JP2865368B2 - Method of manufacturing electronic component substrate - Google Patents

Method of manufacturing electronic component substrate

Info

Publication number
JP2865368B2
JP2865368B2 JP10574090A JP10574090A JP2865368B2 JP 2865368 B2 JP2865368 B2 JP 2865368B2 JP 10574090 A JP10574090 A JP 10574090A JP 10574090 A JP10574090 A JP 10574090A JP 2865368 B2 JP2865368 B2 JP 2865368B2
Authority
JP
Japan
Prior art keywords
magnetic material
glass
substrate
plate
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10574090A
Other languages
Japanese (ja)
Other versions
JPH046129A (en
Inventor
博樹 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP10574090A priority Critical patent/JP2865368B2/en
Publication of JPH046129A publication Critical patent/JPH046129A/en
Application granted granted Critical
Publication of JP2865368B2 publication Critical patent/JP2865368B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Ceramic Products (AREA)
  • Joining Of Glass To Other Materials (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電子部品用基板の製造方法に関するものであ
る。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a substrate for electronic components.

[従来技術] 従来より磁気センサ等の電子部品を作製する方法の一
つとして、あらかじめ磁性材料上に非磁性層を備えた基
板を作製し、これにパターンを形成した後、所定の大き
さに切断する方法がある。このような電子部品用基板の
非磁性層は、素子と磁性材料との磁路を遮断するために
形成され、その材質としては、一般にガラスや結晶化ガ
ラスが使用されている。
[Prior art] Conventionally, as one method of manufacturing an electronic component such as a magnetic sensor, a substrate having a nonmagnetic layer on a magnetic material is prepared in advance, a pattern is formed on the substrate, and then a predetermined size is formed. There is a way to cut it. The non-magnetic layer of such a substrate for electronic components is formed in order to block a magnetic path between the element and a magnetic material, and glass or crystallized glass is generally used as the material.

磁性材料上に非磁性層を形成するには、磁性材料の表
面にガラス粉末をペースト化したものを、スクリーン印
刷した後、焼成することによって非磁性層を形成する方
法や本出願人の出願に係る特願平1−171578号(特開平
3−36781号)に示されている方法、すなわち一旦、加
圧しながら熱処理することにより他部材との接着が可
能、いわゆる熱圧着が可能な結晶化ガラスを所定の寸法
形状に加工し、その一面を板状の磁性材料に熱圧着して
接着した後、該結晶化ガラス板を所定の厚さに研磨する
方法がある。
In order to form a non-magnetic layer on a magnetic material, a method of forming a non-magnetic layer by screen-printing a paste of glass powder on the surface of a magnetic material, followed by baking, and the application of the present applicant are described. The method disclosed in Japanese Patent Application No. 1-171578 (JP-A-3-36781), that is, crystallized glass that can be bonded to other members by heat treatment while applying pressure, that is, so-called thermocompression bonding is possible. Is processed into a predetermined size and shape, and one surface thereof is thermocompression-bonded to a plate-shaped magnetic material and bonded, and then the crystallized glass plate is polished to a predetermined thickness.

[発明が解決しようとする問題点] しかしながら前者のガラス粉末を用いる方法は、磁性
材料上に形成された非磁性層の表面が凹凸状を呈してい
るため、研磨することによってその表面を平滑にする必
要があるが、ガラス内に泡が存在するため、研磨すると
表面にピンホールと呼ばれる小さな穴が発生して欠陥部
品になるという問題が生じる。さらに磁気センサ等では
非磁性層を所定の厚みにすることが要求され、具体的に
は100〜300μmの厚みにすることが要求されるが、この
方法によって形成される非磁性層の厚みは精々10〜30μ
mに限定される。
[Problems to be Solved by the Invention] However, in the former method using glass powder, since the surface of the nonmagnetic layer formed on the magnetic material has an uneven shape, the surface is smoothened by polishing. However, since bubbles are present in the glass, there is a problem in that when polished, small holes called pinholes are generated on the surface, resulting in defective components. Further, in a magnetic sensor or the like, the nonmagnetic layer is required to have a predetermined thickness, specifically, it is required to have a thickness of 100 to 300 μm. However, the thickness of the nonmagnetic layer formed by this method is at most 10-30μ
m.

また後者の方法は、ピンホールを発生することなく、
所定の厚みを有する非磁性層を備えた電子部品用基板を
製造することが可能であるが、磁性材料の一面にのみ非
磁性材料を接着するため、反りが発生し易いという問題
がある。
Also, the latter method does not generate pinholes,
Although it is possible to manufacture an electronic component substrate provided with a non-magnetic layer having a predetermined thickness, the non-magnetic material is adhered to only one surface of the magnetic material, so that there is a problem that warpage is likely to occur.

すなわちこのような基板は、一般に50mm×50mm×0.5m
mの大面積で、薄い形状を有しており、それを構成する
磁性材料と非磁性材料との熱膨張係数を近似させても接
着時に高温下に置かれるために歪みが生じ、その結果30
μm以上の大きな反りが発生し易い。この用途の基板
は、後でその表面に電極が設けられるが、30μm以上の
反りが発生すると、電極を設ける前のフォトマスクを用
い、露光する工程においてパターンのずれを発生させ、
製品の歩留りを悪くする。
That is, such a substrate is generally 50 mm x 50 mm x 0.5 m
It has a large area of m and has a thin shape, and even if the thermal expansion coefficients of the magnetic material and the non-magnetic material constituting the material are approximated, distortion occurs because the material is placed at a high temperature at the time of bonding.
A large warp of μm or more easily occurs. Substrates for this purpose are provided with electrodes on the surface later, but if warpage of 30 μm or more occurs, using a photomask before providing the electrodes, causing a pattern shift in the exposure process,
Poor product yield.

本発明は上記事情に鑑みなされたもので、所定の厚み
の非磁性層を磁性材料上に形成することができ、しかも
非磁性層の表面にピンホールを発生させることなく、さ
らに基板の反りを10μm以下に抑えることが可能な電子
部品用基板の製造方法を提供することを目的とするもの
である。
The present invention has been made in view of the above circumstances, and it is possible to form a nonmagnetic layer having a predetermined thickness on a magnetic material, and furthermore, without causing pinholes on the surface of the nonmagnetic layer, further reducing the warpage of the substrate. An object of the present invention is to provide a method of manufacturing an electronic component substrate that can be suppressed to 10 μm or less.

[問題点を解決するための手段] 本発明の電子部品用基板の製造方法は、非磁性材料を
所定の寸法形状に加工する工程、該非磁性材料を板状の
磁性材料の両面に封着用ガラスを介して配置する工程、
該封着用ガラスの封着温度で熱処理して該非磁性材料と
該磁性材料とを接着する工程、該非磁性材料の表面を各
々研磨して所定の肉厚にする工程からなることを特徴と
する。
[Means for Solving the Problems] A method of manufacturing a substrate for an electronic component according to the present invention includes a step of processing a non-magnetic material into a predetermined size and shape, and sealing the non-magnetic material on both sides of a plate-shaped magnetic material. Arranging through
A step of heat-treating the non-magnetic material and the magnetic material by a heat treatment at a sealing temperature of the glass for sealing, and a step of polishing each surface of the non-magnetic material to a predetermined thickness.

本発明において非磁性材料としては、80〜150×10-7/
℃の熱膨張係数を有するガラス、結晶化ガラス、セラミ
ックが使用可能であり、また封着用ガラスとしては、非
磁性材料が特性劣化や変形を起こす温度より低い温度で
封着が可能であり、且つ後の熱処理工程において軟化し
ない特性を有するものであればいづれも使用可能であ
る。この封着用ガラスは、その粉末をテルピネオール等
の有機溶媒と混合することによってペースト状にした
後、非磁性材料あるいは磁性材料に塗布して用いられ
る。
In the present invention, as the nonmagnetic material, 80 to 150 × 10 −7 /
Glass having a thermal expansion coefficient of ° C., crystallized glass, ceramic can be used, and as the sealing glass, sealing can be performed at a temperature lower than the temperature at which the nonmagnetic material deteriorates or deforms, and Any material can be used as long as it does not soften in the subsequent heat treatment step. The sealing glass is used by mixing the powder with an organic solvent such as terpineol to form a paste, and then applying the paste to a non-magnetic material or a magnetic material.

また磁性材料には、酸化物磁性材料と金属磁性材料が
あり、酸化物磁性材料としてはフェライト、金属磁性材
料としては磁鉄鋼が代表的である。
The magnetic material includes an oxide magnetic material and a metal magnetic material. Ferrite is a typical oxide magnetic material, and magnetic steel is a typical metal magnetic material.

[作用] 本発明においては、非磁性材料と磁性材料とをその間
に封着用ガラスを介して配置した後、封着用ガラスの封
着温度で熱処理するが、その温度が高すぎると非磁性材
料の特性が劣化したり、形状変化が生じたりするため好
ましくない。
[Function] In the present invention, after the non-magnetic material and the magnetic material are disposed therebetween with the sealing glass therebetween, heat treatment is performed at the sealing temperature of the sealing glass. It is not preferable because the characteristics are deteriorated and the shape is changed.

また本発明においては非磁性材料を磁性材料の両面に
封着用ガラスによって接着した後、各非磁性材料の外表
面を研磨するので、非磁性材料の厚みを薄くしても割れ
ることがなく、その厚みを任意に設定することが可能で
あり、各非磁性材料の肉厚が同じになるように研磨する
ことにより、歪みをつりあわせ、そりを10μm以内に管
理することが可能である。
Further, in the present invention, after the non-magnetic material is bonded to both sides of the magnetic material by sealing glass, the outer surface of each non-magnetic material is polished, so that even if the thickness of the non-magnetic material is reduced, it does not crack, The thickness can be arbitrarily set, and the non-magnetic material can be polished so as to have the same thickness, thereby balancing the distortion and controlling the warpage within 10 μm.

[実施例] 以下本発明を実施例に基づいて説明する。EXAMPLES The present invention will be described below based on examples.

(実施例1) まず重量百分率でPbO 76%、B2O3 15%、ZnO 5
%、SiO2 3%、Al2O3 1%のガラス組成になるよう
にガラス原料を調合し、白金るつぼを用いて約900℃で
溶融した後、薄板状に成形し、これをアルミナボールミ
ルで粉砕し、150メッシュのステンレス製篩を通過させ
て封着用ガラス粉末を作製した。
(Example 1) First PbO 76% in weight percent, B 2 O 3 15%, ZnO 5
%, SiO 2 3%, and Al 2 O 3 1% are mixed together and melted at about 900 ° C. using a platinum crucible, then formed into a thin plate, which is then subjected to alumina ball milling. It was pulverized and passed through a 150-mesh stainless steel sieve to produce a glass powder for sealing.

次に熱膨張係数が87×10-7/℃、屈伏点が600℃のソー
ダライムガラス成形体から50mm×50mm×0.3mmの寸法に
加工した2個の板状ガラスを作製した後、それらの片面
に上記ガラス粉末をテルピネオールと混ぜてペースト状
にしたものをスクリーン印刷法によって塗布した。次い
で各板状ガラスの塗布面に50mm×50mm×0.3mmの寸法を
有し、表面を鏡面研磨した熱膨張係数が89×10-7/℃の
板状フェライトが接するように配置し、それを電気炉中
にセットし、フェライトの酸化防止のためN2ガス雰囲気
中において500℃で30分間熱処理することによってガラ
ス粉末を軟化流動させて各板状ガラスにフェライトを接
着した。その後、各板状ガラスを研磨して0.1mmの肉厚
のガラスからなる非磁性層を備えた肉厚0.5mmの基板を
作製した。
Next, two plate-like glasses processed into dimensions of 50 mm × 50 mm × 0.3 mm from a soda-lime glass molded body having a coefficient of thermal expansion of 87 × 10 −7 / ° C. and a yield point of 600 ° C. were prepared. A paste obtained by mixing the above glass powder with terpineol was applied to one surface by a screen printing method. Next, a plate-like ferrite having a size of 50 mm × 50 mm × 0.3 mm on the coated surface of each sheet glass, and having a thermal expansion coefficient of 89 × 10 -7 / ° C whose surface is mirror-polished is arranged so as to be in contact therewith. The glass powder was set in an electric furnace and heat-treated at 500 ° C. for 30 minutes in an N 2 gas atmosphere to prevent oxidation of the ferrite, so that the glass powder was softened and flown, and the ferrite was bonded to each sheet glass. Thereafter, each plate glass was polished to produce a 0.5 mm thick substrate provided with a nonmagnetic layer made of 0.1 mm thick glass.

こうして作製した基板の平坦度を光学式平坦度測定器
によって測定したところ、10μm以下であった。またこ
の基板をダイヤモンドカッターを用いて4.0mm×4.0mm×
0.5mmの寸法に切断し、その切断面を観察したところ、
フェライトと各板状ガラスは精度良く強固に接着してお
り、各板状ガラスの表面にピンホールは、認められなか
った。
When the flatness of the substrate thus manufactured was measured by an optical flatness measuring instrument, it was 10 μm or less. In addition, this substrate was 4.0mm x 4.0mm x using a diamond cutter.
When cut into dimensions of 0.5mm and observed the cut surface,
The ferrite and each sheet glass were firmly and accurately bonded to each other, and no pinhole was found on the surface of each sheet glass.

(実施例2) まず重量百分率でPbO 73%、B2O3 11%、ZnO 3
%、SiO2 2%、K2O 11%のガラス組成になるように
ガラス原料を調合し、実施例1と同様の方法で封着用ガ
ラス粉末を作製した。
(Example 2) First PbO 73% in weight percent, B 2 O 3 11%, ZnO 3
%, SiO 2 2%, and K 2 O 11% were mixed in a glass raw material, and a glass powder for sealing was produced in the same manner as in Example 1.

次にLiO2・2SiO2結晶を析出し、熱膨張係数が121×10
-7/℃、屈伏点が約730℃の結晶化ガラス成形体から50mm
×50mm×0.3mmの寸法に加工した2個の板状結晶化ガラ
スを作製した。その後、それらの片面に実施例1と同様
に作製した封着用ガラス粉末をテルピネオールと混ぜて
ペースト状にしたものをスクリーン印刷法によって塗布
した。次いで各板状結晶化ガラスの塗布面に50mm×50mm
×0.3mmの寸法を有し、表面を鏡面研磨した熱膨張係数
が約120×10-7/℃の板状フェライトが接するように載置
し、それを電気炉中にセットし、フェライトの酸化防止
のためN2ガス雰囲気中において400℃で30分間熱処理す
ることによってガラス粉末を軟化流動させて各板状結晶
化ガラスにフェライトを接着した。その後、各板状結晶
化ガラスを研磨して0.1mmの肉厚の結晶化ガラスからな
る非磁性層を備えた肉厚0.5mmの基板を作製した。
Next, LiO 2・ 2SiO 2 crystals are precipitated, and the coefficient of thermal expansion is 121 × 10
-7 / ° C, 50mm from crystallized glass molded body with yield point of about 730 ° C
Two plate-like crystallized glasses processed into dimensions of × 50 mm × 0.3 mm were produced. Thereafter, a paste prepared by mixing glass powder for sealing prepared in the same manner as in Example 1 with terpineol was applied to one surface of the glass by a screen printing method. Next, apply 50 mm x 50 mm on the coated surface of each plate-like crystallized glass.
A sheet ferrite with a size of × 0.3 mm and a mirror-polished surface with a coefficient of thermal expansion of about 120 × 10 −7 / ° C is placed in contact with it and set in an electric furnace to oxidize the ferrite. For prevention, the glass powder was softened and flown by heat treatment at 400 ° C. for 30 minutes in an N 2 gas atmosphere, and the ferrite was bonded to each plate-like crystallized glass. Then, each plate-like crystallized glass was polished to produce a 0.5 mm thick substrate provided with a nonmagnetic layer made of 0.1 mm thick crystallized glass.

上記のようにして作製した基板の平坦度を光学式平坦
度測定器によって測定したところ、10μm以下であっ
た。またこの基板をダイヤモンドカッターを用いて4.0m
m×4.0mm×0.5mmの寸法に切断し、その切断面を観察し
たところ、フェライトと結晶化ガラスは精度良く強固に
接着しており、結晶化ガラスの表面にピンホールは認め
られなかった。
When the flatness of the substrate manufactured as described above was measured by an optical flatness measuring instrument, it was 10 μm or less. In addition, this substrate is 4.0m using a diamond cutter.
When cut into a size of mx 4.0 mm x 0.5 mm and the cut surface was observed, the ferrite and the crystallized glass were firmly adhered accurately and firmly, and no pinhole was observed on the surface of the crystallized glass.

(実施例3) まず重量百分率でPbO 85%、B2O3 13%、SiO2
%のガラス組成になるようにガラス原料を調合し、実施
例1と同様の方法で封着用ガラス粉末を作製した。
(Example 3) First PbO 85% in weight percent, B 2 O 3 13%, SiO 2 2
% Glass composition was prepared, and a glass powder for sealing was produced in the same manner as in Example 1.

次に熱膨張係数が110×10-7/℃のチタン酸カルシウム
成形体から50mm×50mm×0.3mmの寸法に加工した2個の
板状セラミックを作製した後、それらの片面に上記ガラ
ス粉末をテルピネオールと混ぜてペースト状にしたもの
をスクリーン印刷法によって塗布した。次いで各板状セ
ラミックの塗布面に50mm×50mm×0.3mmの寸法を有し、
表面を鏡面研磨した熱膨張係数が109×10-7/℃の板状フ
ェライトが接するように配置し、それを電気炉中にセッ
トし、フェライトの酸化防止のためN2ガス雰囲気中にお
いて450℃で30分間熱処理することによってガラス粉末
を軟化流動させて各板状セラミックにフェライトを接着
した。その後、各板状セラミックを研磨して0.1mmの肉
厚のセラミックからなる非磁性層を備えた肉厚0.5mmの
基板を作製した。
Next, two plate-like ceramics processed into dimensions of 50 mm × 50 mm × 0.3 mm from a calcium titanate compact having a thermal expansion coefficient of 110 × 10 −7 / ° C. were prepared, and the glass powder was applied to one surface thereof. A paste mixed with terpineol was applied by a screen printing method. Next, the coated surface of each plate-shaped ceramic has dimensions of 50 mm x 50 mm x 0.3 mm,
A plate-shaped ferrite with a coefficient of thermal expansion of 109 × 10 -7 / ° C, whose surface is mirror-polished, is placed in contact with it, set in an electric furnace, and placed in an N 2 gas atmosphere at 450 ° C to prevent ferrite oxidation. For 30 minutes, the glass powder was softened and fluidized, and the ferrite was bonded to each plate-shaped ceramic. Thereafter, each plate-like ceramic was polished to produce a 0.5 mm thick substrate provided with a nonmagnetic layer made of a 0.1 mm thick ceramic.

こうして作製した基板の平坦度を光学式平坦度測定器
によって測定したところ、10μm以下であった。またこ
の基板をダイヤモンドカッターを用いて4.0mm×4.0mm×
0.5mmの寸法に切断し、その切断面を観察したところ、
フェライトと板状セラミックは精度良く強固に接着して
おり、板状セラミックの表面にピンホールは、認められ
なかった。
When the flatness of the substrate thus manufactured was measured by an optical flatness measuring instrument, it was 10 μm or less. In addition, this substrate was 4.0mm x 4.0mm x using a diamond cutter.
When cut into dimensions of 0.5mm and observed the cut surface,
The ferrite and the plate-shaped ceramic were firmly adhered with high accuracy and no pinholes were found on the surface of the plate-shaped ceramic.

[発明の効果] 以上のように本発明の電子部品用基板の製造方法によ
ると、所定の厚みの非磁性層を磁性材料上に形成するこ
とができ、しかも非磁性層の表面にピンホールを発生す
ることなく、さらに基板の反りを小さく抑えることがで
きるので、磁気センサに用いられる基板をはじめとして
磁性材料と非磁性材料からなる各種の電子部品用基板を
製造するのに好適である。
[Effect of the Invention] As described above, according to the method for manufacturing an electronic component substrate of the present invention, a nonmagnetic layer having a predetermined thickness can be formed on a magnetic material, and a pinhole is formed on the surface of the nonmagnetic layer. Since the warpage of the substrate can be further suppressed without occurrence, it is suitable for manufacturing various electronic component substrates made of a magnetic material and a non-magnetic material, including a substrate used for a magnetic sensor.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H05K 1/03 610 H05K 1/03 610B ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H05K 1/03 610 H05K 1/03 610B

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】非磁性材料を所定の寸法形状に加工する工
程、該非磁性材料を板状の磁性材料の両面に封着用ガラ
スを介して配置する工程、該封着用ガラスの封着温度で
熱処理して該非磁性材料と該磁性材料とを接着する工
程、該非磁性材料の表面を各々研磨して所定の肉厚にす
る工程からなることを特徴とする電子部品用基板の製造
方法。
1. A step of processing a non-magnetic material into a predetermined size and shape, a step of arranging the non-magnetic material on both sides of a plate-shaped magnetic material via sealing glass, and a heat treatment at a sealing temperature of the sealing glass. And bonding the non-magnetic material to the magnetic material, and polishing the surface of the non-magnetic material to a predetermined thickness, respectively.
JP10574090A 1990-04-20 1990-04-20 Method of manufacturing electronic component substrate Expired - Lifetime JP2865368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10574090A JP2865368B2 (en) 1990-04-20 1990-04-20 Method of manufacturing electronic component substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10574090A JP2865368B2 (en) 1990-04-20 1990-04-20 Method of manufacturing electronic component substrate

Publications (2)

Publication Number Publication Date
JPH046129A JPH046129A (en) 1992-01-10
JP2865368B2 true JP2865368B2 (en) 1999-03-08

Family

ID=14415668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10574090A Expired - Lifetime JP2865368B2 (en) 1990-04-20 1990-04-20 Method of manufacturing electronic component substrate

Country Status (1)

Country Link
JP (1) JP2865368B2 (en)

Also Published As

Publication number Publication date
JPH046129A (en) 1992-01-10

Similar Documents

Publication Publication Date Title
US3669693A (en) Germania-silica glasses and method of coating
JPS61142759A (en) Substrate for ic package
JP2020150488A (en) Composite substrate, electronic device, manufacturing method of composite substrate, and manufacturing method of electronic device
JP3388453B2 (en) Glass for support of X-ray mask or X-ray mask material, X-ray mask material and X-ray mask
JPS60189286A (en) Flexible glass coated substrate and method of producing same
JP2865368B2 (en) Method of manufacturing electronic component substrate
JP2868131B2 (en) Method of manufacturing electronic component substrate
JPH02183570A (en) Ferroelectric substance integrated circuit device and its manufacture
JPH0118496B2 (en)
JPH09318476A (en) Manufacture of capacitance type pressure sensor, and capacitance type pressure sensor by the manufacture
JP2754405B2 (en) Method of manufacturing electronic component substrate
JP3130972B2 (en) Ceramic substrate and method of manufacturing the same
JPH05246728A (en) Method for stabilizing photosensitive glass substrate
JPH0346308A (en) Manufacture of electronic component
JPH05129458A (en) Ceramic substrate and manufacture thereof, and ceramic wiring board using said ceramic substrate
JPH07226301A (en) Resistor
JPS6117474A (en) Manufacture of ceramic substrate
JPS62246202A (en) Low temperature sintered ceramic
JPH02114601A (en) Manufacture of electronic component
JPS63107832A (en) Method for adhering crystallized glass
JPH04209588A (en) Metallic substrate
JPS63312662A (en) Forming method for connecting pin of multilayered ceramic circuit substrate
JPS62198187A (en) Insulating board for electric apparatus
JPH02125728A (en) Composite base and its manufacture
KR100696859B1 (en) Process for manufacturing low temperature cofired ceramic on metal