JP2879773B2 - IMAGE DEVICE AND ITS MANUFACTURING METHOD - Google Patents

IMAGE DEVICE AND ITS MANUFACTURING METHOD

Info

Publication number
JP2879773B2
JP2879773B2 JP5154187A JP15418793A JP2879773B2 JP 2879773 B2 JP2879773 B2 JP 2879773B2 JP 5154187 A JP5154187 A JP 5154187A JP 15418793 A JP15418793 A JP 15418793A JP 2879773 B2 JP2879773 B2 JP 2879773B2
Authority
JP
Japan
Prior art keywords
substrate
wiring
image
array
monocular lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5154187A
Other languages
Japanese (ja)
Other versions
JPH06340118A (en
Inventor
俊次 村野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP5154187A priority Critical patent/JP2879773B2/en
Publication of JPH06340118A publication Critical patent/JPH06340118A/en
Application granted granted Critical
Publication of JP2879773B2 publication Critical patent/JP2879773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Wire Bonding (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の利用分野】この発明は、LEDヘッドや密着型
イメージセンサ、液晶シャッタアレイヘッド等の、画像
アレイを用いた画像装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image device using an image array, such as an LED head, a contact type image sensor, and a liquid crystal shutter array head.

【0002】[0002]

【従来技術】LEDヘッドや液晶シャッタアレイヘッ
ド、密着型イメージセンサ等の画像装置では、LEDア
レイや液晶シャッタアレイ等の画像アレイを基板に搭載
し、基板配線に接続する。基板配線には通常Alの蒸着
膜等が用いられ、基板には表面の平滑性に優れたガラス
基板が用いられる。
2. Description of the Related Art In an image device such as an LED head, a liquid crystal shutter array head, and a contact image sensor, an image array such as an LED array or a liquid crystal shutter array is mounted on a substrate and connected to substrate wiring. For the substrate wiring, a deposited film of Al or the like is usually used, and for the substrate, a glass substrate having excellent surface smoothness is used.

【0003】しかし蒸着膜では基板への付着強度が低
く、かつ成膜に時間を要し量産性に乏しい。例えば蒸着
では成膜毎に真空引きをして真空度を得、次いで基板配
線を蒸着して取り出すことになる。これでは1回の成膜
に時間を要し、蒸着装置も大がかりなものが必要とな
る。
However, a vapor-deposited film has low adhesion strength to a substrate, requires a long time for film formation, and is poor in mass productivity. For example, in vapor deposition, the degree of vacuum is obtained by evacuation for each film formation, and then the substrate wiring is vapor-deposited and taken out. This requires a long time for one film formation, and requires a large-scale vapor deposition apparatus.

【0004】画像装置では単眼レンズを用いることが検
討されているが、この場合単眼レンズと基板との位置合
わせが決定的に重要となる。位置合わせの精度が低い
と、あるいは熱膨張等により位置合わせが狂うと、印画
像や読み取り画像に白筋や黒筋が発生する。そこで安価
にかつ確実に基板と単眼レンズとの位置合わせを行い、
しかも熱膨張などにより位置合わせが狂わないようにす
る必要がある。
The use of a monocular lens in an image apparatus has been studied, but in this case, the alignment between the monocular lens and the substrate is crucial. If the accuracy of the alignment is low, or if the alignment is incorrect due to thermal expansion or the like, white streaks or black streaks are generated in the stamp image or the read image. Therefore, the alignment between the substrate and the monocular lens is performed inexpensively and reliably.
In addition, it is necessary to prevent misalignment due to thermal expansion or the like.

【0005】さらに画像装置では画像アレイを基板配線
にフリップチップ接続することも公知であるが、Al配
線では半田付けができず、アレイに設けた電極バンプと
Al配線とを熱圧着することになる。熱圧着には大きな
加圧力を必要とし、脆弱な画像アレイを損傷することが
ある。
Further, in an image apparatus, it is also known that an image array is flip-chip connected to substrate wiring. However, soldering cannot be performed with Al wiring, and the electrode bumps provided on the array and the Al wiring are thermocompression bonded. . Thermocompression requires high pressure and can damage fragile image arrays.

【0006】[0006]

【発明の課題】この発明の基本的課題は、 1)基板と単眼レンズアレイとを安価に設け、 2)基板と単眼レンズとを正確に位置決めし、かつ熱膨
張などによる位置決めの狂いをなくし、 3)画像アレイと基板配線とのフリップチップ接続を容
易にし、 4)基板に対する基板配線の被着強度と、画像アレイの
フリップチップ接続強度とを改善し、 5)不要光を遮断して、画像品位を向上させる、ことに
ある(請求項1)。請求項2での課題はさらに、基板配
線の密度を低下させることにある。
The basic objects of the present invention are: 1) to provide a substrate and a monocular lens array at a low cost; 2) to accurately position the substrate and the monocular lens, and to eliminate misalignment due to thermal expansion and the like. 3) Flip chip connection between the image array and the substrate wiring is facilitated. 4) Improving the adhesion strength of the substrate wiring to the substrate and the flip chip connection strength of the image array. This is to improve the quality (claim 1). Another object of the present invention is to reduce the density of substrate wiring.

【0007】[0007]

【発明の構成と作用】この発明の画像装置は、透明プラ
スチック基板の第1の主面に、多数の受発光素子を設け
た画像アレイを列状に配置するとともに、他方の主面に
は基板と一体的に単眼レンズをアレイ状に設け、前記第
1の主面では受発光素子に対向した部分を平滑面とし、
これ以外の領域を粗面化した粗面化領域上に設けた基板
配線に対して前記画像アレイの電極バンプをフリップチ
ップ接続したことを特徴とする。
According to the image apparatus of the present invention, an image array provided with a large number of light receiving / emitting elements is arranged in rows on a first main surface of a transparent plastic substrate, and a substrate is provided on the other main surface. A monocular lens is provided in an array integrally with the first main surface, and a portion facing the light receiving and emitting element is made a smooth surface on the first main surface;
An electrode bump of the image array is flip-chip connected to a substrate wiring provided on a roughened area in which the other area is roughened.

【0008】基板を透明プラスチック基板とし単眼レン
ズを一体成型すれば、安価に単眼レンズと基板とを構成
できる。しかも単眼レンズは最初から基板と一体なの
で、両者の位置合わせの必要がなく、また熱膨張などに
より位置合わせが狂うこともない。この結果、白筋や黒
筋の発生などの問題を最初から解消することができる。
基板配線との密着性を高めるためにサンドブラストやエ
ッチング等により基板を粗面化する。粗面化する領域
は、画像アレイの受発光素子を除いた部分で、この領域
を全面的にあるいは部分的に粗面化する。この結果、基
板配線をプラスチック基板の粗面化領域に強固に被着さ
せることができる。基板の裏面に単眼レンズがあるので
画像アレイはフリップチップ接続に限られ、また基板配
線に銅メッキ膜や半田メッキ膜などを用いれば容易にフ
リップチップ接続できる。ここで受発光素子に対向した
部分は平滑面としてあるので、受発光素子への光路が確
保され、これ以外の面は粗面なので不要光は粗面で散乱
されて、画像品位が向上する。さらに粗面を用いること
により、基板配線の基板への付着力やフリップチップ接
続の強度が向上する。
If the substrate is a transparent plastic substrate and the monocular lens is integrally formed, the monocular lens and the substrate can be formed at low cost. In addition, since the monocular lens is integrated with the substrate from the beginning, there is no need to align the two, and there is no misalignment due to thermal expansion or the like. As a result, problems such as generation of white streaks and black streaks can be solved from the beginning.
The substrate is roughened by sandblasting, etching, or the like in order to increase the adhesion to the substrate wiring. The region to be roughened is a portion of the image array other than the light emitting and receiving elements, and this region is entirely or partially roughened. As a result, the substrate wiring can be firmly adhered to the roughened area of the plastic substrate. Since there is a monocular lens on the back surface of the substrate, the image array is limited to flip-chip connection, and flip-chip connection can be easily made by using a copper plating film or a solder plating film for the substrate wiring. Here, since the portion facing the light emitting and receiving element is a smooth surface, an optical path to the light emitting and receiving element is secured, and since the other surface is rough, unnecessary light is scattered by the rough surface and the image quality is improved. Further, by using the rough surface, the adhesive force of the substrate wiring to the substrate and the strength of flip-chip connection are improved.

【0009】好ましくは基板配線を金属下地のメッキ膜
上に導電体のメッキ膜を積層したものとし、金属下地膜
により基板との付着力を確保し、導電体膜により導電性
を確保する。金属下地膜には例えばNi,Cr,Ti等
の無電解メッキ膜を用い、導電体のメッキ膜には例えば
銅膜や半田膜を用いる。さてフリップチップ接続部で基
板配線に半田メッキがあれば、画像アレイの電極バンプ
とのフリップチップ接続を半田付けで実現できる。この
結果、熱圧着時の圧力による画像アレイの損傷という問
題は解消し、かつ加圧しながら電気炉中で熱圧着するの
に比べて短時間で容易にフリップチップ接続できる。半
田メッキ膜は銅メッキ膜からなる導電体膜上にフリップ
チップ接続部のみをメッキして部分的に設けても良い
が、導電体膜全体を半田メッキ膜とすると工程数が減少
する。
Preferably, the wiring of the substrate is formed by laminating a plating film of a conductor on a plating film of a metal underlayer, and the metal underlayer secures adhesion to the substrate and the conductive film secures the conductivity. For example, an electroless plating film of Ni, Cr, Ti or the like is used as the metal base film, and a copper film or a solder film is used as the conductor plating film. Now, if there is solder plating on the substrate wiring at the flip chip connection part, flip chip connection with the electrode bumps of the image array can be realized by soldering. As a result, the problem of damage to the image array due to the pressure during thermocompression is eliminated, and flip-chip connection can be easily performed in a shorter time as compared with thermocompression in an electric furnace while applying pressure. The solder plating film may be partially provided by plating only the flip chip connection portion on the conductor film made of a copper plating film. However, if the entire conductor film is made of a solder plating film, the number of steps is reduced.

【0010】好ましくは、基板配線を、画像アレイの列
の一方の側に設けた第1の基板配線と前記列の他方の側
に設けた第2の基板配線とで構成し、各基板配線を画像
アレイ2個毎にほぼU字状に折り返して分断された配線
として、該分断された配線内で、2個の画像アレイの対
応する受発光素子同士を電気的に接続し、基板の裏面に
は、単眼レンズを設けた領域の両外側に、第1の裏面配
線と第2の裏面配線とを設けて、第1の基板配線と第1
の裏面配線とをスルーホールで接続することにより、分
断された第1の基板配線を所定の順序で相互に電気的に
接続し、かつ第2の基板配線と第2の裏面配線とをスル
ーホールで接続することにより、分断された第2の基板
配線を所定の順序で相互に電気的に接続する。このよう
にすれば基板配線の密度は1/2に低下し、メッキで多
数の個別配線からなる基板配線を設けるのが容易にな
る。メッキによる成膜では高密度配線には限界がある
が、基板配線を2つに分けると問題も解消する。
Preferably, the substrate wiring comprises a first substrate wiring provided on one side of a column of the image array and a second substrate wiring provided on the other side of the column. As a wiring that is folded and folded in a substantially U shape for every two image arrays, the corresponding light receiving and emitting elements of the two image arrays are electrically connected to each other within the divided wiring, Is provided with a first back surface wiring and a second back surface wiring on both outer sides of a region where a monocular lens is provided, and a first substrate wiring and a first back surface wiring are provided.
Are connected to each other in a predetermined order, and the second substrate wiring and the second rear surface wiring are connected to each other by through holes. , The divided second substrate wirings are electrically connected to each other in a predetermined order. In this case, the density of the substrate wiring is reduced to half, and it becomes easy to provide the substrate wiring composed of a large number of individual wirings by plating. Although there is a limit in high-density wiring in film formation by plating, the problem can be solved by dividing the substrate wiring into two.

【0011】例えば個別配線の総数が64本の場合、例
えば32本ずつの2つの基板配線を画像アレイの列の両
側に設ける。基板配線はほぼU字状の形状とし、その両
端を画像アレイの電極バンプにフリップチップ接続する
ので、両端が他の部分に接続されず孤立してしまう。そ
こでプラスチック基板にスルーホールを設け、スルーホ
ール,基板の裏面配線,次のU字状の基板配線の順に接
続せ、分断した基板配線を相互に接続する。基板の加工
上で最も大きな面積を占め、実装の限界となるのはスル
ーホールである。そして請求項4の発明では、画像アレ
イの両側に基板配線を施し、アレイ2個単位で裏面配線
を行うので、画像アレイの列の片側のみに基板配線を設
けて裏面配線とマトリックス接続する場合と比べ、スル
ーホール密度を1/4にできる。このためスルーホール
加工が極めて容易になる。
For example, when the total number of individual wirings is 64, two substrate wirings, for example, 32 wirings are provided on both sides of the columns of the image array. Since the substrate wiring has a substantially U-shape and both ends are flip-chip connected to the electrode bumps of the image array, both ends are isolated without being connected to other parts. Therefore, a through hole is provided in the plastic substrate, the through hole, the backside wiring of the substrate, the next U-shaped substrate wiring are connected in this order, and the divided substrate wirings are connected to each other. The through-hole occupies the largest area in processing the substrate and is the limit of mounting. According to the fourth aspect of the present invention, the substrate wiring is provided on both sides of the image array, and the back wiring is performed in units of two arrays. Therefore, the substrate wiring is provided only on one side of the column of the image array and the back wiring is connected to the matrix. In comparison, the through hole density can be reduced to 1/4. For this reason, through hole processing becomes extremely easy.

【0012】このような画像装置は例えば、プラスチッ
クで基板と単眼レンズとを一体成型する工程と、基板の
単眼レンズを設けた側の反対側の主面を部分的に粗面化
する工程と、粗面化した基板の主面上に金属下地膜をメ
ッキする工程と、金属下地膜土に導電体膜をメッキする
工程と、導電体膜上に画像アレイをフリップチップ接続
する工程とで製造する。ここで好ましくはフリップチッ
プ接続部で導電体膜を半田メッキ膜とし、レンズ側から
レーザー光や赤外線等で電極バンプの付近を局所的に加
熱し半田付けする。このようにすれば例えばレーザーで
走査するだけで、あるいは赤外線で加熱するだけで、フ
リップチップ接続ができる。
Such an image apparatus includes, for example, a step of integrally molding a substrate and a monocular lens with plastic, a step of partially roughening a main surface of the substrate opposite to the side on which the monocular lens is provided, It is manufactured by a step of plating a metal base film on a main surface of a roughened substrate, a step of plating a conductor film on a metal base film soil, and a step of flip-chip connecting an image array on the conductor film. . Here, preferably, the conductor film is formed as a solder plating film at the flip chip connection portion, and the vicinity of the electrode bump is locally heated and soldered from the lens side with laser light or infrared light. In this way, flip-chip connection can be achieved, for example, only by scanning with a laser or by heating with infrared rays.

【0013】[0013]

【実施例】図1〜図5に実施例を示す。図1において、
2はプラスチック基板で、エポキシやアクリルあるいは
ポリカーボネイト等の透明プラスチック基板を用いる。
4は単眼レンズでアレイ状に形成し、例えばLEDアレ
イ6の1個毎に設ける。単眼レンズ4はプラスチック基
板2と一体成型する。6はLEDアレイで、基板2の第
1の主面に沿って例えば直線状に40個程度配置し、L
EDアレイ6の他にMOSCCDアレイ等を用いても良
い。基板2の第1の主面には基板配線8を施し、LED
アレイ6の電極に接続した電極バンプ10とフリップチ
ップ接続する。12はクリップ端子で、LEDアレイ6
の共通電極に接続し、例えば基板2の反対側の主面へ接
続する。LEDアレイ6の共通電極の接続方法は、クリ
ップ端子12を用いるものの他、任意のものを用いるこ
とができる。
1 to 5 show an embodiment. In FIG.
Reference numeral 2 denotes a plastic substrate, which uses a transparent plastic substrate such as epoxy, acrylic, or polycarbonate.
Reference numeral 4 denotes a monocular lens which is formed in an array, and is provided, for example, for each LED array 6. The monocular lens 4 is formed integrally with the plastic substrate 2. Reference numeral 6 denotes an LED array in which, for example, about 40 LED arrays are arranged in a straight line along the first main surface of the substrate 2.
In addition to the ED array 6, a MOSCCD array or the like may be used. A substrate wiring 8 is provided on the first main surface of the substrate 2 and an LED is provided.
The electrode bumps 10 connected to the electrodes of the array 6 are flip-chip connected. Reference numeral 12 denotes a clip terminal.
And to, for example, the main surface on the opposite side of the substrate 2. As a method of connecting the common electrode of the LED array 6, any method other than the method using the clip terminal 12 can be used.

【0014】図2に、単眼レンズ4の側から見た基板2
の配置を示す。LEDアレイ6の発光体の数を64個と
すると、基板配線8は64本の個別配線8−1〜8−6
4からなり、個別配線8−1〜8−32は図での上側
に、個別配線8−33〜8−64は図での下側に配置す
る。各個別配線8−1〜8−64はほぼU字状をなし、
LEDアレイ6の2個毎に分断して設ける。基板配線8
は個別配線8−1〜8−32からなる第1の基板配線
と、個別配線8−33〜8−64からなる第2の基板配
線とに分割して配置し、LEDアレイ6の列の両方に設
ける。個別配線8−1〜8−64は2つの電極バンプ1
0,10の間をU字状に折り返して第1の主面では他に
はつながらないので、スルーホール14を設けて基板2
の裏面を介して相互に接続する。16はスルーホール1
4の列で、スルーホール14の配列ピッチには0.8m
m程度が必要なので、スルーホールの列16は2列にし
かも基板2の長手方向に対して斜めに配置する。プラス
チック基板2の裏面(単眼レンズ4側の主面)には裏面
配線20を設け、スルーホール14を介して基板配線8
と接続する。このようにLEDアレイ6の2個毎に分断
した基板配線8を、スルーホールの列16と裏面配線2
0並びに次のスルーホールの列16を通じて相互に接続
する。
FIG. 2 shows the substrate 2 viewed from the monocular lens 4 side.
The following shows the arrangement. Assuming that the number of light emitters of the LED array 6 is 64, the substrate wiring 8 has 64 individual wirings 8-1 to 8-6.
The individual wirings 8-1 to 8-32 are arranged on the upper side in the figure, and the individual wirings 8-33 to 8-64 are arranged on the lower side in the figure. Each of the individual wirings 8-1 to 8-64 is substantially U-shaped,
The LED array 6 is divided and provided for every two. Board wiring 8
Is divided into a first substrate wiring composed of individual wirings 8-1 to 8-32 and a second substrate wiring composed of individual wirings 8-33 to 8-64. To be provided. The individual wirings 8-1 to 8-64 are two electrode bumps 1
Since the portion between 0 and 10 is folded in a U-shape and is not connected to the other on the first main surface, a through hole 14 is provided to
Are connected to each other via the back surface. 16 is through hole 1
In the row of 4, the arrangement pitch of the through holes 14 is 0.8 m.
Since about m is required, the rows of through holes 16 are arranged in two rows and obliquely to the longitudinal direction of the substrate 2. A back surface wiring 20 is provided on the back surface (main surface on the side of the monocular lens 4) of the plastic substrate 2, and the substrate wiring 8 is provided through a through hole 14.
Connect with In this manner, the substrate wiring 8 divided for every two LED arrays 6 is divided into a row of through holes 16 and a rear wiring 2.
Interconnected through a row of 0 and next through holes 16.

【0015】図3にフリップチップ接続部を示し、図4
に接続直前の状態を側面から見て示す。LEDアレイ6
はGaAs等の半導体基板からなり、図の22は個別の
発光体でLEDアレイ6に例えば64個設ける。24は
LEDアレイ6の電極で例えばAl膜をエッチングして
設け、フリップチップ接続部ではAl電極24の上に電
極バンプ10を積層する。図4に移ると、電極バンプ1
0はNiやCrあるいはTi等の金属下地膜上にAuや
Au−Pd,Pd等の膜を積層したもので、ここでは金
属下地膜としてNiメッキ層26を用い、その土部にA
uメッキ層28を積層した。
FIG. 3 shows a flip chip connection portion, and FIG.
Shows the state immediately before connection as viewed from the side. LED array 6
Is composed of a semiconductor substrate such as GaAs. Reference numeral 22 in FIG. Reference numeral 24 denotes an electrode of the LED array 6 provided by etching, for example, an Al film, and the electrode bump 10 is laminated on the Al electrode 24 in the flip chip connection portion. Turning to FIG. 4, the electrode bump 1
Numeral 0 is a film in which a film of Au, Au-Pd, Pd or the like is laminated on a metal base film of Ni, Cr or Ti, etc. Here, a Ni plating layer 26 is used as the metal base film, and A
The u plating layer 28 was laminated.

【0016】プラスチック基板2側ではNiやCr,T
i等の金属下地膜30上に、半田メッキ層32を積層
し、個別配線8−1〜8−64とした。金属下地膜30
は例えばNiの無電解メッキにより形成し、不要部をエ
ッチングやリフトオフ等により除去する。金属下地膜3
0の膜厚は例えば2〜3μm程度が好ましい。半田メッ
キ層32は基板2を半田浴に浸すことで形成し、膜厚は
例えば1〜100μm、好ましくは5〜20μm程度と
する。膜厚がこれよりも大きいと基板2への付着力が低
下し、薄すぎると電極バンプ10との半田付けが難しく
なる。34は粗面化部で、発光体22に向き合った部分
と単眼レンズ4の表面部とを除いて、基板2の表裏をサ
ンドブラストやエッチング等により粗面化して形成す
る。粗面化の程度は表面粗さ計で測定した平均表面粗さ
として例えば0.1〜5μm程度、好ましくは0.3〜
3μm程度とし、粗さをこれ以上大きくするとLEDア
レイ6の搭載精度に影響し、これ以下では金属下地膜3
0の付着強度が低下する。図4には特に示さなかった
が、裏面配線20も基板2の表面を粗面化した上に金属
下地膜30と半田メッキ層32とを積層して形成する。
半田メッキ層32を用いる理由は、電極バンプ10との
半田付けを容易にすることである。そこで半田メッキ層
32に替えて例えば銅メッキ層を用い、電極バンプ10
とフリップチップ接続する部分に、クリーム半田等を塗
布しても良い。しかし実施例のようにすればクリーム半
田の塗布が不要になるし、また塗布したクリーム半田に
よって個別配線8−1〜8−64がショートする危険性
もなくなる。
On the plastic substrate 2 side, Ni, Cr, T
A solder plating layer 32 was laminated on the metal base film 30 of i or the like to form individual wirings 8-1 to 8-64. Metal underlayer 30
Is formed by, for example, electroless plating of Ni, and unnecessary portions are removed by etching or lift-off. Metal underlayer 3
The thickness of 0 is preferably, for example, about 2 to 3 μm. The solder plating layer 32 is formed by immersing the substrate 2 in a solder bath, and has a thickness of, for example, 1 to 100 μm, and preferably about 5 to 20 μm. If the film thickness is larger than this, the adhesive force to the substrate 2 decreases, and if it is too thin, soldering to the electrode bumps 10 becomes difficult. Numeral 34 denotes a roughened portion, which is formed by roughening the front and back surfaces of the substrate 2 by sandblasting, etching or the like, except for a portion facing the light emitting body 22 and a surface portion of the monocular lens 4. The degree of roughening is, for example, about 0.1 to 5 μm, preferably 0.3 to 5 μm as an average surface roughness measured by a surface roughness meter.
If the roughness is made larger than about 3 μm, the mounting accuracy of the LED array 6 is affected.
The adhesive strength of 0 decreases. Although not particularly shown in FIG. 4, the back wiring 20 is also formed by laminating a metal base film 30 and a solder plating layer 32 after roughening the surface of the substrate 2.
The reason for using the solder plating layer 32 is to facilitate soldering with the electrode bumps 10. Therefore, for example, a copper plating layer is used instead of the solder plating layer 32, and the electrode bump 10
Cream solder or the like may be applied to a portion to be connected with the flip chip. However, according to the embodiment, the application of the cream solder becomes unnecessary, and the danger that the individual wirings 8-1 to 8-64 are short-circuited by the applied cream solder is eliminated.

【0017】図5に、LEDアレイ6のフリップチップ
接続までの工程を示す。ポリカーボネイトやエポキシあ
るいはアクリル等のプラスチックを用いて、基板2と単
眼レンズ4を一体成型する。次に発光体22に向き合う
ことになる部分と単眼レンズ4の表面とをマスクして、
サンドブラストやエッチング等により基板を粗面化す
る。これによって粗面化領域34を形成する。粗面化領
域34を形成する前後に基板2に穴開け加工を施し、次
いでNiのメッキ液中に基板2を浸して、無電解メッキ
によりNiメッキを行う。続いて不要部をエッチング
し、金属下地膜30を形成する。この後基板2を溶融半
田に浸して半田を金属下地膜30の上にのみ付着させ、
特にパターンニングを行わずに半田メッキ層32を得
る。これらの後にスルーホール加工を施し、裏面配線2
0と基板配線8とを接続する。
FIG. 5 shows the steps up to the flip chip connection of the LED array 6. The substrate 2 and the monocular lens 4 are integrally molded using a plastic such as polycarbonate, epoxy or acrylic. Next, the portion facing the light emitter 22 and the surface of the monocular lens 4 are masked,
The substrate is roughened by sandblasting or etching. Thus, a roughened region 34 is formed. Before and after the formation of the roughened region 34, the substrate 2 is perforated, then the substrate 2 is immersed in a Ni plating solution, and Ni plating is performed by electroless plating. Subsequently, unnecessary portions are etched to form a metal base film 30. Thereafter, the substrate 2 is immersed in the molten solder so that the solder is deposited only on the metal base film 30,
In particular, the solder plating layer 32 is obtained without performing patterning. After these, through-hole processing is performed,
0 and the substrate wiring 8 are connected.

【0018】配線8,20の形成後にLEDアレイ6を
搭載し、クリップ端子12を用いて仮止めする。クリッ
プ端子12には仮止めができる程度の弾性があるものが
好ましい。次に図5の半導体レーザー40,40等を用
い、単眼レンズ4の側から可視光や赤外線等を照射し
て、半田メッキ層32を溶かし、電極バンプ10に半田
付けする。半田はプラスチック基板2の表面には直接付
着せず、金属下地膜30がある部分にのみ付着するの
で、半田メッキ層32を溶融させても個別配線8−1〜
8−64がショートする恐れはない。
After the wirings 8 and 20 are formed, the LED array 6 is mounted and temporarily fixed using the clip terminals 12. It is preferable that the clip terminal 12 has such an elasticity that it can be temporarily fixed. Next, using the semiconductor lasers 40, 40 and the like in FIG. 5, visible light and infrared light are irradiated from the side of the monocular lens 4 to melt the solder plating layer 32 and solder it to the electrode bumps 10. Since the solder does not directly adhere to the surface of the plastic substrate 2 but only to the portion where the metal base film 30 is present, even if the solder plating layer 32 is melted, the individual wirings 8-1 to 8-1
There is no danger of 8-64 shorting.

【0019】このようにすればフリップチップ接続を半
田付けで行うことができ、レーザー40,40で基板2
の裏面を走査するだけでフリップチップ接続を行うこと
ができる。また半田付けはAlの基板配線への熱圧着と
異なりクリップ端子12からの小さな圧力で位置決めす
るだけでよく、LEDアレイ6の脆弱なGaAs基板を
破壊する恐れがない。さらに光による局所的な加熱なの
でプラスチック基板2や単眼レンズ4を変形させたり、
フリップチップ接続部以外の半田メッキ層32を溶かし
たりすることもない。このため耐熱性の低いプラスチッ
ク基板2や融点の低い半田メッキ層32でも問題は生じ
ず、リフロー炉を通す必要がないので半田付けに必要な
時間も短く、半田中のフラックスがリフロー炉でLED
アレイ6に付着する等の問題もない。
In this way, the flip chip connection can be performed by soldering, and the lasers 40, 40
Flip-chip connection can be performed only by scanning the back surface of the substrate. Unlike the thermocompression bonding of Al to the substrate wiring, the soldering only needs to be performed with a small pressure from the clip terminal 12, and there is no possibility that the fragile GaAs substrate of the LED array 6 is broken. Furthermore, since it is locally heated by light, the plastic substrate 2 and the monocular lens 4 are deformed,
There is no melting of the solder plating layer 32 other than the flip chip connection part. Therefore, there is no problem even with the plastic substrate 2 having low heat resistance or the solder plating layer 32 having low melting point, and it is not necessary to pass through the reflow furnace, so that the time required for soldering is short, and the flux in the solder is reduced by the LED in the reflow furnace.
There is no problem such as attachment to the array 6.

【0020】フリップチップ接続部のみを局所的に加熱
するためレーザー40を用いることが好ましいが、リフ
ロー炉による全体的加熱やフラックスによる汚染を避け
るだけであれば通常の光源を用いた赤外線加熱でも良
い。このような例を図6に示す。図の42は赤外線ラン
プで、44は断面が放物線形の反射鏡であり、赤外線ラ
ンプ42からの光を反射鏡44で平行光線に変え、LE
Dアレイ6の裏面のみを局所的に加熱する。
Although it is preferable to use the laser 40 to locally heat only the flip chip connection portion, infrared heating using a normal light source may be used as long as the entire heating by the reflow furnace or the contamination by the flux is only avoided. . FIG. 6 shows such an example. In the figure, reference numeral 42 denotes an infrared lamp, and 44 denotes a parabolic reflector having a cross section. The light from the infrared lamp 42 is converted into parallel rays by the reflector 44, and LE
Only the back surface of the D array 6 is locally heated.

【0021】実施例の作用を示す。実施例の基本的概念
は基板2と単眼レンズ4とを一体にすることである。こ
れはプラスチック基板2を用い一体成型を行うことで達
成される。この結果、基板2と単眼レンズ4との位置合
わせは成型時に行われ、周囲温度の変動による熱膨張等
で位置合わせが狂うとの問題も解消する。LEDアレイ
6は基板配線8に位置合わせされており、単眼レンズ4
が基板2と一体なので、LEDアレイ6は基板配線8を
介して単眼レンズ4に位置合わせされる。
The operation of the embodiment will be described. The basic concept of the embodiment is that the substrate 2 and the monocular lens 4 are integrated. This is achieved by performing integral molding using the plastic substrate 2. As a result, the alignment between the substrate 2 and the monocular lens 4 is performed at the time of molding, and the problem of misalignment due to thermal expansion or the like due to a change in ambient temperature is also solved. The LED array 6 is aligned with the substrate wiring 8 and the monocular lens 4
Is integrated with the substrate 2, the LED array 6 is aligned with the monocular lens 4 via the substrate wiring 8.

【0022】実施例の次の概念は、基板配線8にメッキ
膜を用い、Alの真空蒸着等を不要にすることである。
そしてこれによって画像装置の量産性が大幅に向上す
る。プラスチック基板2はガラス基板よりも金属下地膜
30との馴染みが良く、基板配線8や裏面配線20を設
ける部分を粗面化することにより配線8,20と基板2
との付着力をさらに向上させる。半田メッキ層32は単
独では基板2に付着しないが、中間に金属下地膜30を
設けることにより半田メッキ層32を容易に形成するこ
とができる。
The next concept of the embodiment is that a plating film is used for the substrate wiring 8 to eliminate the need for vacuum deposition of Al or the like.
As a result, mass productivity of the image device is greatly improved. The plastic substrate 2 has a better affinity with the metal base film 30 than the glass substrate, and the portions where the substrate wiring 8 and the rear surface wiring 20 are provided are roughened so that the wirings 8 and 20 and the substrate 2 are roughened.
To further improve the adhesion. Although the solder plating layer 32 alone does not adhere to the substrate 2, the solder plating layer 32 can be easily formed by providing the metal base film 30 in the middle.

【0023】メッキによる基板配線8は真空蒸着による
Al配線に比べて、高密度化には適していない。そこで
基板配線8をLEDアレイ6の上側に設けた個別配線8
−1〜8−32からなる第1の基板配線と下側に設けた
個別配線8−33〜8−64からなる第2の基板配線と
に分割し、配線の密度を1/2に低下させる。個別配線
8−1〜8−64をほぼU字状の形状とし、両端をLE
Dアレイ6の電極バンプ10にフリップチップ接続し
た。これはフリップチップ接続に適した形状である。こ
のようにすると各個別配線8−1〜8−64はLEDア
レイ6の2個毎に孤立するので、スルーホール14と裏
面配線20とを用いて相互に接続した。そしてプラスチ
ック基板2ではスルーホール14を設けるのが容易で、
裏面配線20は基板配線8と同じプロセスにより同時に
形成することができる。
The substrate wiring 8 formed by plating is not suitable for increasing the density as compared with the Al wiring formed by vacuum evaporation. Therefore, the individual wiring 8 provided with the substrate wiring 8 above the LED array 6
-1 to 8-32 and a second substrate wiring provided below the individual wirings 8-33 to 8-64, and the wiring density is reduced to half. . The individual wirings 8-1 to 8-64 have a substantially U-shaped shape, and both ends are LE
Flip chip connection was made to the electrode bumps 10 of the D array 6. This is a shape suitable for flip chip connection. In this case, the individual wirings 8-1 to 8-64 are isolated for every two LED arrays 6, so that the individual wirings 8-1 to 8-64 are connected to each other using the through holes 14 and the back wirings 20. And it is easy to provide the through hole 14 in the plastic substrate 2,
The back wiring 20 can be formed simultaneously with the substrate wiring 8 by the same process.

【0024】実施例ではLEDヘッドを示したが、これ
に限らず例えばイメージセンサ等でも同様に画像装置を
構成することができる。
In the embodiment, the LED head is shown. However, the present invention is not limited to this. For example, an image sensor can be used to constitute an image device.

【0025】[0025]

【発明の効果】請求項1の発明では、 1)基板と単眼レンズアレイとをプラスチックで安価に
設け、 2)一体成型により、基板と単眼レンズとを正確に位置
決めし、かつ熱膨張などによる位置決めの狂いをなく
し、 3)画像アレイと基板配線とのフリップチップ接続を容
易にし、 4)基板に対する基板配線の被着強度と、画像アレイの
フリップチップ接続強度とを改善し、 5)不要光を遮断して、画像品位を向上させる。請求項
2の発明ではさらに、 6)基板配線の密度を低下させて基板配線の形成を容易
にし、高解像度の画像装置への対応を容易にする。また
プラスチック基板を用いるためスルーホールを設けるの
が容易で、裏面配線を用いて分断した基板配線を接続す
る。
According to the first aspect of the present invention, 1) the substrate and the monocular lens array are made of plastic at low cost, and 2) the substrate and the monocular lens are accurately positioned by integral molding, and are positioned by thermal expansion or the like. 3) Flip-chip connection between the image array and the board wiring is facilitated. 4) Improving the adhesion strength of the board wiring to the board and the flip-chip connection strength of the image array. 5) Reducing unnecessary light. Cut off to improve image quality. Further, 6) the density of the substrate wiring is reduced, the formation of the substrate wiring is facilitated, and the application to a high-resolution image device is facilitated. Further, since a plastic substrate is used, it is easy to provide a through-hole, and the substrate wiring divided using the back wiring is connected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例の画像装置の要部断面図FIG. 1 is a sectional view of a main part of an image apparatus according to an embodiment.

【図2】 実施例の画像装置の要部背面図FIG. 2 is a rear view of a main part of the image apparatus according to the embodiment.

【図3】 実施例で画像装置のフリップチップ接続部
を示す図
FIG. 3 is a diagram showing a flip-chip connecting portion of the image device in the embodiment.

【図4】 実施例で画像装置のフリップチップ接続部
を示す要部断面図
FIG. 4 is an essential part cross-sectional view showing a flip chip connection part of the image device in the embodiment.

【図5】 実施例の画像装置でのレーザー光によるフ
リップチップ接続を示す要部断面図
FIG. 5 is a cross-sectional view of a main part showing flip-chip connection by laser light in the image device of the embodiment.

【図6】 変形例での赤外線光源を示す図FIG. 6 is a diagram showing an infrared light source according to a modification.

【符号の説明】[Explanation of symbols]

2 プラスチック基板 4 単眼レンズ 6 LEDアレイ 8 基板配線 8−1〜8−64 個別配線 10 電極バンプ 12 クリップ端子 14 スルーホール 16 スルーホールの列 20 裏面配線 22 発光体 24 電極 26 Niメッキ層 28 Auメッキ層 30 金属下地膜 32 半田メッキ層 34 粗面化領域 40 半導体レーザー 42 赤外線ランプ 44 反射鏡 Reference Signs List 2 plastic substrate 4 monocular lens 6 LED array 8 substrate wiring 8-1 to 8-64 individual wiring 10 electrode bump 12 clip terminal 14 through hole 16 through hole row 20 back wiring 22 light emitter 24 electrode 26 Ni plating layer 28 Au plating Layer 30 Metal base film 32 Solder plating layer 34 Roughened area 40 Semiconductor laser 42 Infrared lamp 44 Reflector

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 33/00 H04N 5/335 (58)調査した分野(Int.Cl.6,DB名) B41J 2/44 B41J 2/45 B41J 2/455 G02B 27/00 H01L 33/00 H04N 5/335 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 identification code FI H01L 33/00 H04N 5/335 (58) Fields investigated (Int.Cl. 6 , DB name) B41J 2/44 B41J 2/45 B41J 2/455 G02B 27/00 H01L 33/00 H04N 5/335

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 透明プラスチック基板の第1の主面に、
多数の受発光素子を設けた画像アレイを列状に配置する
とともに、他方の主面には基板と一体的に単眼レンズを
アレイ状に設け、 前記第1の主面では受発光素子に対向した部分を平滑面
とし、これ以外の領域を粗面化した粗面化領域上に設け
た基板配線に対して前記画像アレイに設けた電極バンプ
をフリップチップ接続したことを特徴とする、画像装
置。
A first main surface of the transparent plastic substrate,
An image array provided with a large number of light emitting and receiving elements is arranged in a row, and a monocular lens is provided in an array with the substrate on the other main surface, and the first main surface is opposed to the light receiving and emitting element. An image device, characterized in that an electrode bump provided on the image array is flip-chip connected to a substrate wiring provided on a roughened region in which a portion is a smooth surface and the other region is roughened.
【請求項2】 前記基板配線を、画像アレイの列の一方
の側に設けた第1の基板配線と前記列の他方の側に設け
た第2の基板配線とで構成し、 各基板配線を画像アレイ2個毎にほぼU字状に折り返し
て分断された配線として、該分断された配線内で、2個
の画像アレイの対応する受発光素子同士を電気的に接続
し、 基板の裏面には、単眼レンズを設けた領域の両外側に、
第1の裏面配線と第2の裏面配線とを設けて、 第1の基板配線と第1の裏面配線とをスルーホールで接
続することにより、分断された第1の基板配線を所定の
順序で相互に電気的に接続し、かつ第2の基板配線と第
2の裏面配線とをスルーホールで接続することにより、
分断された第2の基板配線を所定の順序で相互に電気的
に接続したことを特徴とする、請求項1の画像装置。
2. The substrate wiring comprises a first substrate wiring provided on one side of a column of the image array and a second substrate wiring provided on the other side of the column. As a divided wiring that is folded back in a substantially U-shape every two image arrays, the corresponding light receiving and emitting elements of the two image arrays are electrically connected to each other within the divided wiring. Is on both sides of the area where the monocular lens is provided,
By providing a first backside wiring and a second backside wiring and connecting the first substrate wiring and the first backside wiring with through holes, the divided first substrate wirings can be arranged in a predetermined order. By electrically connecting each other and connecting the second substrate wiring and the second back wiring with through holes,
The image apparatus according to claim 1, wherein the divided second substrate wirings are electrically connected to each other in a predetermined order.
JP5154187A 1993-05-31 1993-05-31 IMAGE DEVICE AND ITS MANUFACTURING METHOD Expired - Fee Related JP2879773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5154187A JP2879773B2 (en) 1993-05-31 1993-05-31 IMAGE DEVICE AND ITS MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5154187A JP2879773B2 (en) 1993-05-31 1993-05-31 IMAGE DEVICE AND ITS MANUFACTURING METHOD

Publications (2)

Publication Number Publication Date
JPH06340118A JPH06340118A (en) 1994-12-13
JP2879773B2 true JP2879773B2 (en) 1999-04-05

Family

ID=15578744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5154187A Expired - Fee Related JP2879773B2 (en) 1993-05-31 1993-05-31 IMAGE DEVICE AND ITS MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP2879773B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW347596B (en) * 1995-11-13 1998-12-11 Motorola Inc Integrated electro-optical package
DE10034865B4 (en) * 2000-07-18 2006-06-01 Infineon Technologies Ag Opto-electronic surface-mountable module
US6759687B1 (en) * 2000-10-13 2004-07-06 Agilent Technologies, Inc. Aligning an optical device system with an optical lens system
JP2004031508A (en) 2002-06-24 2004-01-29 Nec Corp Optoelectric composite module and light inputting/outputting device with its module as configuring element
JP4492219B2 (en) * 2004-06-11 2010-06-30 日亜化学工業株式会社 Support substrate, method of forming semiconductor device using the support substrate, and semiconductor device
JP2007035881A (en) * 2005-07-26 2007-02-08 Matsushita Electric Works Ltd Mounting structure of surface-mounting electronic component and illumination instrument
WO2008004302A1 (en) * 2006-07-07 2008-01-10 Fujitsu Microelectronics Limited Solid-state imaging device and method of controlling the same
JP4718504B2 (en) 2007-03-07 2011-07-06 株式会社沖データ Display device
KR101616027B1 (en) * 2009-10-07 2016-04-27 삼성전자주식회사 Light emitting diode array integrated with lens, line printer head, and method of fabricating the light emitting diode array
EP3490015A1 (en) * 2010-03-23 2019-05-29 Asahi Rubber Inc. Silicone resin reflective substrate, manufacturing method for same, and base material composition used in reflective substrate
US8952402B2 (en) * 2011-08-26 2015-02-10 Micron Technology, Inc. Solid-state radiation transducer devices having flip-chip mounted solid-state radiation transducers and associated systems and methods
US8987892B2 (en) * 2013-05-10 2015-03-24 Raytheon Company Method for creating a selective solder seal interface for an integrated circuit cooling system
EP3235347B1 (en) * 2014-12-19 2020-05-13 Glo Ab Method of making a light emitting diode array on a backplane
JP2017059742A (en) * 2015-09-18 2017-03-23 株式会社デンソー Light-emitting device
JP2019511838A (en) 2016-04-04 2019-04-25 グロ アーベーGlo Ab Backplane passing laser irradiation for die transfer

Also Published As

Publication number Publication date
JPH06340118A (en) 1994-12-13

Similar Documents

Publication Publication Date Title
JP2879773B2 (en) IMAGE DEVICE AND ITS MANUFACTURING METHOD
US5814870A (en) Semiconductor component
KR20010085475A (en) Method for manufacturing electronic semiconductor elements
JPH02174274A (en) Manufacture of light-emitting diode array head
KR100673278B1 (en) Flat display device and manufacturing method
JPH1050734A (en) Chip type semiconductor
JP2527054B2 (en) Optical module submount and manufacturing method thereof
JP3460330B2 (en) Imaging device
JPH056920A (en) Semiconductor device
JP2918423B2 (en) Imaging device
US9613924B2 (en) Method of flip-chip assembly of two electronic components by UV annealing, and assembly obtained
JPH02196476A (en) Led print head
JPH07178961A (en) Imaging device
JPH06305196A (en) Image forming device
JP4131524B2 (en) Surface mount photocoupler
JP2838181B2 (en) Imaging device
JP3020787B2 (en) Imaging device
JP2851776B2 (en) Imaging device
JP2851780B2 (en) Imaging device
JPH023354A (en) Optical printer head
JPH08132673A (en) Image apparatus
JP2851781B2 (en) Imaging device
JP2568815B2 (en) Flat panel display device
JPH0424857B2 (en)
JP3455086B2 (en) Light emitting device, method of manufacturing the same, and connection structure of light emitting device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees