
平面挙動に関する追従制御においても、上記の進み要素
を付加する着想はそのまま採用し得ること言うまでもな
い。
In the vehicle plane behavior control device having such a feedback control system, the target vehicle behavior calculation unit 4a
A similar effect can be achieved by adding a leading element similar to the example described above to the reference model used in. In addition, the Transactions of the Society of Instrument and Control Engineers Vol. 2
3, No. 8 "New control method for four-wheel steering vehicle"
It goes without saying that the idea of adding the advancing element described above can be adopted as it is also in the follow-up control relating to other vehicle plane behavior described in “Model follow-up control of lateral acceleration”.

【0018】なお、車両平面挙動を達成するための制御
は上記の後輪操舵に限らず、前輪を補助操舵するもので
も、また前輪及び後輪の双方を補助操舵するものでもよ
く、更に操舵に限らず特願平2ー219367号で本願
出願人が提案した左右輪制駆動力差により車両平面挙動
を制御するものであっても本発明は適用可能である。い
ずれにしても、進み要素は前述の1次/1次の要素に限
らず、2次/2次又は3次/3次のような進み要素であ
っても所期の目的を達成することができる。
The control for achieving the vehicle plane behavior is not limited to the above-described rear wheel steering, but may be a control for assisting the front wheels or an auxiliary steering for both the front wheels and the rear wheels. The present invention is not limited to this, and the present invention can be applied to a case in which the vehicle plane behavior is controlled by a difference between left and right wheel braking / driving forces proposed by the present applicant in Japanese Patent Application No. 2-219267. In any case, the advance element is not limited to the primary / primary element described above, and even if it is a secondary / secondary or tertiary / tertiary element, the intended purpose can be achieved. it can.

【0019】[0019]

【発明の効果】かくして本発明の車両平面挙動制御装置
は請求項1に記載の如く、車両平面挙動の目標値を演算
する時に目標車両挙動演算手段で用いる1次遅れの規範
モデルに前記特異な進み要素を加えたから、当該1次遅
れの規範モデルを基に狙いとする車両平面挙動の応答特
性を設定すると雖も、車両平面挙動の位相遅れが問題と
なる高車速領域および低操舵周波数領域で当該位相遅れ
の問題を解消することができ、当該高車速領域および低
操舵周波数領域で車両平面挙動制御を行わない場合より
もかえって位相遅れが大きくなるといったような弊害を
生ずることがなくなり、当該挙動制御でかえって操舵フ
ィーリングが悪化するような事態の発生を回避すること
ができる。
Thus, the vehicle plane behavior control apparatus of the present invention is characterized in that the first-order lag reference model used in the target vehicle behavior calculation means when calculating the target value of the vehicle plane behavior is unique. Since the lead element is added, the response characteristic of the vehicle plane behavior aimed at is set based on the reference model of the first-order lag, but in the high vehicle speed region and the low steering frequency region where the phase delay of the vehicle plane behavior becomes a problem. The problem of the phase lag can be solved, and no adverse effect such as a larger phase lag occurs when the vehicle plane behavior control is not performed in the high vehicle speed region and the low steering frequency region. It is possible to avoid occurrence of a situation in which the steering feeling is rather deteriorated by the control.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による車両平面挙動制御装置の一実施例
を示すブロック線図である。
FIG. 1 is a block diagram showing an embodiment of a vehicle plane behavior control device according to the present invention.

【図2】同例の目標車両挙動演算部において用いる進み
要素の周波数特性を示す線図である。
FIG. 2 is a diagram showing frequency characteristics of a leading element used in a target vehicle behavior calculation unit of the example.

【図3】同例装置により制御した場合の周波数ヨーレイ
ト応答を示す特性図である。
FIG. 3 is a characteristic diagram showing a frequency yaw rate response when controlled by the same apparatus.

【図4】本発明の他の例を示す図1と同様なブロック線
図である。
FIG. 4 is a block diagram similar to FIG. 1, showing another example of the present invention.

【図5】従来方式により制御した場合の周波数ヨーレイ
ト応答を示す線図である。
FIG. 5 is a diagram showing a frequency yaw rate response when controlled by a conventional method.

【符号の説明】[Explanation of symbols]

1 操舵角センサ 2 車速センサ 3 車両 4 マイクロコンピュータ 4a 目標車両挙動演算部 4b 後輪舵角演算部 6 アクチュエータ 7 後輪操舵機構 11 加算器 12 修正後輪舵角演算部 13 ヨーレイトセンサ Reference Signs List 1 steering angle sensor 2 vehicle speed sensor 3 vehicle 4 microcomputer 4a target vehicle behavior calculation unit 4b rear wheel steering angle calculation unit 6 actuator 7 rear wheel steering mechanism 11 adder 12 corrected rear wheel steering angle calculation unit 13 yaw rate sensor

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 1次遅れ特性で設定した規範モデルに基
づき操舵入力及び車速からヨーレイト、又は横加速度、
若しくは横滑り角で表される車両の平面挙動に関した目
標とすべき定常特性及び過渡特性を得るための車両挙動
目標値を演算する目標車両挙動演算手段と、 該手段で求めた車両挙動目標値に車両の実挙動を一致さ
せるためのフィードフォワード制御量を求める制御量演
算手段と、 このフィードフォワード制御量に基づいた制御を実行す
る制御実行手段とを具えた車両の平面挙動制御装置にお
いて、 前記操舵入力に対する車両平面挙動の位相遅れが問題と
なる高車速時に機能し、且つ、該位相遅れの問題を生ず
る操舵周波数を位相進みの中心周波数とする進み要素を
前記規範モデルに加えたことを特徴とする車両の平面挙
動制御装置。
1. A yaw rate or a lateral acceleration from a steering input and a vehicle speed based on a reference model set by a first-order lag characteristic.
Alternatively, target vehicle behavior calculation means for calculating a vehicle behavior target value for obtaining a steady-state characteristic and a transient characteristic to be targeted with respect to the plane behavior of the vehicle represented by the side slip angle, and a vehicle behavior target value obtained by the means. A control amount calculating unit that calculates a feedforward control amount for matching actual vehicle behavior; and a control execution unit that performs control based on the feedforward control amount. A function is provided at a high vehicle speed at which a phase delay of the vehicle plane behavior with respect to the input becomes a problem, and a lead element having a steering frequency causing the phase delay problem as a center frequency of the phase lead is added to the reference model. Plane behavior control device of a moving vehicle.
JP34112691A 1991-12-24 1991-12-24 Vehicle plane behavior control device Expired - Lifetime JP2882149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34112691A JP2882149B2 (en) 1991-12-24 1991-12-24 Vehicle plane behavior control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34112691A JP2882149B2 (en) 1991-12-24 1991-12-24 Vehicle plane behavior control device

Publications (2)

Publication Number Publication Date
JPH05170116A JPH05170116A (en) 1993-07-09
JP2882149B2 true JP2882149B2 (en) 1999-04-12

Family

ID=18343500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34112691A Expired - Lifetime JP2882149B2 (en) 1991-12-24 1991-12-24 Vehicle plane behavior control device

Country Status (1)

Country Link
JP (1) JP2882149B2 (en)

Also Published As

Publication number Publication date
JPH05170116A (en) 1993-07-09

Similar Documents

Publication Publication Date Title
US10144416B2 (en) Apparatus and method for controlling vehicle
US8255120B2 (en) Steering apparatus, automotive vehicle with the same, and steering control method
US10654470B2 (en) Vehicle control apparatus and method for controlling vehicle
JP3046108B2 (en) Steering force control method for vehicle with differential limiting device
US5606502A (en) Steering angle control system for vehicle
US8234044B2 (en) Steering control system for vehicle
US20140019008A1 (en) Electronic power steering apparatus
US7792620B2 (en) Driving dynamics control adapted to driving conditions and based on steering interventions
US20080319613A1 (en) Turning Behavior Control Apparatus and Turning Behavior Control Process for a Motor Vehicle
JPWO2006027875A1 (en) Front wheel steering control device
JPH0717290A (en) Controller for driving stability for use in vehicle
JPH03153453A (en) Traction controller for four-wheel steering vehicle
JP2882149B2 (en) Vehicle plane behavior control device
CN113474236B (en) Steering device for vehicle
JPH06207951A (en) Abnormality detector for yaw rate sensor
JP2722855B2 (en) Rear wheel steering device
JPH06206569A (en) Abnormality detecting device for yaw rate sensor
JP3166388B2 (en) Steering force control device
JPS6341281A (en) Actual steering angle control device for vehicle
JP2646802B2 (en) Auxiliary steering system for vehicles
JP3216459B2 (en) Actual steering angle control device for vehicle
JP2861571B2 (en) Vehicle steering angle control device
JP2982594B2 (en) Actual steering angle control device for vehicle
JPH05147551A (en) Rear wheel steering angle controller for four-wheel steering vehicle
JP2003285753A (en) Electric power steering device of automobile