JP2870385B2 - Zero-phase voltage detection circuit of three-phase AC circuit - Google Patents

Zero-phase voltage detection circuit of three-phase AC circuit

Info

Publication number
JP2870385B2
JP2870385B2 JP28209593A JP28209593A JP2870385B2 JP 2870385 B2 JP2870385 B2 JP 2870385B2 JP 28209593 A JP28209593 A JP 28209593A JP 28209593 A JP28209593 A JP 28209593A JP 2870385 B2 JP2870385 B2 JP 2870385B2
Authority
JP
Japan
Prior art keywords
zero
phase
circuit
voltage detection
phase voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28209593A
Other languages
Japanese (ja)
Other versions
JPH07113831A (en
Inventor
俊明 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAKAOKA SEISAKUSHO KK
Original Assignee
TAKAOKA SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAKAOKA SEISAKUSHO KK filed Critical TAKAOKA SEISAKUSHO KK
Priority to JP28209593A priority Critical patent/JP2870385B2/en
Publication of JPH07113831A publication Critical patent/JPH07113831A/en
Application granted granted Critical
Publication of JP2870385B2 publication Critical patent/JP2870385B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Transformers For Measuring Instruments (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、三相交流回路における
零相電圧検出回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zero-phase voltage detecting circuit in a three-phase AC circuit.

【0002】[0002]

【従来の技術】零相電圧検出とは何かを、三相交流回路
の送電線の場合を例にして図2を用いて説明する。送電
線に一線地絡事故が発生した場合、地絡方向継電器の動
作による系統保護を行っているが、この地絡方向継電器
は、送電線の零相電圧と零相電流の積および位相により
事故を検出している。この送電線の零相電圧を検出する
ために、送電線の電圧Vu、Vv、Vwを零相電圧検出
回路に入力し、この検出回路の出力を、電圧計等の計測
器で測定することにより、送電線の事故時等に発生する
零相電圧を検出することができる。このような三相交流
回路の零相電圧検出回路は、従来、図3に示すように、
一次巻線14、15、16と二次巻線17の4個の巻線
の軸が、平行かつ一直線上に並ぶ様な配置としている。
また、環状磁心12は環状磁心13の外周を取り巻くよ
うに配置され、さらに、環状磁心11も環状磁心12の
外周を取り巻くように配置されている。このため、3個
の環状磁心11、12、13は磁路長がそれぞれ異なる
ので、同一特性を得るために、磁心断面もそれぞれ異な
る形状となっている。磁気回路の磁気抵抗RはR=L/
(μS)で表され、ここにμは磁心の透磁率、Lは磁路
長、Sは断面積である。従って、同一特性を得るには磁
路長Lの増加率と同じ割合で断面積Sを増加させなけれ
ばならない。説明を、図3を用い以下に示す。環状磁心
11、12、13の磁気抵抗R1、R2、R3は式
(1)、式(2)および式(3)で表される。 R1=L1/(μS1) ・・・(1) R2=L2/(μS2) ・・・(2) R3=L3/(μS3) ・・・(3) ここに、L1、S1は環状磁心11の磁路長および断面
積、L2、S2は環状磁心12の磁路長および断面積、
またL3、S3は環状磁心13の磁路長および断面積と
する。このとき、R1、R2、R3の値を等しくするこ
とを考える。a21、a31はL1と、L2、L3の比
で式(4)および式(5)で表される。 a21=L2/L1 ・・・(4) a31=L3/L1 ・・・(5) 式(4)を変形すると L2=a21×L1 ・・・(6) になり、また式(6)を式(2)に代入すると R2=(a21×L1)/(μS2) ・・・(7) となり、ここでR1とR2が等しくなるには R2=R1 ・・・(8) (a21×L1)/(μS2)=L1/(μS1) ・・・(9) となりS2が求まる。 S2=a21×S1 ・・・(10) 式(10)により、環状磁心12の磁路長が、環状磁心
11の磁路長に比べa21倍であるとき、断面積の増加
の割合もa21倍でなければならないことを表してい
る。また、環状磁心13についても同様に、磁心11の
磁路長に比べa31倍であるとき、断面積の増加の割合
もa31倍でなければならない。以上のように、磁路長
の増加分だけ断面積も増加した磁心を製作して、同一特
性を得ている。
2. Description of the Related Art What is zero-phase voltage detection will be described with reference to FIG. 2 taking the case of a transmission line of a three-phase AC circuit as an example. When a single-line ground fault occurs on a transmission line, the system is protected by the operation of a ground fault directional relay. Has been detected. In order to detect the zero-phase voltage of the transmission line, the voltages Vu, Vv, and Vw of the transmission line are input to a zero-phase voltage detection circuit, and the output of the detection circuit is measured by a measuring instrument such as a voltmeter. In addition, it is possible to detect a zero-phase voltage generated at the time of a power line accident or the like. Conventionally, such a zero-phase voltage detection circuit of a three-phase AC circuit, as shown in FIG.
The four windings of the primary windings 14, 15, 16 and the secondary winding 17 are arranged so that their axes are parallel and linear.
Further, the annular magnetic core 12 is arranged so as to surround the outer periphery of the annular magnetic core 13, and the annular magnetic core 11 is also arranged so as to surround the outer periphery of the annular magnetic core 12. Therefore, since the three annular magnetic cores 11, 12, and 13 have different magnetic path lengths, the magnetic cores have different cross sections to obtain the same characteristics. The magnetic resistance R of the magnetic circuit is R = L /
(ΜS), where μ is the magnetic permeability of the magnetic core, L is the magnetic path length, and S is the cross-sectional area. Therefore, in order to obtain the same characteristics, the sectional area S must be increased at the same rate as the increase rate of the magnetic path length L. The description is given below using FIG. The magnetic resistances R1, R2, and R3 of the annular magnetic cores 11, 12, and 13 are represented by Expressions (1), (2), and (3). R1 = L1 / (μS1) (1) R2 = L2 / (μS2) (2) R3 = L3 / (μS3) (3) where L1 and S1 are of the annular magnetic core 11. Magnetic path length and cross-sectional area, L2 and S2 are the magnetic path length and cross-sectional area of the annular magnetic core 12,
L3 and S3 are the magnetic path length and cross-sectional area of the annular magnetic core 13. At this time, consider making the values of R1, R2, and R3 equal. a21 and a31 are represented by Expressions (4) and (5) in the ratio of L1 to L2 and L3. a21 = L2 / L1 (4) a31 = L3 / L1 (5) By transforming equation (4), L2 = a21 × L1 (6), and equation (6) can be expressed by equation (6). Substituting into (2), R2 = (a21 × L1) / (μS2) (7), where R1 and R2 are equalized R2 = R1 (8) (a21 × L1) / (μS2) ) = L1 / (μS1) (9) and S2 is obtained. S2 = a21 × S1 (10) According to Expression (10), when the magnetic path length of the annular magnetic core 12 is a21 times as long as the magnetic path length of the annular magnetic core 11, the rate of increase of the cross-sectional area is also a21 times. It means that it must be. Similarly, when the annular magnetic core 13 is a31 times as large as the magnetic path length of the magnetic core 11, the rate of increase in the cross-sectional area must be a31 times. As described above, the same characteristics are obtained by manufacturing a magnetic core whose cross-sectional area is increased by the increase in the magnetic path length.

【0003】[0003]

【発明が解決しようとする課題】従来の零相電圧検出回
路は、それぞれの磁心を異なる寸法で製作しなければな
らず、これにともない、磁心毎の設計、生産設備、治具
等を必要とする欠点がある。そこで、本発明は、零相電
圧検出回路を同一材料かつ同一寸法の磁心で構成するこ
とができるようにし、これにより零相電圧を検出回路の
製造が容易になるようにしたものである。
In the conventional zero-phase voltage detection circuit, each magnetic core must be manufactured with different dimensions, which requires a design, a production facility, a jig, and the like for each magnetic core. There are drawbacks. In view of the above, the present invention allows the zero-phase voltage detection circuit to be formed of a magnetic core having the same material and the same dimensions, thereby facilitating the manufacture of the zero-phase voltage detection circuit.

【0004】[0004]

【課題を解決するための手段】本発明では、磁心の形状
を、同一特性の環状磁心3個を同じ寸法とし、この環状
磁心の一次巻線の配置を放射状に120゜の角間隔に配
置する。
According to the present invention, the shape of the magnetic core is such that three annular magnetic cores having the same characteristic have the same size, and the primary windings of the annular magnetic core are radially arranged at angular intervals of 120 °. .

【0005】[0005]

【作用】上記のように構成することにより、環状磁心3
個を同じ寸法で製作でき、簡単に同一特性の磁心による
零相電圧検出回路を構成することができる。
According to the above construction, the annular magnetic core 3
Each of them can be manufactured with the same dimensions, and a zero-phase voltage detecting circuit using magnetic cores having the same characteristics can be easily configured.

【0006】[0006]

【実施例】図1は、本発明の零相電圧検出回路の一例
で、図1(A)は零相電圧検出回路の斜視図、図1
(B)は零相電圧検出回路の平面図である。図1のよう
に、強磁性体材料を磁心材料とした同一特徴、同一形状
の環状磁心1、2、3を、それぞれの一側面を突き合わ
せて120゜の角間隔で放射状に配置する。磁心1、
2、3の一側面を突き合わせるために、それぞれの一側
面は互いに120゜の角間隔をなす二つの面により形成
する。これを磁心1、2、3の上記の一側面と反対側の
脚部に一次巻線4、5、6をそれぞれ巻装(装着)し、
磁心1、2、3の突き合わされた脚部にまたがって二次
巻線を巻装する。
1 is an example of a zero-phase voltage detection circuit according to the present invention. FIG. 1A is a perspective view of the zero-phase voltage detection circuit, and FIG.
(B) is a plan view of the zero-phase voltage detection circuit. As shown in FIG. 1, annular magnetic cores 1, 2, and 3 having the same characteristics and the same shape and made of a ferromagnetic material as a magnetic core material are arranged radially at an angular interval of 120 ° with their respective side surfaces abutting each other. Magnetic core 1,
In order to abut one or two sides, each side is formed by two planes that are spaced apart by 120 °. The primary windings 4, 5, and 6 are wound around (attached to) the leg portions of the magnetic cores 1, 2, and 3 opposite to the one side surface, respectively.
The secondary winding is wound around the butted legs of the magnetic cores 1, 2, and 3.

【0007】[0007]

【発明の効果】環状磁心を同一寸法とすることができ、
設計、生産設備および治具等の種類を減少させ、また、
製作に対しては、多品種製作の煩雑さを低減できる。
According to the present invention, the annular cores can have the same dimensions,
Reduce the types of design, production equipment and jigs,
For production, the complexity of multi-product production can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の、零相電圧検出回路を示す図である。
(A)は斜視図を示し、(B)は平面図を示す。
FIG. 1 is a diagram showing a zero-phase voltage detection circuit according to the present invention.
(A) shows a perspective view and (B) shows a plan view.

【図2】零相電圧検出の説明のためのブロック図であ
る。
FIG. 2 is a block diagram illustrating zero-phase voltage detection.

【図3】従来の、零相電圧検出回路を示す斜視図であ
る。
FIG. 3 is a perspective view showing a conventional zero-phase voltage detection circuit.

【符号の説明】[Explanation of symbols]

1,2,3,11,12,13 環状磁心 4,5,6,14,15,16 一次巻線 7,17 二次巻線 1,2,3,11,12,13 Annular core 4,5,6,14,15,16 Primary winding 7,17 Secondary winding

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 強磁性体材料を磁心材料とした同一特
性、同一形状の環状磁心3個と、これらの環状磁心を個
別に鎖交する同一特性、同一形状の一次巻線3個の配置
を放射状に120゜の角間隔にし、これらの環状磁心を
全て鎖交する二次巻線1個を備えた、三相交流回路の零
相電圧検出回路。
1. An arrangement of three annular cores having the same characteristics and the same shape using a ferromagnetic material as a core material and three primary windings having the same characteristics and the same shape interlinking these annular cores individually. A zero-phase voltage detection circuit of a three-phase AC circuit, comprising a single secondary winding radially spaced at an angle of 120 ° and interlinking all of these annular magnetic cores.
JP28209593A 1993-10-18 1993-10-18 Zero-phase voltage detection circuit of three-phase AC circuit Expired - Fee Related JP2870385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28209593A JP2870385B2 (en) 1993-10-18 1993-10-18 Zero-phase voltage detection circuit of three-phase AC circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28209593A JP2870385B2 (en) 1993-10-18 1993-10-18 Zero-phase voltage detection circuit of three-phase AC circuit

Publications (2)

Publication Number Publication Date
JPH07113831A JPH07113831A (en) 1995-05-02
JP2870385B2 true JP2870385B2 (en) 1999-03-17

Family

ID=17648062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28209593A Expired - Fee Related JP2870385B2 (en) 1993-10-18 1993-10-18 Zero-phase voltage detection circuit of three-phase AC circuit

Country Status (1)

Country Link
JP (1) JP2870385B2 (en)

Also Published As

Publication number Publication date
JPH07113831A (en) 1995-05-02

Similar Documents

Publication Publication Date Title
JP2002243766A (en) Electric current sensor
US20060208725A1 (en) Position sensors
US4683513A (en) Dual current transformer current sensing method and sensor
US20060179959A1 (en) Magnetostrictive torque sensor
JPH06213614A (en) Position detection device
CN105264389A (en) Current measurement device and current calculation method
US5194805A (en) Inductance-type displacement sensor for eliminating inaccuracies due to external magnetic fields
JP2010529425A (en) Device for measuring the current through a conductor
JP2870385B2 (en) Zero-phase voltage detection circuit of three-phase AC circuit
JP2745452B2 (en) Split-type zero-phase current transformer for DC
JP2609383B2 (en) Current detector
JPH11237411A (en) Dc current sensor and dc current measurement system
JPH03239965A (en) Current detector
US4092582A (en) Electrical coupling arrangements
JP3940947B2 (en) Zero phase current transformer
JPH06258347A (en) Current transformer for measuring instrument
JPH0242366A (en) Current detecting method and current detector
JPS61201404A (en) Gapped input transformer for static protective relay
JP3151807B2 (en) Current detector
JPH06174754A (en) Wide range current sensor
JP2532432Y2 (en) Air core reactor
JPH0222529B2 (en)
JPH03115870A (en) Current sensor
JPS6217366B2 (en)
SU1501289A1 (en) Device for measuring high-frequency signal level in power supply lines

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees