JP2879738B2 - Exhaust gas purification method and molded catalyst used therefor - Google Patents

Exhaust gas purification method and molded catalyst used therefor

Info

Publication number
JP2879738B2
JP2879738B2 JP1075420A JP7542089A JP2879738B2 JP 2879738 B2 JP2879738 B2 JP 2879738B2 JP 1075420 A JP1075420 A JP 1075420A JP 7542089 A JP7542089 A JP 7542089A JP 2879738 B2 JP2879738 B2 JP 2879738B2
Authority
JP
Japan
Prior art keywords
catalyst
component
exhaust gas
oxide
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1075420A
Other languages
Japanese (ja)
Other versions
JPH02253828A (en
Inventor
正幸 花田
盛男 福田
武男 越川
章弘 山内
廣志 小椋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOKUBAI KASEI KOGYO KK
Mitsubishi Chemical Corp
Mitsubishi Chemical Engineering Corp
Original Assignee
SHOKUBAI KASEI KOGYO KK
Mitsubishi Chemical Corp
Mitsubishi Chemical Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13575682&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2879738(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by SHOKUBAI KASEI KOGYO KK, Mitsubishi Chemical Corp, Mitsubishi Chemical Engineering Corp filed Critical SHOKUBAI KASEI KOGYO KK
Priority to JP1075420A priority Critical patent/JP2879738B2/en
Priority to AT90105773T priority patent/ATE106270T1/en
Priority to EP90105773A priority patent/EP0390059B2/en
Priority to DE69009264T priority patent/DE69009264T3/en
Priority to CA002013100A priority patent/CA2013100C/en
Priority to US07/500,244 priority patent/US5087430A/en
Publication of JPH02253828A publication Critical patent/JPH02253828A/en
Publication of JP2879738B2 publication Critical patent/JP2879738B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2047Magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

An exhaust gas containing a nitrogen oxides is passed at a temperature of 250 to 550 DEG C in the presence of a reducing agent through a catalyst bed filled with a molded denitration catalyst comprising at least the following three catalyst components (A) an oxide of at least one metallic element selected from the group consisting of Ti, Si and Zr, (B) an oxide of at least one metallic element selected from the group consisting of Mo and W, and (C) an oxide of V such that the concentrations of the oxide (B) and/or the oxide (C) in the exhaust gas inlet site of the catalyst bed are higher than in the other site thereof. The molded denitration catalyst is also described.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、接触還元排ガス浄化用触媒およびその浄化
方法に関する。さらに詳しくは、重油焚きボイラー、石
炭焚きボイラー、焼結炉、定置型ディーゼルエンジンな
どの排ガス中の窒素酸化物(主としてNO、NO2など、以
下NOXという)をアンモニアなどの還元剤を用いて接触
還元法により無害化する排ガス浄化用触媒、特にデイー
ゼルエンジン排ガス中のNOXを浄化するのに優れた効果
を示す触媒および排ガスとくにディーゼルエンジン排ガ
スの浄化方法に関する。
Description: TECHNICAL FIELD The present invention relates to a catalyst for purifying catalytic reduction exhaust gas and a method for purifying the same. More particularly, a heavy oil-fired boilers, coal fired boilers, sintering furnace, nitrogen oxides in exhaust gases, such as stationary diesel engines (primarily NO, such as NO 2, hereinafter referred to as NO X) and using a reducing agent such as ammonia exhaust gas purifying catalyst to harmless by catalytic reduction, in particular to the purification method of the catalyst and the exhaust gas in particular a diesel engine exhaust shows excellent effect to purify the NO X in the diesel engine exhaust gas.

〔従来技術および問題点〕[Conventional technology and problems]

現在、排ガス中のNOXをアンモニアなどの還元剤を用
いて無害な窒素に還元する触媒としては、酸化チタンを
主成分とする担体にバナジウム、タングステン、モリブ
デンなどの酸化物を活性成分として担持させたものな
ど、種々の触媒が提案されており、また処理対象とする
排ガスの特性により種々な改良がなされている。
Currently, as a catalyst for reducing NO X in the exhaust gas into harmless nitrogen using a reducing agent such as ammonia, is supported vanadium carrier composed mainly of titanium oxide, tungsten oxide such as molybdenum as active ingredient Various catalysts have been proposed, and various improvements have been made depending on the characteristics of the exhaust gas to be treated.

例えば重油焚ボイラー、石炭焚ボイラーなどのダスト
を多量に含有する排ガス中のNOXを処理する触媒にはハ
ニカム状の触媒が使用されている。特公昭59-11340号公
報には、窒素酸化物浄化用触媒でガス流れ方向に対面す
る端面部に触媒活性を示す溶融体を溶着担持せしめたハ
ニカム状触媒は消耗の消耗が防止されるため触媒の耐久
性が改善されることが記載されている。しかし、排ガス
中に炭化水素化合物やその他の触媒被毒物質を含むNOX
の処理には、触媒活性や硫黄酸化物の酸化活性の点で触
媒被毒物質に対する考慮がなされておらず、必ずしも満
足のいくものではなかった。
For example, a honeycomb catalyst is used as a catalyst for treating NO X in exhaust gas containing a large amount of dust, such as a heavy oil fired boiler or a coal fired boiler. Japanese Patent Publication No. 59-11340 discloses a honeycomb catalyst in which a melt exhibiting catalytic activity is deposited and supported on the end face facing the gas flow direction by a catalyst for purifying nitrogen oxides. Is described as having improved durability. However, NO X containing hydrocarbon compounds and other catalyst poisons in the exhaust gas
No consideration was given to catalyst poisoning substances in terms of catalytic activity and sulfur oxide oxidizing activity, and the treatment was not always satisfactory.

一方、特開昭56-126437号公報には、モノリス型触媒
担体に含浸させるPtおよびRhの量を、Ptは触媒担体の排
ガス入口側がリッチで排ガス出口側がリーンになるよう
に変化させ、Rhは触媒担体の排ガス入口側がリーンで排
ガス出口側がリッチになるように変化させた自動車の排
ガス浄化用触媒が提案されており、この触媒はHC,COお
よびNOXを含む排ガスを浄化処理してCOとNOXの浄化性能
が向上することが記載されている。
On the other hand, JP-A-56-126437 discloses that the amounts of Pt and Rh impregnated in a monolithic catalyst carrier are changed so that the exhaust gas inlet side of the catalyst carrier is rich and the exhaust gas outlet side is lean, and Rh is An exhaust gas purifying catalyst for automobiles has been proposed in which the exhaust gas inlet side of the catalyst carrier is changed to be lean and the exhaust gas outlet side is rich, and this catalyst purifies exhaust gas containing HC, CO and NO X to remove CO and CO. It describes that the purification performance of NO X is improved.

また、特開昭63-4853号公報には、灯油などの液体燃
料を用いる燃焼装置の排ガス浄化用触媒で、Pd,Ptなど
の活性成分の担持量を担体の位置により変えた触媒が、
特開昭58-24345号公報にも触媒支持体の位置により活性
成分の量を変えた排ガス処理用触媒が開示されている。
Further, JP-A-63-4853 discloses a catalyst for purifying exhaust gas of a combustion device using a liquid fuel such as kerosene, in which the amount of active components such as Pd and Pt carried is changed according to the position of the carrier.
JP-A-58-24345 also discloses an exhaust gas treatment catalyst in which the amount of the active component is changed depending on the position of the catalyst support.

しかしながら、重油焚ボイラー、石炭焚ボイラー、焼
結炉、定置型ディーゼルエンジンなどから排出されるNO
Xをアンモニアなどの還元剤を用いて浄化する方法に使
用される触媒においては、SOX酸化能を抑え、脱硝活性
を高めるために、触媒成型体の最外表面部分にバナジウ
ム化合物を局在して含有せしめた触媒が特公昭63-48584
号公報に開示されている程度で、処理対象とする排ガス
の特性により触媒活性成分の種類、量を触媒支持体の位
置により変えた触媒は少ない。
However, NO emissions from heavy oil fired boilers, coal fired boilers, sintering furnaces, stationary diesel engines, etc.
In the catalyst used in the method of purifying X using a reducing agent such as ammonia, a vanadium compound is localized on the outermost surface of the molded catalyst in order to suppress the oxidation of SO X and increase the denitration activity. The catalyst contained is
To the extent disclosed in Japanese Patent Application Laid-Open Publication No. H10-207, there are few catalysts in which the type and amount of the catalytically active component are changed depending on the position of the catalyst support depending on the characteristics of the exhaust gas to be treated.

〔目的〕〔Purpose〕

本発明は、NOXのほかに、多量の炭素系未燃物、SO2
含む硫黄酸化物(以下SOXという)などを含む排ガスを
浄化するのに好適な接触還元排ガス浄化用触媒成型体を
提供することを目的とする。特に、ディーゼルエンジン
から排出される排ガス中には、NOXのほかにSOX、燃料の
不完全燃焼に起因する炭素系未燃物を含むばいじんが含
まれており、ディーゼルエンジンの形式、出力の大小、
燃焼条件などにより排ガス中の組成は変わるが、排ガス
中のNOX含有量を少なくしようとすると炭素系未燃物の
含有量が増加し、炭素系未燃物の含有量を少なくしよう
とすると、NOX含有量が増加する傾向にある。本発明の
触媒は上記の様な排ガスの浄化に使用して特に好適であ
る。
The present invention relates to a catalytic reduced exhaust gas purifying catalyst molded body suitable for purifying exhaust gas containing a large amount of carbon-based unburned substances, sulfur oxides containing SO 2 (hereinafter referred to as SO X ) in addition to NO X. The purpose is to provide. In particular, the exhaust gas discharged from diesel engines contains SO X and soot and dust containing carbon-based unburned substances due to incomplete combustion of fuel, in addition to NO X. Big and small,
Will vary the composition of the exhaust gas due to combustion conditions, an attempt to reduce the NO X content in the exhaust gas increases the content of carbonaceous unburnt substances, an attempt to reduce the content of carbon-based unburned substances, NO X content tends to increase. The catalyst of the present invention is particularly suitable for use in purifying exhaust gas as described above.

即ち本発明は触媒成型体の排ガス入口部分において、
炭素系未燃物の燃焼を高め、炭素系未燃物による触媒活
性の劣化を防止し、しかもSOX酸化活性を低活性に維持
した触媒を提供することを目的とする。
That is, the present invention, at the exhaust gas inlet portion of the molded catalyst,
It is an object of the present invention to provide a catalyst that enhances combustion of carbon-based unburned materials, prevents deterioration of catalyst activity due to carbon-based unburned materials, and maintains a low SO X oxidation activity.

さらに本発明はディーゼルエンジン排ガス、特に定置
型ディーゼルエンジン排ガスの浄化方法を提供すること
を目的とする。
Another object of the present invention is to provide a method for purifying exhaust gas of a diesel engine, particularly exhaust gas of a stationary diesel engine.

〔発明の概要〕[Summary of the Invention]

本発明は、少くともA成分、B成分、C成分を含有す
るガスの流れ方向に貫通孔を有する触媒を使用して排ガ
スを浄化するにさいして、B成分および/又はC成分に
ついては、ガスが触媒層と接触する初期段階部分が相対
的に高濃度になるようにする点に特徴を有する。
The present invention provides a method for purifying exhaust gas using a catalyst having a through-hole in the flow direction of a gas containing at least the A component, the B component, and the C component. Is characterized in that an initial stage portion in contact with the catalyst layer has a relatively high concentration.

すなわち、本発明は、ガスの流れ方向に貫通孔を有す
る多数の触媒成型体を充填した触媒床に排ガスを通し、
排ガス中の窒素酸化物を還元剤の存在下に250〜550℃の
温度で前記触媒成型体に接触させて還元除去するにあ
り、前記触媒成分として、 (A)Ti,Si,Zrから選ばれた少なくとも1種の酸化物
(A成分)と、 (B)Mo,Wから選ばれた少なくとも1種の酸化物(B成
分)と、 (C)Vの酸化物(C成分) および必要に応じて周知の第4成分を含有し、排ガス
入口側部分は、その他の部分に較べてB成分および/又
はC成分の含有量が高いことを特徴とするものである。
That is, the present invention passes exhaust gas through a catalyst bed filled with a large number of molded catalyst bodies having through holes in the gas flow direction,
In order to reduce and remove nitrogen oxides in the exhaust gas by contacting the molded catalyst at a temperature of 250 to 550 ° C. in the presence of a reducing agent, the catalyst component is selected from (A) Ti, Si, and Zr. At least one oxide (component A); (B) at least one oxide (component B) selected from Mo and W; (C) an oxide of V (component C); The exhaust gas inlet side portion has a higher content of the B component and / or C component than other portions.

触媒床においてB成分および/又はC成分に前述のよ
うに濃度差あるいは濃度勾配を与える手段としては1
個、1個の触媒成型体それ自体にB成分および/又はC
成分に前述のような濃度差あるいは濃度勾配を形成して
おくこもできるし、B成分および/又はC成分を排ガス
入口側以外の個所に使用する標準触媒成型体に較べて1.
1〜10倍の高濃度で含有する触媒成型体を別途製造して
おき、排ガス入口側の触媒床部分のみには、前記B成分
および/又はC成分の高濃度含有触媒成型体を充填し、
他の部分には前記標準触媒成型体を充填することにより
触媒床にB成分および/又はC成分の濃度差あるいは濃
度勾配を形成することができる。
Means for imparting a concentration difference or a concentration gradient to the component B and / or the component C in the catalyst bed as described above is as follows.
B component and / or C component
The above-described concentration difference or concentration gradient can be formed in the components, and the B component and / or the C component can be 1. compared with a standard catalyst molded body used in a portion other than the exhaust gas inlet side.
A catalyst molded body containing a high concentration of 1 to 10 times is separately manufactured, and only the catalyst bed portion on the exhaust gas inlet side is filled with the high concentration catalyst molded body of the component B and / or C component,
By filling the other part with the standard catalyst molded body, a concentration difference or a concentration gradient of the component B and / or the component C can be formed in the catalyst bed.

本発明に係る接触還元排ガス浄化用触媒成型体はガス
流れ方向に貫通孔を有する触媒成型体において、触媒成
分が、 (A)Ti,Si,Zrから選ばれた少なくとも1種の酸化物
(A成分)と、 (B)Mo,Wから選ばれた少なくとも1種の酸化物(B成
分)と、 (C)Vの酸化物(C成分) の3成分を含有し、かつ、B成分及び/又はC成分の
含有量は該触媒成型体のガス入口側部分の方が残りの部
分よりも多いことを特徴としている。
The molded catalyst for purifying catalytic reduction exhaust gas according to the present invention is a molded catalyst having a through-hole in the gas flow direction, wherein the catalyst component is (A) at least one oxide selected from Ti, Si, and Zr (A Component), (B) at least one oxide selected from Mo and W (component B), and (C) oxide of V (component C). Alternatively, it is characterized in that the content of the component C is larger at the gas inlet side portion of the molded catalyst body than at the remaining portion.

〔発明の具体的説明〕[Specific description of the invention]

以下、本発明にかかる接触還元排ガス浄化用触媒成型
体および排ガスの浄化方法について具体的に説明する。
Hereinafter, the catalyst reduction molded body for catalytic reduction exhaust gas purification and the method for purifying exhaust gas according to the present invention will be specifically described.

本発明の接触還元排ガス浄化用触媒成型体は、触媒成
分がA成分、B成分、C成分の3成分および必要に応じ
て、周知の第4成分を含有し、ガス流れ方向に貫通孔を
有するハニカム状、平行板状、円筒状などの触媒成型体
であって、ガス入口側部分以外の残りの部分における触
媒の3成分の含有量が A成分 55〜98.9wt% B成分 1〜44.9wt% C成分 0.1〜5 wt% の範囲にあり、該触媒成型体のガス入口側部分におけ
るB成分及び/又はC成分の含有量がガス入口側部分以
外の残りの部分における該成分の含有量の1.1〜10倍量
であることを特徴とする。
The molded catalyst for catalytic reduction exhaust gas purification of the present invention contains three components of the component A, component B, component C and, if necessary, a well-known fourth component, and has a through hole in the gas flow direction. The catalyst is formed in a honeycomb, parallel plate, or cylindrical shape, and the content of the three components of the catalyst in the remaining portion other than the gas inlet side portion is 55 to 98.9 wt% of the A component and 1 to 44.9 wt% of the B component. The C component is in the range of 0.1 to 5 wt%, and the content of the B component and / or C component in the gas inlet side portion of the molded catalyst is 1.1% of the content of the component in the remaining portion other than the gas inlet side portion. It is characterized by being up to 10 times the amount.

本発明でのA成分は、Ti,Si,Zrから選ばれた少なくと
も1種の酸化物からなり、その含有量は触媒成型体のガ
ス入口側部分以外の残りの部分で55〜98.9wt%、好まし
くは60〜97.8wt%の範囲にあることが望ましい。特に酸
化チタンは、好ましいA成分であり、チタニア−シリ
カ、チタニア−ジルコニア、チアニア−シリカ−ジルコ
ニアなどの複合物も望ましい成分である。
The component A in the present invention is composed of at least one oxide selected from Ti, Si, and Zr, and its content is 55 to 98.9 wt% in the remaining portion other than the gas inlet side portion of the molded catalyst, Preferably, it is in the range of 60 to 97.8 wt%. In particular, titanium oxide is a preferable component A, and a composite such as titania-silica, titania-zirconia, and titania-silica-zirconia is also a desirable component.

B成分としては、Mo,Wから選ばれた少くとも1種の酸
化物からなり、その含有量は触媒成型体のガス入口側部
分以外の残りの部分で1〜44.9wt%、好ましくは2〜3
9.8wt%の範囲にあることが望ましく、C成分としては
ガス入口側部分以外の残りの部分では0.1〜5wt%、好ま
しくは0.2〜4wt%の範囲にあることが望ましい。本発明
の触媒成型体のガス入口側部分以外の残りの部分でも、
触媒成分は均一または濃度分布があってもよい。
The component B consists of at least one oxide selected from Mo and W, and its content is 1 to 44.9% by weight, preferably 2 to 44.9% by weight in the remaining portion other than the gas inlet side portion of the molded catalyst. Three
The content of C is desirably in the range of 9.8 wt%, and the C component in the remaining portion other than the gas inlet side portion is desirably in the range of 0.1 to 5 wt%, preferably 0.2 to 4 wt%. In the remaining portion other than the gas inlet side portion of the molded catalyst of the present invention,
The catalyst components may be homogeneous or have a concentration distribution.

また本発明に係る触媒成分は、上記3成分の他に、他
の触媒成分、他えばPt,Pd,Cr,Cuなどの酸化剤成分その
他の金属成分を含有してもよい。
Further, the catalyst component according to the present invention may contain, in addition to the above three components, another catalyst component, for example, an oxidizing agent component such as Pt, Pd, Cr, Cu and other metal components.

本発明にかかる接触還元排ガス浄化用触媒成型体は、
上記B成分及び/又はC成分の含有量が、ガス流れ方向
に貫通孔を有する触媒成型体のガス入口側部分におい
て、残りの部分よりも1.1〜10倍量、好ましくは、2〜
8倍量の高含有量の範囲にあることが望ましい。B成分
及び/又はC成分の含有量は触媒成型体のガス入口側部
分において均一に高含有であってもよいし、また、成分
の濃度分布があってもよい。
The catalyst reduction molded body for catalytic reduction exhaust gas purification according to the present invention,
The content of the component B and / or the component C is 1.1 to 10 times, preferably 2 to 10 times the remaining portion in the gas inlet side portion of the molded catalyst having through holes in the gas flow direction.
It is desirably in the range of 8 times the high content. The content of the component B and / or the component C may be uniformly high in the gas inlet side portion of the molded catalyst body, or may have a concentration distribution of the components.

本発明の触媒成型体のガス入口側部分は、排ガス流入
口側端面近傍部分を意味し、排ガス流入口側端面から長
さ方向へ30cm以内の長さの範囲で任意の長さの部分に好
ましくは端面から2cm以上で20cm以内の範囲にB成分及
び/又はC成分を該触媒成型体の他の部分よりも高含有
量で含有する。
The gas inlet side portion of the molded catalyst of the present invention means a portion near the end face of the exhaust gas inlet side, and is preferably a portion of any length within a range of 30 cm or less in the length direction from the end face of the exhaust gas inlet side. Contains a component B and / or a component C in a range of 2 cm or more and 20 cm or less from the end face at a higher content than other portions of the molded catalyst.

本発明のガス流れ方向に貫通孔を有する成型体として
は、ハニカム状、平行板状、円筒状、などの類似構造体
のものが例示され、特にディーゼルエンジン排ガスを浄
化するような触媒では、ハニカム形状の触媒が好まし
く、貫通孔の相当直径(孔断面積×4÷孔内周長さ)が
2mm〜10mmの範囲、好ましくは3mm〜7mmの範囲で触媒成
型体の断面積が200cm2〜600cm2程度で長さ50cm〜200cm
程度のものが望ましい。
Examples of the molded body having a through-hole in the gas flow direction of the present invention include those having a similar structure such as a honeycomb shape, a parallel plate shape, and a cylindrical shape. The shape of the catalyst is preferable, and the equivalent diameter of the through-hole (hole cross-sectional area x 4 ÷ inner length of the hole) is
In the range of 2 mm to 10 mm, preferably in the range of 3 mm to 7 mm, the cross-sectional area of the molded catalyst is about 200 cm 2 to 600 cm 2 and the length is 50 cm to 200 cm.
A degree is desirable.

本発明にかかる接触還元排ガス浄化用触媒成型体は、
たとえば、A成分としての酸化チタンの前駆物質である
水和酸化チタンに、所定量のB成分の前駆物質を添加し
て乾燥焼成してB成分を含有する酸化チタン粉末を調製
し、該粉末に所定量のC成分の前駆物質、粘土、成型助
剤、無機繊維などを添加し、混練した後、所望の形状に
押出し成型し、乾燥、焼成して得られた触媒成型体の一
方の端の部分に、さらに所定量のB成分及び/又はC成
分の前駆物質を担持した後、焼成して製造することがで
きるが、上記方法に限られるものではない。B成分及び
/又はC成分は、触媒成型体のガス流入口側に相当する
一方の端の所望の部分にB成分及び/又はC成分の前駆
物質を含浸、噴霧、コーティングする方法など公知の方
法により担持することができる。
The catalyst reduction molded body for catalytic reduction exhaust gas purification according to the present invention,
For example, a predetermined amount of a precursor of a component B is added to a hydrated titanium oxide which is a precursor of a titanium oxide as a component A, and dried and fired to prepare a titanium oxide powder containing a component B. A predetermined amount of a precursor of the C component, clay, a molding aid, inorganic fibers, etc. are added, kneaded, extruded into a desired shape, dried, and calcined to form one end of a catalyst molded body. After a predetermined amount of the precursor of the component B and / or the component C is further carried on the portion, it can be manufactured by firing, but is not limited to the above method. A known method such as a method of impregnating, spraying, or coating a desired component at one end corresponding to the gas inlet side of the molded catalyst with the precursor of the component B and / or C is used for the component B and / or component C. Can be carried.

B成分の前駆物質としてはパラタングステン酸アンモ
ン、タングステン酸、メタタングステン酸アンモン、パ
ラモリブデン酸アンモン、などが使用可能であり、また
C成分の前駆物質としては、メタバナジン酸アンモン、
硫酸バナジル、修酸バナジルなどが使用可能である。
As the precursor of the component B, ammonium paratungstate, tungstic acid, ammonium metatungstate, ammonium paramolybdate, and the like can be used. As the precursor of the component C, ammonium metavanadate,
Vanadyl sulfate, vanadyl oxalate and the like can be used.

本発明の触媒成型体は、NOXの外に、SOX、炭素系未燃
物を含むばいじんなどを含有する排ガスの浄化に使用し
て、高いNOX除去率低SO2酸化率を示し、しかも炭素系未
燃物を燃焼除去する効果が大きいため、炭素系未燃物の
触媒への付着が少なく、圧力損失が少ないなど優れた効
果を有する。
The catalyst molded body of the present invention, in addition to NO X , SO X , used for purification of exhaust gas containing soot and soot containing carbon-based unburned matter, shows a high NO X removal rate low SO 2 oxidation rate, Moreover, since the effect of burning and removing the carbon-based unburned matter is great, the carbon-based unburned matter has excellent effects such as little adhesion to the catalyst and a small pressure loss.

次に、本発明にかかる排ガスの浄化方法は、ディーゼ
ルエンジンなどの排ガス中の窒素酸化物を還元剤の存在
下で250〜550℃の温度で触媒に接触させて還元除去する
にあたり、上記接触還元排ガス浄化用触媒成型体を触媒
充填床のガス流入口側に使用することを特徴とするもの
で、これによりガス流入口側において触媒床の特定部分
に付着し易い炭素系未燃物を酸化除去し、さらにSOX
酸化を最小に抑えしかも高いNOX除去率を示す排ガスの
浄化を達成するものであり、その特徴は、排ガスの流れ
方向に対し酸化活性の異なる触媒を配し脱硝反応を行う
点にある。
Next, the method for purifying exhaust gas according to the present invention comprises the step of contact-reducing and removing nitrogen oxides in exhaust gas from a diesel engine or the like at a temperature of 250 to 550 ° C in the presence of a reducing agent. The catalyst molded body for purifying exhaust gas is used on the gas inlet side of the catalyst packed bed, thereby oxidizing and removing carbon-based unburned matter that easily adheres to a specific part of the catalyst bed on the gas inlet side. In addition, it achieves purification of exhaust gas, which minimizes SO X oxidation and exhibits a high NO X removal rate, and is characterized by arranging catalysts with different oxidation activities in the exhaust gas flow direction to perform denitration reactions. The point is to do.

定置型ディーゼルエンジンの排ガス組成は、ディーゼ
ルエンジンの形式、燃焼条件等によっても多少異なる
が、NOX含有量が約750〜2000ppmの範囲で、SOX含有量が
10〜2000ppmさらに炭素系未燃物を含むばいじんが約20
〜200mg/Nm3含まれている。ディーゼルエンジン排ガス
のようにNOX、SOXと炭素系未燃物を含むばいじんを多量
に含む排ガスを浄化する場合、炭素系未燃物を燃焼除去
するため酸化活性の高い脱硝触媒を用いると、炭素系未
燃物は、減少するが、逆にSOXの酸化が増大し、またSOX
の酸化能を抑えた脱硝触媒を用いると炭素系未燃物が燃
焼除去されないため、脱硝触媒に付着し触媒活性が低下
するという相反する事象が生じる。本発明の方法は上記
のような事象を本発明の特定の触媒を排ガスの流入口側
に配置することにより解決したものである。
Exhaust gas composition of stationary diesel engines, the form of a diesel engine, but slightly varies by the combustion conditions and the like, in the range of about 750~2000ppm is NO X content, SO X content
10 to 2000 ppm Soot and dust containing carbon-based unburned matter is about 20
~200mg / Nm 3 are included. When purifying exhaust gas containing a large amount of dust containing NO X , SO X and carbon-based unburned substances such as diesel engine exhaust gas, if a denitration catalyst with high oxidation activity is used to burn and remove carbon-based unburned substances, Carbon-based unburned matter decreases, but on the contrary, oxidation of SO X increases, and SO X
If a denitration catalyst having a reduced oxidizing ability is used, the carbon-based unburned matter is not burnt and removed, so that a contradictory phenomenon occurs in that the carbonaceous unburned substances adhere to the denitration catalyst and the catalytic activity decreases. The method of the present invention solves the above-mentioned phenomenon by arranging the specific catalyst of the present invention on the exhaust gas inlet side.

本発明の方法で用いられる触媒の性能が有効に発揮さ
れる反応温度は250℃〜550℃、好ましくは300〜500℃、
さらに好ましくは320℃〜450℃の範囲である。
The reaction temperature at which the performance of the catalyst used in the method of the present invention is effectively exhibited is 250 ° C to 550 ° C, preferably 300 to 500 ° C,
It is more preferably in the range of 320 ° C to 450 ° C.

排ガス温度が320℃以下の場合は脱硝活性およびSO2
化活性については満足するが触媒の燃焼活性が十分では
ないため未燃物が付着し易くなる傾向があるので、外部
ヒーター等により間欠的に加熱する方法が有効である
が、この場合350℃以上の温度とするのがより効果的で
ある。
When the exhaust gas temperature is 320 ° C or lower, the denitration activity and SO 2 oxidation activity are satisfactory, but the combustion activity of the catalyst is not sufficient, so that unburned matter tends to adhere. A heating method is effective, but in this case, it is more effective to set the temperature to 350 ° C. or higher.

また排ガスの触媒流通路における線速は、目標とする
脱硝率によっても異るが50%以上の脱硝率を得ようとす
る場合には2〜30m/secの範囲で採用されより好ましく
は2〜15m/secの範囲である。
The linear velocity of the exhaust gas in the catalyst flow path varies depending on the target denitration rate, but is preferably in the range of 2 to 30 m / sec in order to obtain a denitration rate of 50% or more, more preferably 2 to 30 m / sec. The range is 15m / sec.

定置型ディーデセエンジン排ガスの一般的な組成は概
略下記の様な値であるが、本発明の方法は、このような
組成の排ガスの浄化に対して優れた効果を示す。又、こ
のような組成の範囲外の排ガスの浄化にも使用可能であ
る。
The general composition of the stationary type diesel engine exhaust gas generally has the following values, but the method of the present invention shows an excellent effect on purification of exhaust gas having such a composition. It can also be used to purify exhaust gases outside of such composition ranges.

NOX :700〜2000ppm 炭素系未燃物を含むばいじん:20〜200mg/Nm3(始動時等
を除く) SOX :10〜2000ppm(使用燃焼による) O2 :10〜15% H2O :4〜6% CO2 :4〜6% 特に、本発明の触媒は、NOXの外にSOX含有量が30〜10
00ppm、炭素系未燃物を含むばいじんが50〜120mg/Nm3
多量に含有する排ガスの浄化に使用して優れた効果を示
す。
NO X : 700 to 2000 ppm Soot containing carbon-based unburned matter: 20 to 200 mg / Nm 3 (excluding start-up, etc.) SO X : 10 to 2000 ppm (depending on combustion used) O 2 : 10 to 15% H 2 O: 4~6% CO 2: 4~6% particularly, the catalyst of the present invention, the SO X amount outside the NO X 30-10
It shows an excellent effect when used for purification of exhaust gas containing as much as 50 ppm / 120 mg / Nm 3 of soot and dust containing carbon unburned matter.

以下に実施例をあげて本発明を具体的に説明するが、
本発明はこれら実施例のみに限定されるものではない。
Hereinafter, the present invention will be described specifically with reference to Examples.
The present invention is not limited to only these examples.

各実施例及び比較例における触媒性能の評価は、以下
に記述する「触媒性能試験法」により評価した。
The evaluation of the catalyst performance in each of the examples and comparative examples was evaluated by the “catalyst performance test method” described below.

反応条件は次の通りである。 The reaction conditions are as follows.

排ガス温度 345℃ 空間速度 5000hr-1 排ガス組成(主要成分) NO 930〜950ppm SOX 72〜78ppm SOX中のSO3 0.8〜2.5ppm O2 12〜13% H2O 4.7〜4.9% CO2 5.0〜5.3% 炭素系未燃物を含むばいじん 30〜50mg/NM3 NH3供給量(NH3/NO) 1.0モル比 〔触媒性能試験法〕 第1図は本発明方法における触媒性能を評価する試験
装置の概略図である。
Exhaust gas temperature 345 ° C. The space velocity 5000 hr -1 exhaust gas composition (main components) NO 930~950ppm SO X 72~78ppm SO in SO X 3 0.8~2.5ppm O 2 12~13% H 2 O 4.7~4.9% CO 2 5.0 5.35.3% Soot and dust containing carbon-based unburned matter 30-50 mg / NM 3 NH 3 supply amount (NH 3 / NO) 1.0 molar ratio [Catalyst performance test method] Fig. 1 shows a test for evaluating catalyst performance in the method of the present invention. It is the schematic of an apparatus.

ディーゼルエンジン1から排出される燃焼排ガスはブ
ロウワー2により脱硝反応装置に送風される。流量指示
調節部3により所定の流量に制御された排ガスは、ガス
ヒーター4で温度を調節され脱硝反応塔に送られる。ア
ンモニアの供給はアンモニア供給部5から行なわれる
が、アンモニアの排ガスに対する分散混合を十分にする
為、必要により空気又は窒素で希釈混合されて系内に導
入される。
The combustion exhaust gas discharged from the diesel engine 1 is sent to the denitration reaction device by the blower 2. The exhaust gas whose flow rate is controlled to a predetermined flow rate by the flow rate instruction adjusting unit 3 is sent to the denitration reaction tower after the temperature is adjusted by the gas heater 4. Ammonia is supplied from the ammonia supply unit 5, but is diluted and mixed with air or nitrogen as necessary to introduce the ammonia into the system in order to sufficiently disperse and mix the ammonia with the exhaust gas.

触媒充填塔6は並列に2塔設置されており、各塔には
触媒長120cmのもので3層まで充填可能である。
Two catalyst packed towers 6 are installed in parallel, and each tower has a catalyst length of 120 cm and can be packed up to three layers.

充填塔内のガス温度は温度指示記録計(TR)により測
定され、又、ガスの分析は(S)で示されるサンプリン
グ部より採取されて分析される。
The gas temperature in the packed tower is measured by a temperature indicator recorder (TR), and the gas is sampled and analyzed from the sampling unit shown in (S).

ガスの分析は、NOXについてはケミルミネッセンス方
式NO/NOX分析計(東芝ベックマン製951型)により、そ
してトータルSOX及びSO3についてはJIS K0103-1977に準
じた方法により実施した。
Analysis of the gas, for NO X by chemiluminescence method NO / NO X analyzer (Toshiba Beckman 951 Model), and for total SO X and SO 3 was performed by a method according to JIS K0103-1977.

トータルSOX分析におけるガスサンプリング法はJIS K
0095-1979に準じた方法により、そしてSO3分析に対して
はスパイラル管型の捕集器を用いてSO3ミストを捕集し
て分析に供した。
Gas sampling method in total SO X analysis JIS K
The method according to 0095-1979, and subjected to analysis by collecting SO 3 mist with a spiral tube-type collector for SO 3 analysis.

SO2濃度はトータルSOX濃度−SO3濃度として求め又、
脱硝性能はNOの測定値により評価した。
SO 2 concentration calculated as a total SO X concentration -SO 3 concentration also
The denitration performance was evaluated by the measured value of NO.

触媒に対する付着物は1000時間の脱硝反応試験後の触
媒に対し25の貫通口に付着している付着物をミクロブラ
シで払い落と捕集して重量測定した値により全体の付着
量を求めたが触媒取り出し時の脱落等をも考慮して目視
による付着状態の観察も重視した。
Deposits on the catalyst were removed from the catalyst after the denitration reaction test for 1000 hours, the deposits attached to 25 through-holes were scraped off and collected with a microbrush, and the total adhesion amount was determined by weighing the value. The observation of the adhered state by visual observation was also emphasized in consideration of falling off at the time of removing the catalyst.

実施例1 硫酸法酸化チタンの原料である水和酸化チタンのスラ
リー(TiO2として30重量%含有)2400kgにアンモニア水
を加えpH=8.5に調節した後、パラタングステン酸アン
モニウム90kgを添加し加熱しながら混練濃縮する。
Example 1 Aqueous ammonia was added to 2400 kg of a slurry of hydrated titanium oxide (containing 30% by weight as TiO 2 ) as a raw material of a sulfuric acid method titanium oxide to adjust pH = 8.5, and then 90 kg of ammonium paratungstate was added and heated. While kneading and concentrating.

得られたケーキを乾燥後600℃で5時間焼成して酸化
チタン及び酸化タングステンとから成るパウダーを得
た。
The obtained cake was dried and calcined at 600 ° C. for 5 hours to obtain a powder composed of titanium oxide and tungsten oxide.

このパウダー716kgに、粘土24kg、グラスフィバー56k
g、有機可塑剤51.5kgとメタバナジン酸アンモニウム5.1
43kgを含む水溶液とを加えニーダーで混練した。
To 716kg of this powder, 24kg of clay, 56k of glass fiber
g, 51.5 kg of organic plasticizer and 5.1 ammonium metavanadate
An aqueous solution containing 43 kg was added and kneaded with a kneader.

この混練物を加熱しながら押出し成型に適度な水分に
調節した後、断面が15cm口のハニカム状成型体に押出し
成型した。
This kneaded product was adjusted to a water content suitable for extrusion molding while heating, and then extruded into a honeycomb-shaped molded body having a cross section of 15 cm.

得られた成型体を乾燥し500℃×3hr焼成後120cmの長
さに切りそろえ15cm口×120cm(L)の焼成成型体
(A)を得た。
The obtained molded body was dried, calcined at 500 ° C. for 3 hours, and then cut into a length of 120 cm to obtain a calcined molded body (A) having a size of 15 cm × 120 cm (L).

このハニカム状成型体は断面に5mm口の貫通口を一辺
に25個、計625個有する。
This honeycomb-shaped molded body has 25 through holes of 5 mm in cross section on a side, that is, 625 in total.

別にV2O5として730gとなる硫酸バナジウムをイオン交
換水にて溶解し10lとした。
Separately, 730 g of vanadium sulfate as V 2 O 5 was dissolved in ion exchanged water to make 10 l.

この液中に上記製法で得られた焼成成型体(A)一端
15cmを1分間浸した後引き上げ液切り後乾燥し、500℃
で3時間焼成して実施例1触媒を得た。
One end of the fired molded body (A) obtained by the above-mentioned production method in this liquid
Soak 15cm for 1 minute, pull up, drain and dry, 500 ℃
For 3 hours to obtain a catalyst of Example 1.

この触媒はバナジウム成分を後含浸した部分にバナジ
ウムをV2O5として2.9wt%含有していた。
This catalyst contained 2.9% by weight of vanadium as V 2 O 5 in the portion impregnated with the vanadium component.

実施例1触媒を用いて前述の触媒性能試験法により脱
硝活性、SO2酸化活性及び触媒に対する付着物量につい
て評価した結果を表−1に示す。
Example 1 catalyst using the aforementioned catalyst performance test method by denitration activity, the results of evaluating the adhesion amount for SO 2 oxidation activity and catalyst shown in Table 1.

比較例1 実施例1で得られた焼成成型体(A)を比較例1触媒
とした。
Comparative Example 1 The fired molded body (A) obtained in Example 1 was used as a comparative example 1 catalyst.

この触媒を用いて実施例1と同様の方法により触媒性
能を評価した結果を表−1に示す。
Table 1 shows the results of evaluating the catalytic performance of this catalyst in the same manner as in Example 1.

実施例2 実施例1と同様の製法で得られた焼成成型体(A)を
用いてバナジウム成分の後含浸条件を変えた触媒を調製
し、実施例1と同様の方法により触媒性能を評価した。
Example 2 Using the calcined molded product (A) obtained by the same production method as in Example 1, a catalyst was prepared in which the post-impregnation conditions for the vanadium component were changed, and the catalyst performance was evaluated by the same method as in Example 1. .

後含浸の条件は次の通りであり後含浸した部分のバナ
ニウム含量はV2O5として4.1wt%含有していた。
The conditions for the post-impregnation were as follows, and the post-impregnated portion contained 4.1 wt% of V 2 O 5 as the vananium content.

含浸液:V2O5として1040gとなる硫酸バナジルをイオン
交換水にて溶解し10lとした 含浸時間 :1分 含浸部長さ:10cm 焼成条件 :500℃、3時間 実施例3 実施例1と同様の方法で得られる酸化チタン及び酸化
タングステンとから成るパウダー716kgに、粘度24kg、
グラスファイバー56kg、有機可塑剤51.5kgとメタバナジ
ン酸アンモニウム15.6kgの水溶液とを加え、ニーダーで
混練した。
Impregnating solution: 1040 g of vanadyl sulfate as V 2 O 5 was dissolved in ion-exchanged water to make 10 l. Impregnating time: 1 minute Impregnating part length: 10 cm Firing conditions: 500 ° C., 3 hours Example 3 Same as Example 1 To 716 kg of powder comprising titanium oxide and tungsten oxide obtained by the method of
56 kg of glass fiber, an aqueous solution of 51.5 kg of organic plasticizer and 15.6 kg of ammonium metavanadate were added and kneaded with a kneader.

この混練物を加熱しながら押出し成型に適度な水分に
調節した後、断面が15cm口のハニウム状成型体に押出し
成型した。
This kneaded product was adjusted to a water content suitable for extrusion molding while heating, and then extruded into a hanium-like molded body having a cross section of 15 cm.

得られた成型体を乾燥し、500℃×3hr焼成後120cmの
長さに切りそろえ、15cm口×120cm(L)の焼成成型体
(B)を得た。
The obtained molded body was dried, calcined at 500 ° C. for 3 hours, and then cut into a length of 120 cm to obtain a calcined molded body (B) having a size of 15 cm × 120 cm (L).

このハニウム状成型体は断面に5mm口の貫通口を一辺
に25個、計625個有する。
This hanium-like molded body has 25 through-holes of 5 mm in cross section on a side, that is, 625 in total.

別にV2O5として7.3kgとなる硫酸バナジルをイオン交
換水にて溶解し100lとした。
Separately, vanadyl sulfate in an amount of 7.3 kg as V 2 O 5 was dissolved in ion-exchanged water to make 100 l.

この液中に上記製法で得られた焼成成型体(B)の一
端10cmを1分間浸した後引き上げて液切り後乾燥し、50
0℃で3時間焼成して実施例3触媒を得た。
One end (10 cm) of the calcined molded body (B) obtained by the above-mentioned production method was immersed in this liquid for 1 minute, pulled up, drained, dried, and dried.
Calcination at 0 ° C. for 3 hours gave a catalyst of Example 3.

この触媒はバナジウム成分を後含浸した部分にバナジ
ウムをV2O5として4.2wt%含有していた。
This catalyst contained 4.2 wt% of vanadium as V 2 O 5 in the portion impregnated with the vanadium component.

この触媒を用いて実施例1と同様の方法により触媒性
能を評価した結果を表−1に示す。
Table 1 shows the results of evaluating the catalytic performance of this catalyst in the same manner as in Example 1.

比較例2 実施例3で得られた焼成成型体(B)を比較例2触媒
とした。
Comparative Example 2 The fired molded product (B) obtained in Example 3 was used as a comparative example 2 catalyst.

この触媒を用いて実施例1と同様の方法により触媒性
能を評価した結果を表−1に示す。
Table 1 shows the results of evaluating the catalytic performance of this catalyst in the same manner as in Example 1.

比較例3 実施例3で得られた焼成成型体(B)を用いて、触媒
のガス入口側部から、ガス出口側部まで、バナジウム成
分含有の高い触媒を調節した。
Comparative Example 3 Using the calcined molded product (B) obtained in Example 3, a catalyst having a high vanadium content was adjusted from the gas inlet side to the gas outlet side of the catalyst.

バナジウム成分の後含浸条件は、120cmの長さを有す
る焼成成型体(B)全体を含浸液に浸す点を除き実施例
3と同様とした。
The post-impregnation conditions for the vanadium component were the same as in Example 3 except that the entire fired molded body (B) having a length of 120 cm was immersed in the impregnation liquid.

この触媒は、触媒全体でのバナジウム含量がV2O5とし
て4.1wt%含有していた。
This catalyst had a vanadium content of 4.1 wt% as V 2 O 5 in the whole catalyst.

得られた触媒を実施例1と同様の方法により触媒性能
評価を行った結果を表−1に示す。
The obtained catalyst was evaluated for catalytic performance in the same manner as in Example 1, and the results are shown in Table 1.

実施例4 実施例1で得られた焼成成型体(A)を用いて下記の
条件でタングステン成分とバナジウム成分を後含浸し乾
燥後500℃×3hr焼成した触媒を得た。
Example 4 Using the calcined molded product (A) obtained in Example 1, a tungsten component and a vanadium component were post-impregnated under the following conditions, dried, and calcined at 500 ° C. for 3 hours to obtain a catalyst.

後含浸した部分のタングステン含量はWO3として10.1w
t%、バナジウム含量はV2O5として1.9wt%であった。
Tungsten content of the post-impregnated portion is 10.1w as WO 3
The t% and the vanadium content were 1.9 wt% as V 2 O 5 .

実施例1と同様の方法により触媒性能を評価した。結
果を表−1に示す。
The catalyst performance was evaluated in the same manner as in Example 1. The results are shown in Table 1.

含浸液:WO3として429gとなるメタタングステン酸アン
モンとV2O5として429gとなる硫酸バナジルをイオン交換
水にて溶解し10lとした。
Impregnating solution: 429 g of ammonium metatungstate as WO 3 and 429 g of vanadyl sulfate as V 2 O 5 were dissolved in ion-exchanged water to make 10 l.

含浸時間 :1分 含浸部長さ:10cm 実施例5 硫酸法酸化チタンの原料である水和酸化チタンのスラ
リー(TiO2として30重量%含有)2400kgにアンモニア水
を加えpH8.5に調節した後、パラモリブデン酸アンモン9
8.2kgを添加し、加熱しながら混練濃縮する。
Impregnation time: 1 minute Impregnation length: 10 cm Example 5 Aqueous ammonia was added to 2400 kg of a slurry of hydrated titanium oxide (containing 30% by weight as TiO 2 ) as a raw material of the titanium oxide by sulfuric acid method, and the pH was adjusted to 8.5 by adding ammonia water. Ammonium paramolybdate 9
Add 8.2kg, knead and concentrate while heating.

得られたケーキを乾燥後600℃で5時間焼成して酸化
チタン及び酸化モリブデンからなるパウダーを得た。
The obtained cake was dried and calcined at 600 ° C. for 5 hours to obtain a powder comprising titanium oxide and molybdenum oxide.

このパウダー716kgに粘土24kg、グラスファイバー56k
g、有機可塑剤50kgとメタバナジン酸アンモニウム5.143
kgを含む水溶液を加えニーダで混練した。
24kg of clay and 56k of fiberglass in 716kg of this powder
g, 50 kg of organic plasticizer and ammonium metavanadate 5.143
An aqueous solution containing kg was added and kneaded with a kneader.

この混練物を加熱しながら押出成型に適した水分に調
節した後断面が15cm口のハニカム状成型体に押出成型し
た。
The kneaded product was adjusted to a water content suitable for extrusion molding while heating, and then extruded into a honeycomb-shaped molded body having a cross section of 15 cm.

得られた成型体を乾燥後500℃×3hr焼成後120cmの長
さに切りそろえた。15cm口×120cm(L)の焼成成型体
(C)を得た。
The obtained molded body was dried, baked at 500 ° C. for 3 hours, and then cut into a length of 120 cm. A fired molded body (C) having a size of 15 cm × 120 cm (L) was obtained.

このハニカム成型体は断面に5mm口の貫通口を一辺に2
5個、計625個有する。
This honeycomb molded body has a through hole of 5 mm in cross section
Five, total 625.

実施例1にもちいた含浸液中に、上記製法で得られた
焼成成型体(C)の一端10cmを1分間浸した後引き上げ
液切り後乾燥し500℃で3時間焼成して実施例5の触媒
を得た。
One end of the fired molded product (C) obtained by the above method was dipped in the impregnating liquid used in Example 1 for 10 minutes, pulled up, drained, dried, and fired at 500 ° C. for 3 hours. A catalyst was obtained.

この触媒を実施例1と同一条件にて評価した。結果を
表−1に示す。
This catalyst was evaluated under the same conditions as in Example 1. The results are shown in Table 1.

比較例4 実施例5の焼成成型体(C)を比較例4触媒とした。Comparative Example 4 The fired molded product (C) of Example 5 was used as a comparative example 4 catalyst.

この触媒を用いて実施例1と同様の方法により触媒性
能を評価した。結果を表−1に示す。
Using this catalyst, catalytic performance was evaluated in the same manner as in Example 1. The results are shown in Table 1.

実施例6 実施例1で得られた酸化チタン及び酸化タングステン
からなるパウダー716kg、粘土24kg、グラスファイバー5
6kg、硫酸バナジル(VOSO4)1.92kgとイオン交換水350l
を加え、ニーダーで混練した。この混練物を加熱しなが
ら押出し成型に適した水分に調節した後、断面15cm口の
ハニカム状成形体を得た。得られた成形体を乾燥し、55
0℃×3hrs焼成後120cmの長さに切りそろえ、150cm口×1
20cm長さの焼成成型体を得た。
Example 6 Powder consisting of titanium oxide and tungsten oxide obtained in Example 1 716 kg, clay 24 kg, glass fiber 5
6kg, vanadyl sulfate (VOSO 4 ) 1.92kg and ion exchange water 350l
And kneaded with a kneader. After adjusting the moisture content of the kneaded product to a value suitable for extrusion molding while heating, a honeycomb-shaped formed body having a cross section of 15 cm was obtained. The obtained molded body is dried, and 55
0 ℃ × 3hrs After firing, cut into 120cm length, 150cm mouth × 1
A fired molded body having a length of 20 cm was obtained.

このハニカム状成型体は、断面に5mm口の貫通口を一
辺に25個、計625個有する。
This honeycomb-shaped formed body has 25 through-holes of 5 mm in cross section on a side, that is, 625 in total.

別に、WO3として35重量%を含むメタタングステン酸
アンモニウムの水溶液100lを用意した。この液中に上記
製法で得られた焼成成型体の一端10cmを一分間浸した
後、乾燥し、550℃×3hrs焼成して実施例6触媒を得
た。この触媒はタングステン成分を後含浸した部分にWO
3として17wt%含有していた。
Separately were prepared aqueous solution 100l of ammonium metatungstate containing 35 wt% as WO 3. One end 10 cm of the calcined molded body obtained by the above-mentioned production method was immersed in this liquid for 1 minute, dried, and calcined at 550 ° C. for 3 hours to obtain a catalyst of Example 6. This catalyst uses WO at the part impregnated with the tungsten component.
3 as 17 wt%.

本触媒を用いて、前記触媒性能試験法において排ガス
温度を490℃とした外は全く同様の方法で触媒性能を評
価した。
Using this catalyst, the catalyst performance was evaluated in exactly the same manner except that the exhaust gas temperature was set to 490 ° C. in the above catalyst performance test method.

結果を表−1に示す。 The results are shown in Table 1.

〔効果〕 本発明の触媒は、実施例及び比較例から明らかな様に
定置型ディーゼルエンジン排ガスの浄化に使用して、装
置の腐蝕や酸性硫安の生成に好ましくないSO2の酸化反
応を最小限に止めたまま、炭素系未燃物の触媒への付着
及び大気中への放出を抑制し、また1000時間後の脱硝活
性の劣化も少なく排ガスの浄化に優れた効果を示す。
[Effect] The catalyst of the present invention uses the purification of the Examples and as is evident from Comparative Example stationary diesel engine exhaust, minimize oxidation reactions undesirable SO 2 in the generation of corrosion and acid ammonium sulfate device In this way, the carbon-based unburned substances are prevented from adhering to the catalyst and being released into the atmosphere, and the denitration activity after 1000 hours is not deteriorated.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明方法における触媒性能を評価する試験装
置の概略図である。 1……ディーゼルエンジン、2……ブロウワー 3……流量指示調節部、4……ガスヒーター 5……アンモニア供給部、6……触媒充填塔 7……ローターメーター
FIG. 1 is a schematic view of a test apparatus for evaluating the catalyst performance in the method of the present invention. DESCRIPTION OF SYMBOLS 1 ... Diesel engine, 2 ... Blower 3 ... Flow rate control part 4, ... Gas heater 5 ... Ammonia supply part, 6 ... Catalyst packed tower 7 ... Rotor meter

フロントページの続き (72)発明者 福田 盛男 福岡県北九州市若松区北湊町13―2 触 媒化成工業株式会社若松工場内 (72)発明者 越川 武男 茨城県稲敷郡阿見町中央8―3―12 (72)発明者 山内 章弘 東京都小金井市梶野町5―12―11 ハイ ツ吉野102 (72)発明者 小椋 廣志 神奈川県横浜市戸塚区川上町645 三菱 油化社宅2棟303号 (56)参考文献 特公 昭61−4575(JP,B2) (58)調査した分野(Int.Cl.6,DB名) B01D 53/86 B01J 23/24,35/04 Continued on the front page (72) Inventor Morio Fukuda 13-2 Kitaminato-cho, Wakamatsu-ku, Kitakyushu-city, Fukuoka Prefecture Inside the Wakamatsu Plant (72) Inventor Takeo Koshikawa 8-3-12 Ami-cho, Inashiki-gun, Ibaraki Prefecture (72) Inventor Akihiro Yamauchi 5-12-11 Kajino-cho, Koganei-shi, Tokyo 102 Heights Yoshino 102 (72) Inventor Hiroshi Ogura 645 Kawakami-cho, Totsuka-ku, Yokohama-shi, Kanagawa Pref. Reference JP 61-4575 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) B01D 53/86 B01J 23/24, 35/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ガスの流れ方向に貫通孔を有する多数の触
媒成型体を充填した触媒床に排ガスを通し、排ガス中の
窒素酸化物を還元剤の存在下に250〜550℃の温度で前記
触媒成型体に接触させて還元除去する方法において、触
媒成分 (A)Ti,Si,Zrから選ばれた少なくとも1種の酸化物
(A成分)と、 (B)Mo,Wから選ばれた少なくとも1種の酸化物(B成
分)と、 (C)Vの酸化物(C成分) の3成分を含有し、かつ、B成分及び/又はC成分の含
有量が該触媒床のガス入口側部分の方が残りの部分より
も多いことを特徴とする排ガスの浄化方法。
An exhaust gas is passed through a catalyst bed filled with a large number of molded catalysts having through holes in the gas flow direction, and nitrogen oxides in the exhaust gas are removed at a temperature of 250 to 550 ° C. in the presence of a reducing agent. In the method of reducing and removing the catalyst by contacting with a molded catalyst, a catalyst component (A) at least one oxide (A component) selected from Ti, Si, Zr; and (B) at least one selected from Mo, W One component (B component) and (C) an oxide of V (component (C)), and the content of the component (B) and / or the component (C) is on the gas inlet side of the catalyst bed. The method for purifying exhaust gas, wherein the amount of the exhaust gas is larger than that of the rest.
【請求項2】ガス流れ方向に貫通孔を有する触媒成型体
において、触媒成分が (A)Ti,Si,Zrから選ばれた少なくとも1種の酸化物
(A成分)と、 (B)Mo,Wから選ばれた少なくとも1種の酸化物(B成
分)と、 (C)Vの酸化物(C成分) の3成分を含有し、かつ、B成分及び/又はC成分の含
有量が該触媒成型体のガス入口側部分の方が残りの部分
よりも多いことを特徴とする接触還元排ガス浄化用触媒
成型体。
2. A molded catalyst having through-holes in the gas flow direction, wherein the catalyst component is (A) at least one oxide selected from Ti, Si, Zr (A component); and (B) Mo, The catalyst contains at least one oxide selected from W (component (B)) and (C) an oxide of V (component (C)), and the content of the component (B) and / or the component (C) is the catalyst. A catalyst molded body for purifying catalytic reduction exhaust gas, characterized in that the gas inlet side portion of the molded body is larger than the remaining portion.
JP1075420A 1989-03-28 1989-03-28 Exhaust gas purification method and molded catalyst used therefor Expired - Fee Related JP2879738B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1075420A JP2879738B2 (en) 1989-03-28 1989-03-28 Exhaust gas purification method and molded catalyst used therefor
CA002013100A CA2013100C (en) 1989-03-28 1990-03-27 Process for purifying exhaust gas and catalyst molded article for use in it
EP90105773A EP0390059B2 (en) 1989-03-28 1990-03-27 Process for purifying exhaust gas and catalyst molded article for use in it
DE69009264T DE69009264T3 (en) 1989-03-28 1990-03-27 Process for the purification of exhaust gases and suitable shaped catalyst therefor.
AT90105773T ATE106270T1 (en) 1989-03-28 1990-03-27 METHOD FOR PURIFYING EXHAUST GASES AND MOLDED CATALYST SUITABLE FOR THEREOF.
US07/500,244 US5087430A (en) 1989-03-28 1990-03-27 Process for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1075420A JP2879738B2 (en) 1989-03-28 1989-03-28 Exhaust gas purification method and molded catalyst used therefor

Publications (2)

Publication Number Publication Date
JPH02253828A JPH02253828A (en) 1990-10-12
JP2879738B2 true JP2879738B2 (en) 1999-04-05

Family

ID=13575682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1075420A Expired - Fee Related JP2879738B2 (en) 1989-03-28 1989-03-28 Exhaust gas purification method and molded catalyst used therefor

Country Status (6)

Country Link
US (1) US5087430A (en)
EP (1) EP0390059B2 (en)
JP (1) JP2879738B2 (en)
AT (1) ATE106270T1 (en)
CA (1) CA2013100C (en)
DE (1) DE69009264T3 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2077078T5 (en) * 1989-10-06 2001-02-01 Basf Ag PROCEDURE FOR REDUCTION OF THE ISSUANCE OF INCOMPLETE COMBUSTION ORGANIC COMPOUNDS.
GB2275624A (en) * 1993-03-05 1994-09-07 Jaguar Cars Exhaust converter structure
DE4321555C1 (en) * 1993-06-29 1994-09-15 Bayer Ag Process for producing mixed-oxide powders for denitration catalysts
CA2141734C (en) * 1995-01-25 2000-06-06 Raj Narain Pandey Selective catalytic reduction of nitrogen oxides
DE69620080T2 (en) * 1995-08-30 2002-09-12 Haldor Topsoee As Lyngby Process and catalytic unit for the treatment of exhaust gas in diesel engines
DE19617081C2 (en) * 1996-04-29 2003-02-06 Kerr Mcgee Pigments Gmbh & Co Process for the production of mixed oxide powders from deactivated DENOX catalysts
ES2140268B1 (en) * 1996-09-16 2000-10-16 Consejo Superior Investigacion CATALYTIC SYSTEMS FOR THE SELECTIVE CATALYTIC REDUCTION OF NITROGEN OXIDES AT HIGH TEMPERATURE.
DE19840404A1 (en) * 1998-09-04 2000-03-09 Siemens Ag Process for the catalytic removal of polycyclic aromatic nitro, nitroso and / or amino compounds
US8364564B2 (en) * 2000-09-06 2013-01-29 International Business Machines Corporation Method for usage billing in an internet environment
US20040126286A1 (en) * 2002-06-19 2004-07-01 Deruyter John C. Method and apparatus for reducing a nitrogen oxide
JP5051977B2 (en) * 2005-01-31 2012-10-17 バブコック日立株式会社 Device for removing trace harmful substances in exhaust gas and operation method thereof
JP2008030017A (en) * 2006-07-26 2008-02-14 Babcock Hitachi Kk Removal apparatus of trace harmful substance in exhaust gas and its operation method
CN101511446B (en) 2006-07-26 2012-05-02 巴布考克日立株式会社 Method for removing little deleterious substance in air exhaust and operation method thereof
US8545796B2 (en) * 2009-07-31 2013-10-01 Cristal Usa Inc. Silica-stabilized ultrafine anatase titania, vanadia catalysts, and methods of production thereof
ES2804521T3 (en) 2012-08-24 2021-02-08 Tronox Llc Support materials for catalysts, catalysts, methods of their manufacture and uses thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3025133A (en) * 1959-10-12 1962-03-13 Minerals & Chem Philipp Corp Method for treating exhaust from an internal combustion engine operated on leaded fuel
JPS52122293A (en) * 1976-04-08 1977-10-14 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying nox
GB1586530A (en) * 1977-05-31 1981-03-18 Caterpillar Tractor Co Two-stage catalysts of engine exhaust
JPS5911340B2 (en) * 1977-11-15 1984-03-14 株式会社日本触媒 Improved shaped catalyst for nitrogen oxide purification
JPS56126437A (en) * 1980-03-08 1981-10-03 Mazda Motor Corp Catalyst for purification of exhaust gas of automobile
JPS56168835A (en) * 1980-05-31 1981-12-25 Mitsubishi Petrochem Co Ltd Denitrating catalyst and denitrating method
US4374103A (en) * 1981-07-20 1983-02-15 Ford Motor Company Method of using a low cost catalyst system
DE3565215D1 (en) * 1984-02-22 1988-11-03 Engelhard Corp Vanadium oxide catalyst for nitrogen oxide reduction and process using the same
DE3407172C2 (en) * 1984-02-28 1986-09-04 Degussa Ag, 6000 Frankfurt Device for cleaning exhaust gases from diesel engines
JPS634853A (en) * 1986-06-24 1988-01-09 Matsushita Electric Ind Co Ltd Catalyst for purifying exhaust gas
CA1295598C (en) * 1986-07-29 1992-02-11 Makoto Imanari Process for removing nitrogen oxides from exhaust gases

Also Published As

Publication number Publication date
US5087430A (en) 1992-02-11
EP0390059B2 (en) 1997-07-09
JPH02253828A (en) 1990-10-12
CA2013100C (en) 2000-05-30
EP0390059A2 (en) 1990-10-03
CA2013100A1 (en) 1990-09-28
DE69009264D1 (en) 1994-07-07
ATE106270T1 (en) 1994-06-15
EP0390059A3 (en) 1990-11-22
EP0390059B1 (en) 1994-06-01
DE69009264T2 (en) 1994-11-10
DE69009264T3 (en) 1998-03-19

Similar Documents

Publication Publication Date Title
JP2879738B2 (en) Exhaust gas purification method and molded catalyst used therefor
JP5576023B2 (en) Ammonia oxidation catalyst for coal burning public facilities
KR102515969B1 (en) Catalytic binder for exhaust gas catalysts and filter substrates
US9242212B2 (en) Zoned catalytic filters for treatment of exhaust gas
US4711870A (en) Exhaust gas purifying catalyst
KR930000642B1 (en) Process for purifying waste gases
JP5815232B2 (en) Selective catalytic reduction of nitrogen oxides in exhaust gas from diesel engines
KR20160014713A (en) Catalyzed filter for treating exhaust gas
EP0714692A1 (en) Catalyst for purification of diesel engine exhaust gas
JP2020515384A (en) Catalyst, exhaust system and method for treating exhaust gas
JPH0884911A (en) Catalyst for decomposing nitrogen oxide and method for purifying diesel engine exhaust using the same
JPH0587291B2 (en)
JP2004358454A (en) Exhaust gas cleaning catalyst and cleaning method
KR20020058179A (en) Catalyst for selective catalytic reduction of nitrogen oxides including sulfur dioxide at low temperature
WO2020149313A1 (en) Catalyst for exhaust gas purification use
JP4058503B2 (en) Exhaust gas purification catalyst layer, exhaust gas purification catalyst coating structure, and exhaust gas purification method using the same
JP3111491B2 (en) Exhaust gas purification catalyst
JPH10202103A (en) Oxidation catalyst for diesel engine and production thereof
JP2004322077A (en) Exhaust gas clarification catalyst and exhaust gas clarification method
EP0673282B1 (en) Catalyst for the purification of diesel engine exhaust gases
JP2003275596A (en) Catalyst for treating waste gas and waste gas treatment method
JPH0775736A (en) Exhaust gas purifying catalyst and exhaust gas purifying method
JP2006150301A (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH08309187A (en) Catalyst for purifying exhaust gas

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees