JP2866791B2 - Buried reference electrode - Google Patents

Buried reference electrode

Info

Publication number
JP2866791B2
JP2866791B2 JP5318774A JP31877493A JP2866791B2 JP 2866791 B2 JP2866791 B2 JP 2866791B2 JP 5318774 A JP5318774 A JP 5318774A JP 31877493 A JP31877493 A JP 31877493A JP 2866791 B2 JP2866791 B2 JP 2866791B2
Authority
JP
Japan
Prior art keywords
electrolyte
reference electrode
tube
electrode
electrolyte solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5318774A
Other languages
Japanese (ja)
Other versions
JPH07174727A (en
Inventor
敬三 細谷
光矢 平戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUKI KK
Original Assignee
NITSUKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUKI KK filed Critical NITSUKI KK
Priority to JP5318774A priority Critical patent/JP2866791B2/en
Publication of JPH07174727A publication Critical patent/JPH07174727A/en
Application granted granted Critical
Publication of JP2866791B2 publication Critical patent/JP2866791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、土中またはコンクリー
ト中に埋設される金属構造物の電位を測定するために、
該構造物の近傍部に埋設される照合電極に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for measuring a potential of a metal structure buried in soil or concrete.
The present invention relates to a reference electrode embedded in the vicinity of the structure.

【0002】[0002]

【従来の技術】土中またはコンクリート中に埋設された
金属構造物の腐食防止に有効な手段として、電気防食法
(陰極防食法)が従来から多用されている。電気防食法
は防食対象となる金属構造物から離して陽極を接地さ
せ、金属構造物を陰極として陽極との間に直流電流を連
続的に供給することにより、金属構造物を陰分極させ、
その電位を、腐食反応が完全に停止する防食電位以下に
維持する方法である。
2. Description of the Related Art As a means effective for preventing corrosion of a metal structure buried in soil or concrete, a cathodic protection method (cathodic protection method) has been frequently used. In the cathodic protection method, the anode is grounded away from the metal structure to be protected, and the metal structure is negatively polarized by continuously supplying a direct current between the anode and the metal structure as a cathode.
In this method, the potential is maintained at or below the anticorrosion potential at which the corrosion reaction stops completely.

【0003】この種の電気防食法では、防食対象である
金属構造物の電位を計測することにより防食効果の判定
ができるため、電位計測が定期的に行われる。金属構造
物の電位は、その近傍の土壌、コンクリート表面、コン
クリート表面に接する土壌あるいは金属構造物直上の土
壌に、基準となる照合電極を設置し、電位差計の+端子
に金属構造物を、−端子に照合電極を接続して測定され
る。
In this type of cathodic protection method, the anticorrosion effect can be determined by measuring the electric potential of a metal structure to be anticorrosion target, so that the electric potential measurement is performed periodically. The potential of the metal structure is measured by installing a reference electrode on the soil, concrete surface, soil in contact with the concrete surface, or soil immediately above the metal structure, and connecting the metal structure to the + terminal of the potentiometer. Measured by connecting a reference electrode to the terminal.

【0004】この場合、設置した照合電極の近傍部の電
位が測定されるため、照合電極を移動させることにより
電位の分布を知ることもできる。また、電気防食を適用
していない埋設金属構造物の場合では、マクロセル腐食
の有無を定性的に判断する目的で、電位分布の測定が行
われることもある。
In this case, since the potential in the vicinity of the installed reference electrode is measured, the potential distribution can be known by moving the reference electrode. In the case of a buried metal structure to which no cathodic protection is applied, the potential distribution may be measured for the purpose of qualitatively determining the presence or absence of macrocell corrosion.

【0005】しかし、金属構造物の直上の地表が広範囲
に亙って舗装されている場合や、地上設置式タンクの底
板中央部付近の電位は、照合電極を金属構造物の近傍部
に設置することが不可能であるため、上記の方法では測
定できない。このため、金属構造物の近傍部に長期間使
用可能な埋設式照合電極を予め埋設し、そのリード線を
地上部に設けた測定用ボックスまで配線しておくことに
より、測定を可能とする方法が採られている。
[0005] However, when the ground surface directly above the metal structure is paved over a wide area or when the potential near the center of the bottom plate of the above-ground tank is set, the reference electrode is installed near the metal structure. It is not possible to measure with the above method because it is impossible. For this reason, a method that enables measurement by previously burying a buried type reference electrode that can be used for a long time in the vicinity of the metal structure and wiring the lead wire to the measurement box provided on the ground part Is adopted.

【0006】この種の埋設式照合電極のうち、土中埋設
用としては、高純度亜鉛棒をバックフィルと呼ばれる石
膏とベントナイトを主成分とする粉末で包んだ亜鉛照合
電極や、純銅棒を液絡部を有するケーシング内に収納
し、このケーシング内部に飽和硫酸銅溶液あるいは飽和
硫酸銅溶液を含有する石膏またはペースト等を充填した
飽和硫酸銅照合電極が実用化されている。また、コンク
リートへの埋設用としては、液絡部を有するケーシング
内に純鉛棒を収納し、前記ケーシング内部に水酸化カル
シウムを主成分としたアルカリ性電解質を含む石膏また
はペーストを充填した鉛照合電極が実用化されている。
[0006] Of the buried type reference electrodes of this type, for burial in the soil, a zinc reference electrode in which a high-purity zinc rod is wrapped with a powder mainly composed of gypsum and bentonite called a backfill, or a pure copper rod is used as a liquid. A saturated copper sulfate reference electrode which is housed in a casing having a entangled portion and filled with a saturated copper sulfate solution or a gypsum or paste containing the saturated copper sulfate solution has been put to practical use. Further, for embedding in concrete, a lead reference electrode in which a pure lead rod is housed in a casing having a liquid junction, and a gypsum or paste containing an alkaline electrolyte containing calcium hydroxide as a main component is filled in the casing. Has been put to practical use.

【0007】[0007]

【発明が解決しようとする課題】上記の亜鉛照合電極、
飽和硫酸銅照合電極および鉛照合電極によれば、電極内
部の金属が接触する電解質の濃度および量を一定範囲内
に保つ限りは電極電位が一定値に維持されるが、電解質
が土壌中へ散逸したり、または土壌中の水分が電極内部
に侵入すると、電極電位は本来の値と異なり基準電極と
しての機能が失われる。
The above zinc reference electrode,
According to the saturated copper sulfate reference electrode and the lead reference electrode, the electrode potential is maintained at a constant value as long as the concentration and amount of the electrolyte in contact with the metal inside the electrode are kept within a certain range, but the electrolyte dissipates into the soil If the water content in the electrode falls or the moisture in the soil enters the inside of the electrode, the electrode potential is different from the original value and the function as the reference electrode is lost.

【0008】そこで、この不利益を抑制するため、透水
性の低い多孔質材料からなる液絡部や、透水性の低いベ
ントナイトのバックフィル材も用いられているが、含水
率が常時低い土壌中では徐々に液絡部から電解質が流出
して充填物質中に含まれる電解質溶液量が低下したり、
逆に、地下水流が存在する土壌中では、電極内部あるい
はバックフィル中の電解質が希釈されることが避けられ
なかった。したがって、長期間にわたり一定の電極電位
を維持することは困難だった。
In order to suppress such disadvantages, a liquid junction made of a porous material having low water permeability and a backfill material of bentonite having low water permeability have been used. Then, the electrolyte gradually flows out from the liquid junction and the amount of the electrolyte solution contained in the filling substance decreases,
Conversely, in the soil where the groundwater flow exists, it was inevitable that the electrolyte inside the electrode or in the backfill was diluted. Therefore, it has been difficult to maintain a constant electrode potential for a long period of time.

【0009】また、照合電極に共通する事柄であるが、
測定系の抵抗を計器許容入力抵抗以下に保つためには照
合電極と接する土壌が湿潤していることが必要である。
通常の設置方法においては、雨水あるいは地下水の浸透
により水分が照合電極の周囲に補給されるため問題はな
いが、前述したような盛土基礎上に設置された大型タン
クの底板下部や、地下水位が低くかつ地表面が広範囲に
舗装された土中においては、時間の経過とともに照合電
極の周囲の土壌の含水率が低下するため、照合電極の接
地抵抗が徐々に上昇して、ついには電位測定が困難にな
るという問題点があった。特に、融点の高い物質を貯蔵
するような常時加熱されるタンクの底板直下部に設置さ
れた場合には、設置後1ないし3年で照合電極が使用不
能になることが多かった。
[0009] Further, a common matter of the reference electrode is as follows.
In order to keep the resistance of the measuring system below the allowable input resistance of the meter, it is necessary that the soil in contact with the reference electrode is moist.
In the normal installation method, there is no problem because water is supplied around the reference electrode by rainwater or groundwater infiltration, but the lower part of the bottom plate of the large tank installed on the embankment foundation and the groundwater level In soil that is low and has a wide ground surface, the water content of the soil around the reference electrode decreases over time, so that the ground resistance of the reference electrode gradually increases, and the potential measurement eventually ends. There was a problem that it became difficult. In particular, in the case where the reference electrode is installed immediately below the bottom plate of a constantly heated tank for storing a substance having a high melting point, the reference electrode often becomes unusable one to three years after the installation.

【0010】本発明は上記事情に鑑みてなされたもの
で、埋設された照合電極内部に外部から電解質溶液を供
給可能とすることにより、電極本体の電位の安定化を図
るとともに電極接地抵抗の上昇を抑制でき、長期間の使
用が可能な埋設式照合電極を提供することを課題として
いる。
[0010] The present invention has been made in view of the above circumstances, and by enabling the electrolyte solution to be supplied from the outside to the embedded reference electrode, the potential of the electrode body is stabilized and the ground resistance of the electrode is increased. It is an object of the present invention to provide a buried type reference electrode which can suppress the problem and can be used for a long time.

【0011】[0011]

【課題を解決するための手段】本発明に係る埋設式照合
電極は、少なくとも一部に液浸透性を有する外包体と、
この外包体の内部に充填され電解質溶液を含有する充填
物質と、前記外包体内で前記充填物質に接触して配置さ
れた電極本体と、一端がこの電極本体に接続され他端が
外包体を貫通して外部に延ばされることにより測定機器
に接続可能とされた電線と、一端が前記外包体内に連通
し他端が外部に延ばされることにより電解液供給手段に
接続可能とされた電解液供給管とを具備し、この電解液
供給管を介して前記電解液供給手段から前記外包体内に
電解質溶液を供給可能とされていることを特徴としてい
る。
According to the present invention, there is provided a buried type reference electrode comprising at least a part of a liquid permeable outer package;
A filling substance filled in the outer package body and containing an electrolyte solution, an electrode body disposed in contact with the filling substance in the outer package body, and one end connected to the electrode body and the other end penetrating the outer package body An electric wire that can be connected to a measuring instrument by being extended to the outside, and an electrolyte supply pipe that has one end connected to the outer package and the other end extended to the outside so that it can be connected to electrolyte supply means. And an electrolyte solution can be supplied from the electrolyte solution supply means into the outer package through the electrolyte solution supply pipe.

【0012】なお、前記構成に加えて、一端が前記外包
体内に連通し他端が外部に延ばされる電解液排出管を設
け、外包体内に供給された電解質溶液の過剰分を前記電
解液排出管を通じて排出可能としてもよい。また、一端
が前記外包体内に連通し他端が外部に延ばされた、内管
および外管とからなる二重管を設け、この二重管の外管
と内管の間隙または内管の一方を前記電解液供給管とし
て使用し、他方を前記電解液排出管として使用してもよ
い。さらに、前記電解液供給管にはフィラメントを充填
してもよい。
In addition, in addition to the above-mentioned structure, an electrolyte discharge pipe is provided, one end of which is communicated with the outer package and the other end is extended to the outside, and an excess amount of the electrolyte solution supplied into the outer package is supplied to the electrolyte discharge pipe. It may be possible to discharge through. In addition, a double pipe having an inner pipe and an outer pipe, one end of which is communicated with the outer package and the other end of which is extended outside, is provided, and the gap between the outer pipe and the inner pipe of the double pipe or the inner pipe is provided. One may be used as the electrolyte supply pipe and the other may be used as the electrolyte discharge pipe. Further, the electrolyte supply pipe may be filled with a filament.

【0013】[0013]

【作用】本発明に係る埋設式照合電極によれば、電解液
供給管を通じて、埋設された照合電極内部に外部から電
解質溶液を適時供給することにより、電極本体の電位の
安定化を図ることができるとともに、埋設式照合電極の
接地抵抗を許容範囲内に維持することができ、照合電極
の機能の安定化および耐用年数を飛躍的に延長すること
が可能である。
According to the buried type reference electrode of the present invention, the potential of the electrode body can be stabilized by supplying an electrolyte solution from the outside to the inside of the buried reference electrode through the electrolyte supply pipe in a timely manner. Besides, the ground resistance of the buried type reference electrode can be maintained within an allowable range, and the function of the reference electrode can be stabilized and its service life can be greatly extended.

【0014】また、請求項2に係る埋設式照合電極によ
れば、外包体内に供給された電解質溶液の過剰分を電解
液排出管を通じて排出することにより、埋設式照合電極
内部の電解質溶液を適宜交換することが可能となり、地
下水等による電解質溶液の濃度変化を防いで、基準電位
をいっそう安定化することができる。
Further, according to the embedded reference electrode according to the second aspect, by discharging an excess amount of the electrolyte solution supplied into the outer casing through the electrolyte discharge pipe, the electrolyte solution inside the embedded reference electrode can be appropriately removed. It is possible to exchange the electrolyte solution, thereby preventing a change in the concentration of the electrolyte solution due to groundwater or the like, and further stabilizing the reference potential.

【0015】さらに、請求項3または4記載の埋設式照
合電極によれば、電解液供給管(および電解液排出管)
が潰れにくくなるので、潰れによる電解質溶液の供給困
難を防止することが可能である。
Further, according to the embedded reference electrode according to the third or fourth aspect, the electrolyte supply pipe (and the electrolyte discharge pipe).
Is difficult to be crushed, so that it is possible to prevent the supply of the electrolyte solution due to the crushing.

【0016】[0016]

【実施例】図1は、本発明に係る埋設式照合電極の第1
実施例として、バックフィル充填型の亜鉛照合電極を示
す断面図である。図中符号2はリード線(電線)1が接
続された亜鉛棒(電極本体)であり、リード線1の他端
は外部へと延ばされている。亜鉛棒2とリード線1の接
続部分は、プラスチック等からなる電極固定部7に埋め
込まれて補強され、電極固定部7の亜鉛棒2側には、亜
鉛棒2の一部を覆うようにスポンジ状等の絶縁性多孔質
材料からなる液保持部8が固定されている。
1 shows a first embodiment of a buried type reference electrode according to the present invention.
FIG. 3 is a cross-sectional view showing a backfill-filled zinc reference electrode as an example. In the figure, reference numeral 2 denotes a zinc rod (electrode main body) to which a lead wire (electric wire) 1 is connected, and the other end of the lead wire 1 extends to the outside. The connecting portion between the zinc rod 2 and the lead wire 1 is reinforced by being embedded in an electrode fixing portion 7 made of plastic or the like, and a sponge is provided on the zinc rod 2 side of the electrode fixing portion 7 so as to cover a part of the zinc rod 2. A liquid holding portion 8 made of an insulating porous material having a shape such as a shape is fixed.

【0017】電極固定部7には、亜鉛棒2の両側におい
て、プラスチック等からなる電解液供給管5および電解
液排出管6の一端部が埋設され、これらの先端開口部が
液保持部8内に挿入されている。このような液保持部8
を設けると、液保持部8内で電解質溶液が分散されて液
保持部8の広い外面から均一に拡散されるので、電解質
溶液の供給効率および排出効率を高めることができる。
一方、電解液供給管5および電解液排出管6の他端部
は、リード線1とともに外部へ延ばされ、地上等におい
て電解液供給手段(図示略)に接続可能とされている。
One end of an electrolytic solution supply pipe 5 and an electrolytic solution discharge pipe 6 made of plastic or the like are embedded in the electrode fixing section 7 on both sides of the zinc rod 2. Has been inserted. Such a liquid holding unit 8
Is provided, the electrolyte solution is dispersed in the liquid holding unit 8 and uniformly diffused from the wide outer surface of the liquid holding unit 8, so that the supply efficiency and the discharge efficiency of the electrolyte solution can be improved.
On the other hand, the other end portions of the electrolyte supply pipe 5 and the electrolyte discharge pipe 6 are extended to the outside together with the lead wire 1 so that they can be connected to an electrolyte supply means (not shown) on the ground or the like.

【0018】亜鉛棒2、電極固定部7および液保持部8
を包囲して布袋(外包体)4が設けられ、この布袋4内
には、電解質溶液を含んだベントナイトを主成分とする
バックフィル(充填物質)3が充填され、このバックフ
ィル3内に亜鉛棒2が浸漬されている。この場合の電解
質溶液としては、pH8〜9に調整された硫酸ナトリウ
ムを主成分とする溶液が適合する。
Zinc rod 2, electrode fixing part 7, and liquid holding part 8
Is provided with a backfill (filling substance) 3 containing bentonite as a main component containing an electrolyte solution, and the backfill 3 is provided with zinc. The rod 2 is immersed. As the electrolyte solution in this case, a solution mainly containing sodium sulfate adjusted to pH 8 to 9 is suitable.

【0019】上記構成からなる埋設式照合電極では、電
解液供給管5を通じて外部から電解質溶液を布袋4内に
供給することにより、バックフィル3を適当な濃度の電
解質溶液で湿潤化し、さらに布袋4を通じて土壌中に電
解質溶液を拡散させることができる。したがって、含水
率が低い土壌中で徐々に電解質溶液が流出することが避
けられない場合や、地下水によりバックフィル3中の電
解質が希釈されてしまう場合にも、新たな電解質溶液の
供給により電極電位を再び安定化できるとともに、亜鉛
棒2と土壌と間に導通状態を確保して接地抵抗を許容範
囲内に維持でき、照合電極の機能の安定化および耐用年
数を飛躍的に延長することが可能である。
In the buried type reference electrode having the above-described structure, the backfill 3 is wetted with an appropriate concentration of the electrolyte solution by supplying the electrolyte solution from the outside into the cloth bag 4 through the electrolyte solution supply pipe 5, and the cloth bag 4 The electrolyte solution can be diffused into the soil through. Therefore, even when it is unavoidable that the electrolyte solution gradually flows out in the soil having a low moisture content, or when the electrolyte in the backfill 3 is diluted by groundwater, the supply of the new electrolyte solution causes the electrode potential to decrease. And the grounding resistance can be maintained within the allowable range by ensuring conduction between the zinc rod 2 and the soil, stabilizing the function of the reference electrode and dramatically extending its useful life. It is.

【0020】また、供給された電解質溶液の過剰分を電
解液排出管6を通じて排出することにより、埋設式照合
電極内部の電解質溶液を効率よく交換することが可能で
あるから、例えば地下水の流入で電解質溶液が希釈され
た場合や、脱水により濃縮された場合にも、その濃度を
復帰させることが容易であるという利点を有する。
Further, by discharging the excess of the supplied electrolyte solution through the electrolyte discharge pipe 6, the electrolyte solution inside the buried type reference electrode can be efficiently exchanged. There is an advantage that it is easy to restore the concentration even when the electrolyte solution is diluted or concentrated by dehydration.

【0021】なお、電極本体、充填物質および電解質溶
液の種類は、埋設式照合電極の使用目的に応じて適宜変
更してよいのは勿論であり、他の構成もそれに対応して
変更してよい。また、もしも電解質溶液の土壌への流出
量と外部からの供給量を適当範囲に管理できるのであれ
ば、電解液排出管6は省略してもよい。
It is needless to say that the types of the electrode body, the filling substance, and the electrolyte solution may be appropriately changed according to the purpose of use of the embedded reference electrode, and other configurations may be changed accordingly. . Further, if the flow rate of the electrolyte solution into the soil and the supply rate from the outside can be controlled within appropriate ranges, the electrolyte discharge pipe 6 may be omitted.

【0022】図2は、本発明の第2実施例として、飽和
溶液タイプの飽和硫酸銅照合電極に適用した例を示す断
面図である。符号10は純銅またはタフピッチ銅等の銅
棒(電極本体)10であり、外部へ連なるリード線(電
線)20が接続されている。銅棒10は樹脂等の絶縁材
からなるパイプ12に収容され、パイプ12の先端開口
部は液浸透性を有する多孔質セラミックス等からなる浸
透板11で封止される一方、パイプ12の基端開口部は
電極固定部19で封止され、この電極固定部19により
銅棒10とリード線21の接続部が支持されている。
FIG. 2 is a sectional view showing an example in which the present invention is applied to a saturated solution type saturated copper sulfate reference electrode as a second embodiment of the present invention. Reference numeral 10 denotes a copper rod (electrode main body) 10 such as pure copper or tough pitch copper, to which a lead wire (electric wire) 20 connected to the outside is connected. The copper rod 10 is accommodated in a pipe 12 made of an insulating material such as a resin, and the opening at the distal end of the pipe 12 is sealed with a penetrating plate 11 made of a porous ceramic having liquid permeability. The opening is sealed by an electrode fixing portion 19, and the connecting portion between the copper bar 10 and the lead wire 21 is supported by the electrode fixing portion 19.

【0023】電極固定部19を貫通して、一端がパイプ
12内に連通し他端が外部に延びた電解液供給管17お
よび電解液排出管18が設けられ、パイプ12の内部に
は硫酸銅結晶14を含む飽和硫酸銅溶液(充填物質の一
部)13が満たされている。さらに、パイプ12は全体
が布袋16で包囲され、この布袋16の内部には、電解
質溶液を含むベントナイトを主成分とするバックフィル
(充填物質)15が充填されている。
An electrolytic solution supply pipe 17 and an electrolytic solution discharge pipe 18 having one end communicating with the inside of the pipe 12 and the other end extending outside are provided through the electrode fixing portion 19. A saturated copper sulphate solution (part of the filling material) 13 containing crystals 14 is filled. Further, the pipe 12 is entirely surrounded by a cloth bag 16, and the inside of the cloth bag 16 is filled with a backfill (filling substance) 15 mainly composed of bentonite containing an electrolyte solution.

【0024】この第2実施例においても、電解液供給管
17を通じて外部から電解質溶液を供給することによ
り、パイプ12内の電解質溶液13の減少を補うととも
に、浸透板11を通じて流出した電解質溶液でバックフ
ィル15を湿潤化し、さらに布袋16を通じて土壌中に
電解質溶液を拡散させることができる。これにより、銅
棒10の電位安定化が図れ、埋設式照合電極の接地抵抗
を許容範囲内に維持することができ、照合電極の機能の
安定化および耐用年数を飛躍的に延長することが可能で
ある。
Also in the second embodiment, the electrolyte solution is supplied from the outside through the electrolyte supply pipe 17, thereby compensating for the decrease of the electrolyte solution 13 in the pipe 12 and backing up with the electrolyte solution flowing out through the permeation plate 11. The fill 15 can be moistened and the electrolyte solution can be diffused into the soil through the cloth bag 16. As a result, the potential of the copper rod 10 can be stabilized, the ground resistance of the buried type reference electrode can be maintained within an allowable range, and the function of the reference electrode can be stabilized and its service life can be significantly extended. It is.

【0025】なお、図1および図2のいずれにおいて
も、電解液供給管5,17および電解液排出管6,18
が折れ曲がって電解質溶液が円滑に流れなくなるのを防
ぐために、管5,6,17,18の全長または一部の内
部に、樹脂等のフィラメントを適当な本数挿入してもよ
い。この場合のフィラメントは、例えば単繊維の細糸な
どであり、PVCまたはPE等の電線被覆材料よりも軟
化点の高い樹脂が好ましい。このようなフィラメントを
入れると、管5,17,6,18が折れ曲がりにくくな
るし、たとえ折れ曲がったとしてもフィラメントの間を
通って電解質溶液が流れるため、閉塞することがない。
In both FIGS. 1 and 2, the electrolyte supply pipes 5, 17 and the electrolyte discharge pipes 6, 18
In order to prevent the electrolyte solution from flowing smoothly and preventing the electrolyte solution from flowing smoothly, an appropriate number of filaments such as a resin may be inserted into the entire length or a part of the tubes 5, 6, 17, and 18. The filament in this case is, for example, a single-filament fine thread, and a resin having a softening point higher than that of an electric wire coating material such as PVC or PE is preferable. When such a filament is inserted, the tubes 5, 17, 6, and 18 are less likely to bend, and even if the tube is bent, the electrolyte solution flows between the filaments, so that the tubes do not block.

【0026】次に、図3は本発明の第3実施例を示し、
この例では、互いに独立した電解液供給管および電解液
排出管を設ける代わりに、外管22Aおよび内管22B
からなる二重管22を使用したことを特徴とし、その他
の構成は図1の実施例と同様である。二重管22の一端
は電極固定部7を貫通して液保持部8内に達し、二重管
22の他端は外部へ延ばされている。そして、内管22
Bを通じて電解質溶液を供給する一方、外管22Aと内
管22Bの間隙を通じて電解質溶液を排出するようにな
っている。
FIG. 3 shows a third embodiment of the present invention.
In this example, the outer pipe 22A and the inner pipe 22B are provided instead of providing an independent electrolyte supply pipe and electrolyte discharge pipe.
The structure is the same as that of the embodiment shown in FIG. One end of the double tube 22 penetrates through the electrode fixing portion 7 and reaches the inside of the liquid holding portion 8, and the other end of the double tube 22 extends to the outside. And the inner pipe 22
While supplying the electrolyte solution through B, the electrolyte solution is discharged through the gap between the outer tube 22A and the inner tube 22B.

【0027】この第3実施例では、二重管22が屈曲し
にくいことから、屈曲による流路閉塞のおそれが少ない
うえ、管が1本ですむので配管が容易であるという利点
を有する。二重管22を用いた構成は、図2の実施例に
も勿論適用可能である。
In the third embodiment, since the double pipe 22 is hardly bent, there is little risk of blockage of the flow path due to the bending, and there is an advantage that the pipe is easy because only one pipe is required. The configuration using the double pipe 22 is of course applicable to the embodiment of FIG.

【0028】(実験例)次に、本発明の実験例を挙げて
発明の効果を実証する。図3は、実験に使用した設備を
示し、符号23は防食対象となるアスファルト貯蔵タン
ク(金属構造物)である。このタンク23は、清浄な川
砂で構築された基礎24上に設置され、タンク外周部に
は、コンクリート25およびコーキング26で雨水等の
侵入を防ぐための防水処理が施されている。タンク23
の内部は電気ヒータにより常時185℃に加温されてい
る。タンク23の中央部底板の下方0.3mの位置に、
本実験例に係る埋設式照合電極27と、従来式の埋設式
照合電極28を互いに3m離して設置した。
(Experimental Examples) Next, the effects of the present invention will be demonstrated by giving experimental examples of the present invention. FIG. 3 shows equipment used in the experiment, and reference numeral 23 denotes an asphalt storage tank (metal structure) to be subjected to anticorrosion. The tank 23 is installed on a foundation 24 constructed of clean river sand, and the outer peripheral portion of the tank is subjected to a waterproof treatment for preventing intrusion of rainwater and the like by concrete 25 and caulking 26. Tank 23
Is always heated to 185 ° C. by an electric heater. At a position 0.3m below the bottom plate at the center of the tank 23,
The buried type reference electrode 27 according to the present experimental example and the conventional buried type reference electrode 28 were placed 3 m apart from each other.

【0029】実験例の埋設式照合電極27の構造を図5
に、また従来の埋設式照合電極28を図6にそれぞれ示
す。両者とも、電極本体32として米軍規格(MIL
A−18001J:1983)による同一の亜鉛棒を用
い、ベントナイト、石膏、硫酸ナトリウム10水塩を重
量比で7.5:2:0.5に混合したバックフィル33
を充填した布袋34に電極本体32を収容したものであ
る。亜鉛棒の寸法は外径10mm×長さ100mmとし
た。
FIG. 5 shows the structure of the buried type reference electrode 27 of the experimental example.
FIG. 6 shows a conventional buried type reference electrode 28, respectively. In both cases, U.S. military standards (MIL
A-18001J: 1983) Backfill 33 in which bentonite, gypsum and sodium sulfate decahydrate were mixed at a weight ratio of 7.5: 2: 0.5 using the same zinc rod.
The electrode body 32 is housed in a cloth bag 34 filled with. The dimensions of the zinc rod were 10 mm in outer diameter × 100 mm in length.

【0030】一方、実験例の照合電極27では、電極本
体32の基端部外周に多孔質樹脂材料からなる液保持部
35を固定し、この液保持部35内に、外部へ延びる電
解液供給管30および電解液排出管31の先端を差し込
んで固定した。電解液供給管30および電解液排出管3
1としては、電力用3芯ケーブルのうちの2芯から導線
を除いて樹脂フィラメント37を充填したものを使用し
た。また、3芯ケーブルの残りの1芯は、電極ケーブル
29として使用した。実験例電極27および従来電極2
8は、設置時に予め水道水中に浸漬して十分に湿らせた
後に埋設した。
On the other hand, in the reference electrode 27 of the experimental example, a liquid holding portion 35 made of a porous resin material is fixed to the outer periphery of the base end portion of the electrode main body 32, and an electrolytic solution extending to the outside is supplied into the liquid holding portion 35. The ends of the tube 30 and the electrolyte discharge tube 31 were inserted and fixed. Electrolyte supply pipe 30 and electrolyte discharge pipe 3
As 1, a three-core power cable in which a conductor was removed from two cores and filled with a resin filament 37 was used. The remaining one core of the three-core cable was used as the electrode cable 29. Experimental example electrode 27 and conventional electrode 2
8 was buried after being immersed in tap water and moistened sufficiently before installation.

【0031】設置1年後(タンク完成後8か月後)に各
照合電極27,28の接地抵抗を測定した結果、両者と
も約100kΩを示した。電極電位を測定したところ、
別の飽和硫酸銅電極を基準として、従来電極28は−7
00mV、本発明電極27は−720mVを示し、標準
値である−1100±25mVと比較して約400mV
も貴な値であり、基準電極として機能していないことが
確認された。
One year after the installation (eight months after the tank was completed), the ground resistance of each of the reference electrodes 27 and 28 was measured. As a result, both of them showed about 100 kΩ. When the electrode potential was measured,
The conventional electrode 28 is -7 with respect to another saturated copper sulfate electrode.
00mV, the electrode 27 of the present invention shows −720 mV, which is about 400 mV compared to the standard value of −1100 ± 25 mV.
Was also a precious value, and it was confirmed that it did not function as a reference electrode.

【0032】そこで、本発明電極27の電解液供給管3
0より3%硫酸ナトリウム水溶液をシリンジを用いて2
リットル注入し、3時間放置した時点で再度両者の接地
抵抗および電位を測定した。その結果、従来電極では変
化は認められなかったが、溶液を供給した本発明電極2
7では接地抵抗が0.8kΩに低減し、電極電位は飽和
硫酸銅電極基準で−1080mVの正常値を示し、機能
回復効果が確認された。また、電解質溶液は必ずしも常
時供給する必要はなく、使用時に先立ち適宜供給すれば
よいことも判明した。
Therefore, the electrolyte supply pipe 3 of the electrode 27 of the present invention
0 to 3% aqueous solution of sodium sulfate using a syringe
After the liter was injected and left for 3 hours, the ground resistance and potential of both were measured again. As a result, no change was observed in the conventional electrode, but the electrode 2 of the present invention supplied with the solution
In No. 7, the ground resistance was reduced to 0.8 kΩ, and the electrode potential showed a normal value of −1080 mV based on the saturated copper sulfate electrode, confirming the function recovery effect. It has also been found that the electrolyte solution does not always need to be supplied at all times, but may be supplied appropriately before use.

【0033】[0033]

【発明の効果】以上説明したように、本発明に係る埋設
式照合電極によれば、電解液供給管を通じて、埋設され
た照合電極内部に外部から電解質溶液を適時供給するこ
とにより、電極本体の電位の安定化を図ることができる
とともに、埋設式照合電極の接地抵抗を許容範囲内に維
持することができ、照合電極の機能の安定化および耐用
年数を飛躍的に延長することが可能である。
As described above, according to the buried type reference electrode of the present invention, the electrolyte solution is supplied from the outside to the inside of the buried reference electrode through the electrolyte supply pipe in a timely manner, so that the electrode body is In addition to stabilizing the potential, the ground resistance of the buried type reference electrode can be maintained within an allowable range, so that the function of the reference electrode can be stabilized and its service life can be drastically extended. .

【0034】また、請求項2に係る埋設式照合電極によ
れば、外包体内に供給された電解質溶液の過剰分を電解
液排出管を通じて排出することにより、埋設式照合電極
内部の電解質溶液を適宜交換することが可能となり、地
下水等による電解質溶液の濃度変化を防いで、基準電位
をいっそう安定化することができる。
Further, according to the embedded reference electrode according to the second aspect, by discharging an excess amount of the electrolyte solution supplied into the outer casing through the electrolyte discharge pipe, the electrolyte solution inside the embedded reference electrode can be appropriately removed. It is possible to exchange the electrolyte solution, thereby preventing a change in the concentration of the electrolyte solution due to groundwater or the like, and further stabilizing the reference potential.

【0035】さらに、請求項3または4記載の埋設式照
合電極によれば、電解液供給管(および電解液排出管)
が潰れにくくなるので、潰れによる電解質溶液の供給困
難を防止することが可能である。
Furthermore, according to the embedded reference electrode according to the third or fourth aspect, the electrolyte supply pipe (and the electrolyte discharge pipe).
Is difficult to be crushed, so that it is possible to prevent the supply of the electrolyte solution due to the crushing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る埋設式照合電極の第1実施例を示
す断面図である。
FIG. 1 is a cross-sectional view showing a first embodiment of an embedded reference electrode according to the present invention.

【図2】本発明の第2実施例を示す断面図である。FIG. 2 is a sectional view showing a second embodiment of the present invention.

【図3】本発明の第3実施例を示す断面図である。FIG. 3 is a sectional view showing a third embodiment of the present invention.

【図4】本発明の実験例に使用した金属構造体を示す正
面図である。
FIG. 4 is a front view showing a metal structure used in an experimental example of the present invention.

【図5】本発明の実験例として使用した埋設式照合電極
を示す断面図である。
FIG. 5 is a cross-sectional view showing an embedded reference electrode used as an experimental example of the present invention.

【図6】従来例として使用した埋設式照合電極を示す断
面図である。
FIG. 6 is a sectional view showing a buried type reference electrode used as a conventional example.

【符号の説明】[Explanation of symbols]

1,20,29 リード線(電線) 2,10,32 電極本体 3,15,33 バックフィル(充填物質) 4,16,34 布袋(外包体) 5,17,30 電解液供給管 6,18,31 電解液排出管 7,19,36 電極固定部 8,35 液保持部 11 浸透板 12 パイプ 13 電解質溶液(充填物質) 22 二重管 23 金属構造体 37 フィラメント 1,20,29 Lead wire (electric wire) 2,10,32 Electrode body 3,15,33 Backfill (filling substance) 4,16,34 Cloth bag (outer envelope) 5,17,30 Electrolyte supply pipe 6,18 , 31 Electrolyte discharge tube 7, 19, 36 Electrode fixing part 8, 35 Liquid holding part 11 Penetration plate 12 Pipe 13 Electrolyte solution (filling substance) 22 Double tube 23 Metal structure 37 Filament

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01N 27/26 351 G01N 17/02 G01N 27/30 311Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01N 27/26 351 G01N 17/02 G01N 27/30 311

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】土中またはコンクリート中に埋設された金
属構造物の電位を測定するために前記金属構造物の近傍
に埋設される埋設式照合電極であって、 少なくとも一部が液浸透性を有する外包体と、この外包
体の内部に充填され電解質溶液を含有する充填物質と、
前記外包体内で前記充填物質に接触して配置された電極
本体と、一端がこの電極本体に接続され他端が外包体を
貫通して外部に延ばされることにより測定機器に接続可
能とされた電線と、一端が前記外包体内に連通し他端が
外部に延ばされることにより電解液供給手段に接続可能
とされた電解液供給管とを具備し、この電解液供給管を
介して前記電解液供給手段から前記外包体内に電解質溶
液を供給可能とされていることを特徴とする埋設式照合
電極。
A buried reference electrode buried in the vicinity of a metal structure for measuring a potential of the metal structure buried in soil or concrete, at least a part of which has a liquid permeability. An outer package having, a filling material filled inside the outer package and containing an electrolyte solution,
An electrode body disposed in contact with the filling substance in the outer package, and an electric wire having one end connected to the electrode main body and the other end penetrating through the outer package and extending to the outside so as to be connectable to a measuring instrument; And an electrolyte supply pipe, one end of which is connected to the outer package and the other end of which is connected to the electrolyte supply means by extending the other end to the outside. The electrolyte supply pipe is provided through the electrolyte supply pipe. An embedded reference electrode, wherein an electrolyte solution can be supplied into the outer envelope from a means.
【請求項2】一端が前記外包体内に連通し他端が外部に
延ばされる電解液排出管がさらに設けられ、前記外包体
内に供給された電解質溶液の過剰分を前記電解液排出管
を通じて排出可能とされていることを特徴とする請求項
1記載の埋設式照合電極。
2. An electrolyte discharge tube, one end of which is communicated with the outer package and the other end of which is extended outside, is provided, and an excess amount of the electrolyte solution supplied into the outer package can be discharged through the electrolyte discharge tube. The embedded reference electrode according to claim 1, wherein:
【請求項3】一端が前記外包体内に連通し他端が外部に
延ばされた、内管および外管とからなる二重管が設けら
れ、この二重管の外管と内管の間隙または内管の一方を
前記電解液供給管として使用し、他方を前記電解液排出
管として使用することを特徴とする請求項2記載の埋設
式照合電極。
3. A double tube comprising an inner tube and an outer tube, one end of which is communicated with the outer package and the other end of which is extended to the outside, and a gap between the outer tube and the inner tube of the double tube. 3. The embedded reference electrode according to claim 2, wherein one of the inner tubes is used as the electrolyte supply tube and the other is used as the electrolyte discharge tube.
【請求項4】前記電解液供給管にはフィラメントが充填
されていることを特徴とする請求項1記載の埋設式照合
電極。
4. The buried type reference electrode according to claim 1, wherein said electrolyte supply tube is filled with a filament.
JP5318774A 1993-12-17 1993-12-17 Buried reference electrode Expired - Fee Related JP2866791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5318774A JP2866791B2 (en) 1993-12-17 1993-12-17 Buried reference electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5318774A JP2866791B2 (en) 1993-12-17 1993-12-17 Buried reference electrode

Publications (2)

Publication Number Publication Date
JPH07174727A JPH07174727A (en) 1995-07-14
JP2866791B2 true JP2866791B2 (en) 1999-03-08

Family

ID=18102800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5318774A Expired - Fee Related JP2866791B2 (en) 1993-12-17 1993-12-17 Buried reference electrode

Country Status (1)

Country Link
JP (1) JP2866791B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6336405B2 (en) * 2015-02-02 2018-06-06 東日本電信電話株式会社 Cross-sectional area change detection device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217147A (en) * 1983-05-25 1984-12-07 Nippon Kenchiku Sogo Shikenjo Method and apparatus for inspecting corrosion of steel material in concrete
JPH04169843A (en) * 1990-11-02 1992-06-17 Osaka Gas Co Ltd Anticorrosion control apparatus for undergound embedded pipe

Also Published As

Publication number Publication date
JPH07174727A (en) 1995-07-14

Similar Documents

Publication Publication Date Title
USRE40672E1 (en) Cathodic protection of concrete
EP3101411B1 (en) Permanent reference electrode for the potential measurement of buried metallic structures
EP1749119B1 (en) Sacrificial anode assembly
US8273239B2 (en) Corrosion protection of steel in concrete
AU2013298658B2 (en) Galvanic anode and method of corrosion protection
KR20010033749A (en) connector for use in cathotic protection and method of use
US2565544A (en) Cathodic protection and underground metallic structure embodying the same
US20100147703A1 (en) Sacrificial anode and treatment of concrete
EP0147977A2 (en) Novel anodes for cathodic protection
US4235688A (en) Salt bridge reference electrode
US2480087A (en) Rapid-wetting gypsum-base backfill for cathodic protection
JP2866791B2 (en) Buried reference electrode
US3582531A (en) Electrochemical grounding rod
US5174871A (en) Method for providing cathodic protection of underground structures
US2601214A (en) Cathodic protection of underground metals
US4388168A (en) Low resistance electrode system
JP2022054349A (en) Soil solidification method, soil solidification device, and sediment disaster prevention method
JP3053043B2 (en) Reference electrode for concrete burial
JPS6016715B2 (en) How to form a pseudo-ground electrode
CN209592334U (en) Earthed system is used in a kind of protection of AC influence
JP7377460B2 (en) Cathodic protection methods, backfill selection methods, drainage terminal installation methods, and concrete structures
BR0004933B1 (en) sacrificial anode cathodic protection process in reinforced concrete parts reinforcement and pellet sacrificial anode employed in the process.
CN114836759A (en) Cathode protection device and cathode protection method for buried pipeline
US20150211128A1 (en) Sacrificial anode and treatment of concrete
JP2001192870A (en) Corrosion protecting method for tank bottom plate

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981124

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071218

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091218

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees