JP2876761B2 - Method for producing rare earth metal powder - Google Patents

Method for producing rare earth metal powder

Info

Publication number
JP2876761B2
JP2876761B2 JP25259590A JP25259590A JP2876761B2 JP 2876761 B2 JP2876761 B2 JP 2876761B2 JP 25259590 A JP25259590 A JP 25259590A JP 25259590 A JP25259590 A JP 25259590A JP 2876761 B2 JP2876761 B2 JP 2876761B2
Authority
JP
Japan
Prior art keywords
alloy
rare earth
powder
earth metal
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25259590A
Other languages
Japanese (ja)
Other versions
JPH04131308A (en
Inventor
正治 石渡
悦治 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP25259590A priority Critical patent/JP2876761B2/en
Publication of JPH04131308A publication Critical patent/JPH04131308A/en
Application granted granted Critical
Publication of JP2876761B2 publication Critical patent/JP2876761B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は希土類金属元素の粉末を製造する方法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a method for producing a rare earth metal element powder.

希土類金属の一種であるスカンジウムは、その粉末が
高輝度、高演色メタルハライドランプの封入物として用
いられ、その需要が増している。本発明は、このスカン
ジウムなどの希土類金属の粉末を効率良く製造する方法
を提供する。
Scandium, a kind of rare-earth metal, is used in high-brightness, high-color-rendering metal halide lamps as a powder, and its demand is increasing. The present invention provides a method for efficiently producing a rare earth metal powder such as scandium.

〔従来技術と問題点〕[Conventional technology and problems]

スカンジウムの金属精錬法はイットリウムと同じよう
にカルシウム還元法が従来一般的であり、溶媒抽出法な
いしイオン交換樹脂法によって他元素と分離して得られ
たスカンジウムの酸化物Sc2O3(融点2480℃)をフッ化
物に転換し、これをTa製のルヅボ中で亜鉛を共存させて
カルシウム還元を行い低融点のSc−Zn合金を形成し、こ
れを真空蒸留して亜鉛を揮発除去し、スポンジ状のスカ
ンジウムを製造している。しかし乍ら、この方法ではス
カンジウムの金属粉末を得ることはできない。従来、ス
カンジウムの金属粉末を直接製造できる方法については
特許その他の文献で公開されたものは見当らない。
Conventionally, the metal refining method of scandium is a calcium reduction method like yttrium, and a scandium oxide Sc 2 O 3 (melting point 2480) obtained by separating it from other elements by a solvent extraction method or an ion exchange resin method. ° C) into fluoride, which is reduced with calcium in the presence of zinc in a Ta-made crucible to form a low melting point Sc-Zn alloy, which is vacuum distilled to remove zinc by volatilization. We manufacture scandium. However, this method cannot obtain scandium metal powder. Conventionally, there is no method disclosed in patents and other documents for a method for directly producing scandium metal powder.

希土類元素のような極めて沸点の高い金属元素につい
て、この金属粉末を直接製造する方法として通常考えら
れる方法は、先づ希土類金属を水素ガスと高温で反応さ
せて水素化物とし、これを粉砕した後に真空中で脱水素
化する方法である。しかしこの方法では、先づ最初に希
土類金属の水素化物を製造しなければならず、しかも水
素化物を形成した後には更に脱水素工程が必要であるな
ど製造工程が煩雑である。更に希土類金属と水素ガスと
は高温で激しく反応するのでこの反応操作には危険が伴
う。また一般に希土類金属は非常に不安定で酸化され易
いので酸化防止が面倒であるなど種々の問題がある。
For a metal element having a very high boiling point, such as a rare earth element, a method usually considered as a method of directly producing this metal powder is to first react a rare earth metal with hydrogen gas at a high temperature to form a hydride, and then pulverize the hydride. This is a method for dehydrogenation in a vacuum. However, in this method, the hydride of the rare earth metal must first be produced first, and the production process is complicated since a dehydrogenation step is required after the hydride is formed. Further, since the rare earth metal and the hydrogen gas react violently at high temperatures, this reaction operation involves danger. Further, rare earth metals are generally very unstable and easily oxidized, so that there are various problems such as troublesome prevention of oxidation.

〔問題解決のための知見〕[Knowledge for problem solving]

本発明者等は、完全にかつ簡便に金属スカンジウム粉
末を製造する方法について種々検討した結果、Sc−Zn合
金等は比均的容易に粉砕できることに注目し、最初にス
カンジウムと亜鉛、マグネシウム等との合金を形成し、
該合金を粉砕した後にこれら亜鉛、マグネシウム等の合
金形成元素を揮発除去すれば容易に金属スカンジウム粉
末を製造できることを見い出し、この知見に基づく希土
類金属粉末の製造方法を提案した(特願昭63−107633
号)。
The present inventors have conducted various studies on a method for completely and simply producing a metal scandium powder, and as a result, have noticed that Sc-Zn alloys and the like can be easily and uniformly pulverized.First, scandium and zinc, magnesium, etc. Forming an alloy of
It has been found that a metal scandium powder can be easily produced by volatilizing and removing the alloying elements such as zinc and magnesium after pulverizing the alloy, and a method for producing a rare earth metal powder based on this finding was proposed (Japanese Patent Application No. 63-63). 107633
issue).

本発明者等は上記方法を更に改良し、合金形成元素を
揮発除去する際に粉末が焼結せず分散性に優れた希土類
金属粉末を製造できる方法を開発した。本発明は希土類
金属粉末の改良された製造方法を提供することを目的と
する。
The present inventors have further improved the above-mentioned method, and have developed a method capable of producing a rare earth metal powder excellent in dispersibility without powder sintering when the alloying element is volatilized and removed. An object of the present invention is to provide an improved method for producing a rare earth metal powder.

〔発明の構成〕[Configuration of the invention]

本発明によれば、(1)希土類金属に亜鉛、カドミニ
ウム、マグネシウムまたはヒ素から選ばれる合金形成元
素を加えて加熱溶融し、希土類金属を5〜80重量%含有
する希土類金属を製造した後に、酸素ガスと不活性ガス
の混合雰囲気中で粉砕するか、あるいは不活性ガス雰囲
気下で粉砕した後に酸素ガスと不活性ガスの混合雰囲気
に短時間曝すことにより、上記合金形成元素が揮発する
薄い酸化物被膜を表面に有する合金粉末とした後、該合
金粉末を真空下に加熱して上記合金形成元素の亜鉛、カ
ドミニウム、マグネシウムまたはヒ素を揮発除去するこ
とにより希土類金属の粉末を製造する方法が提供されて
いる。
According to the present invention, (1) an alloy-forming element selected from zinc, cadmium, magnesium or arsenic is added to a rare earth metal and heated and melted to produce a rare earth metal containing 5 to 80% by weight of the rare earth metal, and then oxygen is added. A thin oxide in which the above alloying elements are volatilized by grinding in a mixed atmosphere of gas and inert gas, or pulverizing in an inert gas atmosphere and then briefly exposing it to a mixed atmosphere of oxygen gas and inert gas. A method is provided for producing a rare earth metal powder by evaporating and removing zinc, cadmium, magnesium or arsenic of the above alloying elements by heating the alloy powder under vacuum after forming the alloy powder having a coating on the surface. ing.

また、その好適な実施態様として、(2)希土類金属
に亜鉛、カドミニウム、マグネシウムまたはヒ素との合
金を不活性ガス雰囲気下で200メッシュ以下に粉砕した
後に、この粉末を空気または酸素と窒素の混合ガス中に
短時間放置して薄い酸化被膜を形成させ、さらに真空容
器中で700〜1000℃で加熱して上記合金形成元素を揮発
除去する製造方法が提供される。
In a preferred embodiment, (2) an alloy of rare earth metal with zinc, cadmium, magnesium or arsenic is pulverized to 200 mesh or less in an inert gas atmosphere, and then the powder is mixed with air or a mixture of oxygen and nitrogen. A manufacturing method is provided in which a thin oxide film is formed by allowing the film to stand in a gas for a short time, and further heated at 700 to 1000 ° C. in a vacuum vessel to volatilize and remove the alloy-forming element.

以下、スカンジウム(以下Sc)を例に本発明を説明す
る。
Hereinafter, the present invention will be described using scandium (hereinafter Sc) as an example.

本発明において、Sc原料として、Scのハロゲン化物、
特にフッ化物(ScF3)または塩化物(ScCl3)が用いら
れる。一般に希土類金属は酸化物(Scの場合はSc2O3
が非常に安定であり原鉱から分離したものは酸化物の形
で得られるが、単体メタルを製造するためにはより反応
性に富むハロゲン化物に転換される。一般に使用される
のはフッ化物または塩化物である。Scの場合は、ScF3
たはScCl3をCa、Mg、NaまたはKの単体金属でScメタル
に還元する。この還元反応時に亜鉛等の合金構成元素を
添加すればSc−Zn合金が形成される。ScはCaおよびMgと
合金をつくるので還元に要する理論当量以上に過剰のCa
またはMgを加えればよい。その他の合金形成元素として
Asを用いることができる。合金中のScの含有量について
は特に制限はないが、合金が粉砕し易いことが必要であ
り、一例としてScの量は5〜80%、好ましくは5〜40%
である。Scが5%以下ではZnの分離除去量が過大になり
Scの純度が低下する。またScが80%以上であるとSc−Zn
合金の収率が低下する。
In the present invention, as a Sc raw material, a halide of Sc,
In particular, fluoride (ScF 3 ) or chloride (ScCl 3 ) is used. Generally, rare earth metals are oxides (in the case of Sc, Sc 2 O 3 )
Is very stable and separated from the ore is obtained in the form of oxides, but is converted to more reactive halides to produce elemental metals. Commonly used are fluorides or chlorides. In the case of Sc, ScF 3 or ScCl 3 is reduced to Sc metal with a simple metal of Ca, Mg, Na or K. If an alloying element such as zinc is added during this reduction reaction, a Sc—Zn alloy is formed. Since Sc forms an alloy with Ca and Mg, excess Ca exceeds the theoretical equivalent required for reduction.
Alternatively, Mg may be added. As other alloying elements
As can be used. The content of Sc in the alloy is not particularly limited, but it is necessary that the alloy be easily crushed. For example, the amount of Sc is 5 to 80%, preferably 5 to 40%.
It is. If the Sc is less than 5%, the amount of separated and removed Zn will be excessive.
The purity of Sc decreases. If Sc is 80% or more, Sc−Zn
The yield of the alloy decreases.

合金の製造温度は基本的には還元反応で生成する合金
の融点以上に設定されるが、一般にはフッ化リチウム
(LiF)等の融点降下剤を加えて反応温度を低くして行
われる。希土類単体および合金は酸化物を生じ易いので
合金形成の処理操作は不活性ガス雰囲気中で行う。具体
的には、原料のScF3又はScCl3と還元剤のCa等および合
金形成元素のZn等をTa製のルツボに装入し、これをステ
ンレス製の真空容器に入れ、内部の空気を排気して真空
にした後に不活性ガスを充填し不活性ガス雰囲気にして
加熱溶融する。
The production temperature of the alloy is basically set to be equal to or higher than the melting point of the alloy formed by the reduction reaction. Generally, the reaction temperature is lowered by adding a melting point depressant such as lithium fluoride (LiF). Since rare earth elements and alloys are liable to produce oxides, the processing for forming the alloy is performed in an inert gas atmosphere. Specifically, the raw material ScF 3 or ScCl 3 , the reducing agent Ca and the like, and the alloying element Zn and the like are charged into a Ta crucible, placed in a stainless steel vacuum vessel, and the air inside is exhausted. Then, the mixture is evacuated, filled with an inert gas, and heated and melted in an inert gas atmosphere.

加熱温度は900℃〜1100℃、加熱時間は15分〜1時間
が好ましい。
The heating temperature is preferably from 900 ° C. to 1100 ° C., and the heating time is preferably from 15 minutes to 1 hour.

還元合金化反応が終った後にフラックスを分離し、得
られたSc合金(Sc−Zn)を粉砕する。Sc−Zn合金は非常
に脆く、乳鉢中で擂り潰すことにより容易に粉砕でき
る。粉砕後または粉砕時に粉末表面に薄い酸化物被膜を
形成させる。この酸化物被膜により、その後に合金を加
熱して低融点のZn等を揮発させる際に粉末相互の焼結が
防止される。酸化物被膜の厚さは、上記加熱工程で亜鉛
等の合金形成成分が揮発する厚さである。Sc−Zn合金等
の粉砕時に酸化被膜を形成するには、合金粉末の過度な
酸化を防止するため酸素含有量を少なくした不活性ガス
雰囲気中で粉砕を行う。或いは空気中で粉砕する場合に
は短時間に粉砕を終える。また粉砕後に酸化物被膜を形
成する場合には、酸素含有ガス、例えば空気または酸素
ガスと不活性ガスとの混合ガス気流中に粉砕した合金粉
末を短時間曝して酸化物被膜を形成する。
After the completion of the reduction alloying reaction, the flux is separated, and the obtained Sc alloy (Sc-Zn) is pulverized. Sc-Zn alloys are very brittle and can be easily crushed by grinding in a mortar. After or during pulverization, a thin oxide film is formed on the powder surface. The oxide film prevents powder sintering when the alloy is subsequently heated to volatilize low melting point Zn and the like. The thickness of the oxide film is a thickness at which the alloy-forming components such as zinc are volatilized in the heating step. In order to form an oxide film during the pulverization of the Sc-Zn alloy or the like, the pulverization is performed in an inert gas atmosphere with a reduced oxygen content in order to prevent excessive oxidation of the alloy powder. Alternatively, when pulverizing in the air, the pulverization is completed in a short time. When an oxide film is formed after the pulverization, the pulverized alloy powder is briefly exposed to an oxygen-containing gas, for example, air or a mixed gas flow of an oxygen gas and an inert gas to form an oxide film.

粉砕した合金は再びTa製のルツボに入れ、これを真空
容器に装入して不活性ガス雰囲気下に加熱昇温し、真空
にしてSc以外の合金成分、Sc−Zn合金の場合はZnを揮発
除去してScから分離する。真空分離の温度、時間等は分
離除去する金属によって適宜調整する。Sc−Zn合金の場
合は、700〜1000℃で約1〜3時間の処理が必要であ
る。表面酸化処理を施された合金粉末は上記加熱時に粉
末が相互に焼結せず、良好に分散したSc金属粉末が得ら
れる。
The pulverized alloy is put again in a Ta crucible, which is charged into a vacuum vessel, heated and heated under an inert gas atmosphere, and evacuated to remove alloy components other than Sc, or Zn in the case of Sc-Zn alloy. Volatile removal and separation from Sc. The temperature and time for vacuum separation are appropriately adjusted depending on the metal to be separated and removed. In the case of a Sc-Zn alloy, treatment at 700 to 1000 ° C. for about 1 to 3 hours is required. The alloy powder having been subjected to the surface oxidation treatment does not sinter each other at the time of the above-mentioned heating, and a Sc metal powder which is well dispersed can be obtained.

なお、上記酸化物被膜を形成しない場合には、合金粉
末を加熱してSc以外の合金成分を揮発分離する際に、粉
末が焼結し、これを再度粉砕しても所望の粒度にするの
が難しくなる。また上記酸化物被膜が厚過ぎると金属Sc
としての価値がなくなる。
When the oxide film is not formed, when the alloy powder is heated to volatilize and separate alloy components other than Sc, the powder sinters, and even if the powder is crushed again, the powder has a desired particle size. Becomes difficult. If the oxide film is too thick, metal Sc
As worthless.

〔発明の効果〕〔The invention's effect〕

本発明の製造法によれば、従来はスポンジ等の形態で
しか得られなかった希土類金属を金属粉末として直接製
造することができ、かつ得られた粉末は分散性に優れ
る。しかも本発明の方法は従来の精錬方法に比べ低温度
で製造でき、製造工程も簡略であり実施が容易である。
According to the production method of the present invention, a rare earth metal which was conventionally obtained only in the form of a sponge or the like can be directly produced as a metal powder, and the obtained powder has excellent dispersibility. Moreover, the method of the present invention can be manufactured at a lower temperature than the conventional refining method, and the manufacturing process is simple and easy to implement.

〔実施例〕〔Example〕

以下に本発明の実施例を示す。尚、本実施例は本発明
の範囲を限定するものではない。
Hereinafter, examples of the present invention will be described. Note that the present embodiment does not limit the scope of the present invention.

実施例 1 フッ化スカンジウムScF340g、カルシウムCa34g、亜鉛
Zn137.7gおよびフッ化リチウムLiF42gを内容積500mlのT
a製のルツボに入れ、これをステンレス鋼製真空反応容
器に装入し、容器内の空気を真空ポンプで10−4mmHgま
で排気した後にアルゴンガスを充填し、再び10-4mmHgま
で脱気して再度アルゴンガスを充填して容器内を1気圧
とした。この反応容器を2時間で900℃に昇温し、この
温度を1時間保持して原料を溶融させ合金化させた。そ
の後、容器内を放冷してルツボを取り出し、合金相とフ
ラックス相を分離した。次いでアルゴン雰囲気のグロー
ボックス中で合金相を200メッシュ以下に粉砕した。粉
砕して得た合金粉末を空気100ml/min、窒素300ml/minの
混合ガス気流中で30分間放置して酸化処理を行い、粉末
表面に薄い酸化物被膜を施した。酸化処理した合金粉末
を再びTa製ルツボに入れて真空容器に装入し、1000℃で
5時間亜鉛を揮発除去した。
Example 1 Scandium fluoride ScF 3 40 g, calcium Ca 34 g, zinc
137.7 g of Zn and 42 g of lithium fluoride LiF with 500 ml of T
a) into a stainless steel vacuum reaction vessel, evacuate the air in the vessel to 10-4 mmHg with a vacuum pump, fill with argon gas, and degas again to 10-4 mmHg. Again, the inside of the container was filled with argon gas to 1 atm. The temperature of the reaction vessel was raised to 900 ° C. in 2 hours, and the temperature was maintained for 1 hour to melt and alloy the raw materials. Thereafter, the inside of the vessel was allowed to cool, the crucible was taken out, and the alloy phase and the flux phase were separated. Next, the alloy phase was pulverized to 200 mesh or less in a glow box in an argon atmosphere. The pulverized alloy powder was oxidized by leaving it in a mixed gas stream of air 100 ml / min and nitrogen 300 ml / min for 30 minutes to form a thin oxide film on the surface of the powder. The oxidized alloy powder was placed again in a Ta crucible and charged in a vacuum vessel, and zinc was volatilized and removed at 1000 ° C. for 5 hours.

このようにして得られた粉末は焼結しておらず、粉砕
時と同様の分散状態であり、粒子径も粉砕時と略同一で
あることが顕微鏡観察によって確認された。また得られ
た粉末はX線回析の結果から金属スカンジウムであるこ
とが確かめられた。この粉末中の亜鉛残留量は0.005%
以下であった。
Microscopic observation confirmed that the powder thus obtained was not sintered, was in the same dispersion state as at the time of pulverization, and had substantially the same particle size as that at the time of pulverization. Further, the obtained powder was confirmed to be metallic scandium from the result of X-ray diffraction. 0.005% zinc residue in this powder
It was below.

実施例 2 フッ化ホルミウムHoF340g、カルシウムCa41g、亜鉛Zn
50gおよびフッ化リチウムLiF48gを内容積500mlのTa製ル
ツボに入れ、これをステンレス鋼製真空反応容器に装入
し、容器内の空気を真空ポンプで10-4mmHgまで排気した
後にアルゴンガスを充填し、再び10-4mmHgまで脱気して
再度アルゴンガスを充填して容器内を1気圧とした。こ
の反応容器を2時間で1050℃に昇温し、この温度を1時
間保持して原料を溶融させ合金化させた。その後、容器
内を放冷してルツボを取り出し、合金相とフラックス相
を分離した。次いで、アルゴン雰囲気のグローボックス
中で合金相を200メッシュ以下に粉砕した。粉砕して得
た合金粉末を酸化10ml/min、窒素400ml/minの混合ガス
気流中で60分間放置して酸化処理を行い、粉末表面に薄
い酸化物被膜を施した。酸化処理した合金粉末を再びTa
製ルツボに入れて真空容器に装入し、1000℃で5時間亜
鉛を揮発除去した。
Example 2 40 g of holmium fluoride HoF 3 , 41 g of calcium Ca, zinc Zn
50 g and 48 g of lithium fluoride LiF were put into a 500-ml Ta crucible with an internal volume of 500 ml, and this was charged into a stainless steel vacuum reaction vessel.The air in the vessel was evacuated to 10 -4 mmHg with a vacuum pump, and then filled with argon gas. Then, the vessel was degassed again to 10 -4 mmHg, and again filled with argon gas to make the inside of the vessel 1 atm. The temperature of the reaction vessel was raised to 1050 ° C. in 2 hours, and the temperature was maintained for 1 hour to melt and alloy the raw materials. Thereafter, the inside of the vessel was allowed to cool, the crucible was taken out, and the alloy phase and the flux phase were separated. Next, the alloy phase was pulverized to 200 mesh or less in a glow box in an argon atmosphere. The alloy powder obtained by the pulverization was left to stand in a mixed gas stream of 10 ml / min of oxidation and 400 ml / min of nitrogen for 60 minutes to perform oxidation treatment, and a thin oxide film was formed on the surface of the powder. The oxidized alloy powder is again
The mixture was placed in a crucible and charged in a vacuum vessel, and zinc was volatilized and removed at 1000 ° C for 5 hours.

このようにして得られた粉末は焼結しておらず、粉砕
時と同様の分散状態であり、粒子径も粉砕時と略同一で
あることが顕微鏡観察によって確認された。また得られ
た粉末はX線回析の結果から金属ホルミウムであること
が確かめられた。この粉末中の亜鉛残留量は0.005%以
下であった。
Microscopic observation confirmed that the powder thus obtained was not sintered, was in the same dispersion state as at the time of pulverization, and had substantially the same particle size as that at the time of pulverization. Further, the obtained powder was confirmed to be metal holmium from the result of X-ray diffraction. The residual amount of zinc in this powder was 0.005% or less.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−263904(JP,A) 特開 昭59−190289(JP,A) 特開 昭58−55393(JP,A) 特公 平2−37402(JP,B2) 特表 平1−503310(JP,A) (58)調査した分野(Int.Cl.6,DB名) B22F 9/02 C22B 59/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-263904 (JP, A) JP-A-59-190289 (JP, A) JP-A-58-55393 (JP, A) 37402 (JP, B2) Special Table Hei 1-503310 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) B22F 9/02 C22B 59/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】希土類金属に亜鉛、カドミニウム、マグネ
シウムまたはヒ素から選ばれる合金形成元素を加えて加
熱溶融し、希土類金属を5〜80重量%含有する希土類合
金を製造した後に、酸素ガスと不活性ガスの混合雰囲気
中で粉砕するか、あるいは不活性ガス雰囲気下で粉砕し
た後に酸素ガスと不活性ガスの混合雰囲気に短時間曝す
ことにより、上記合金形成元素が揮発する薄い酸化物被
膜を表面に有する合金粉末とした後、該合金粉末を真空
下に加熱して上記合金形成元素の亜鉛、カドミニウム、
マグネシウムまたはヒ素を揮発除去することにより希土
類金属の粉末を製造する方法。
1. A rare earth metal, to which an alloying element selected from zinc, cadmium, magnesium or arsenic is added and heated and melted to produce a rare earth alloy containing 5 to 80% by weight of the rare earth metal, and then oxygen gas and inert gas are added. By pulverizing in a mixed gas atmosphere or pulverizing in an inert gas atmosphere and then briefly exposing it to a mixed atmosphere of oxygen gas and an inert gas, a thin oxide film in which the alloying elements are volatilized is coated on the surface. After having an alloy powder having, the alloy powder is heated under vacuum to form the alloy forming elements zinc, cadmium,
A method for producing rare earth metal powder by volatilizing and removing magnesium or arsenic.
【請求項2】希土類金属と亜鉛、カドミニウム、マグネ
シウムまたはヒ素との合金を不活性ガス雰囲気下で200
メッシュ以下に粉砕した後に、この粉末を空気または酸
素と窒素の混合ガス中に短時間放置して薄い酸化被膜を
形成させ、さらに真空容器中で700〜1000℃で加熱して
上記合金形成元素を揮発除去する請求項1に記載の製造
方法。
2. An alloy of a rare earth metal and zinc, cadmium, magnesium or arsenic in an inert gas atmosphere.
After pulverizing to a mesh or smaller, this powder is allowed to stand for a short time in air or a mixed gas of oxygen and nitrogen to form a thin oxide film, and further heated in a vacuum vessel at 700 to 1000 ° C. to remove the alloy-forming element. The production method according to claim 1, wherein volatilization is removed.
JP25259590A 1990-09-21 1990-09-21 Method for producing rare earth metal powder Expired - Lifetime JP2876761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25259590A JP2876761B2 (en) 1990-09-21 1990-09-21 Method for producing rare earth metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25259590A JP2876761B2 (en) 1990-09-21 1990-09-21 Method for producing rare earth metal powder

Publications (2)

Publication Number Publication Date
JPH04131308A JPH04131308A (en) 1992-05-06
JP2876761B2 true JP2876761B2 (en) 1999-03-31

Family

ID=17239557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25259590A Expired - Lifetime JP2876761B2 (en) 1990-09-21 1990-09-21 Method for producing rare earth metal powder

Country Status (1)

Country Link
JP (1) JP2876761B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101530439B1 (en) * 2013-10-28 2015-06-19 주식회사 포스코 Separating method for zinc of sewage sludge containing zinc

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5445725B1 (en) 2013-06-26 2014-03-19 日本軽金属株式会社 Method for producing Al-Sc alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101530439B1 (en) * 2013-10-28 2015-06-19 주식회사 포스코 Separating method for zinc of sewage sludge containing zinc

Also Published As

Publication number Publication date
JPH04131308A (en) 1992-05-06

Similar Documents

Publication Publication Date Title
CA1174083A (en) Process for the preparation of alloy powders which can be sintered and which are based on titanium
EP3512970B1 (en) A method for producing titanium-aluminum-vanadium alloy
US2618549A (en) Method for the production of titanium
US1728941A (en) Production of rare metals
US4837109A (en) Method of producing neodymium-iron-boron permanent magnet
US5002730A (en) Preparation of vanadium rich hydrogen storage alloy materials
JP2002544375A (en) Metal powder produced by reduction of oxides using gaseous magnesium
US4470847A (en) Process for making titanium, zirconium and hafnium-based metal particles for powder metallurgy
US20100064852A1 (en) Method for purification of metal based alloy and intermetallic powders
US1728942A (en) Method for producing uranium and uranium-zinc alloys
EP1437421B1 (en) Method for producing a titanium-base alloy having an oxide dispersion therein
JPH0261531B2 (en)
JP2876761B2 (en) Method for producing rare earth metal powder
CN112048655B (en) High-density high-activity multi-principal-element alloy and preparation method thereof
EP0652980B1 (en) Master alloys for beta 21s titanium-based alloys and method of making same
JP3049874B2 (en) Method for producing alloy powder containing rare earth metal
EP1466038B9 (en) Magnesium-zirconium alloying
JP2600282B2 (en) Method for producing metal scandium powder
US3784369A (en) Method for producing refractory metal powder
JP3151959B2 (en) Method for producing raw material powder for R-TM-B permanent magnet
JP2954711B2 (en) W-Ti alloy target and manufacturing method
JPH03173704A (en) Production of target for sputtering
JP2926280B2 (en) Rare earth-iron alloy production method
JP2590091B2 (en) Refractory metal silicide target and its manufacturing method
JPH1046269A (en) Manufacture of titanium-molybdenum master alloy, and titanium-molybdenum master alloy

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080122

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090122

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090122

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100122

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100122

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100122

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110122

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110122

Year of fee payment: 12