JP2864644B2 - NO ▲ lower x ▼ Gas treatment method - Google Patents

NO ▲ lower x ▼ Gas treatment method

Info

Publication number
JP2864644B2
JP2864644B2 JP2068909A JP6890990A JP2864644B2 JP 2864644 B2 JP2864644 B2 JP 2864644B2 JP 2068909 A JP2068909 A JP 2068909A JP 6890990 A JP6890990 A JP 6890990A JP 2864644 B2 JP2864644 B2 JP 2864644B2
Authority
JP
Japan
Prior art keywords
gas
reaction
present
oxygen
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2068909A
Other languages
Japanese (ja)
Other versions
JPH03270717A (en
Inventor
義彦 浅野
方紀 羽場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2068909A priority Critical patent/JP2864644B2/en
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to EP90908663A priority patent/EP0466927B1/en
Priority to KR1019910701287A priority patent/KR940006400B1/en
Priority to AU56772/90A priority patent/AU644073B2/en
Priority to US07/768,212 priority patent/US5271915A/en
Priority to PCT/JP1990/000709 priority patent/WO1991012070A1/en
Priority to DE69019346T priority patent/DE69019346D1/en
Priority to CA002051627A priority patent/CA2051627C/en
Publication of JPH03270717A publication Critical patent/JPH03270717A/en
Application granted granted Critical
Publication of JP2864644B2 publication Critical patent/JP2864644B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 A.産業上の利用分野 本発明はNOXガスの処理方法に関し、特にディーゼル
機関およびガスタービン原動機の排気ガス中のNOXガス
の処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION relates to method of processing A. INDUSTRIAL APPLICABILITY The present invention is NO X gas, in particular to the processing method of the NO X gas in the exhaust gas of a diesel engine and a gas turbine engine.

B.発明の概要 本発明はNOXガスの処理方法において、 NOXガスと空気及び酸素から選ばれる一種との混合気
体をアジ化水素(以下、HN3という)と反応させること
により、有害で危険なアンモニアを使用することなくNO
Xを低減することを可能とする。
Overview B. INVENTION The present invention is in the treatment method of the NO X gas, hydrogen azide mixture gas of one selected from the NO X gas and air and oxygen (hereinafter, referred to as HN 3) by reaction with, harmful NO without the use of dangerous ammonia
X can be reduced.

C.従来の技術 従来、NOXガス処理は排煙脱硝技術として実用化され
ている。排煙脱硝方法としては乾式法と湿式法に大別さ
れ、最も進んでいるのは乾式法の選択接触還元法であ
る。この方法の利点としては次の3点が挙げられる。
C. Description of the Related Art conventionally, NO X gas treatment is practically used as denitrification technology. The flue gas denitrification method is roughly classified into a dry method and a wet method, and the most advanced is the selective catalytic reduction method of the dry method. This method has the following three advantages.

(1)システムが簡単である。(1) The system is simple.

(2)高脱硝率が可能である。(2) High denitration rate is possible.

(3)NOXが無害なN2とH2Oに分解され排出処理等が不要
である。
(3) NO X is decomposed into harmless N 2 and H 2 O, and no exhaust treatment is required.

この選択接触還元法では還元剤としてアンモニア、炭
化水素,一酸化炭素が使用されている。この中でアンモ
ニアは酸素が共存していても選択的にNOXと反応するが
他の還元剤は酸素と反応する。このため特にディーゼル
およびガスタービン原動機の場合は酸素が共存していて
も選択的にNOXと反応するアンモニアガスが用いられて
いる。また、この反応に使用する触媒としてはPtなどの
貴金属系やAl2O3,TiO2などに担持させた各種金属酸化物
などが挙げられる。ディーゼルおよびガスタービン原動
機の燃焼で生成するNOXの成分はほとんどがNOでありNO2
は5%程度である。このためNOはアンモニアガスと混合
させて、この混合気体を触媒状で接触還元させてN2とH2
Oに分解している。次にこの反応式を示す。
In this selective catalytic reduction method, ammonia, hydrocarbon, and carbon monoxide are used as reducing agents. Reacts in this ammonia selectively to NO X even coexist oxygen other reducing agent reacts with oxygen. For this reason, particularly in the case of diesel and gas turbine prime movers, ammonia gas that selectively reacts with NO X is used even when oxygen coexists. Examples of the catalyst used in this reaction include a noble metal such as Pt and various metal oxides supported on Al 2 O 3 and TiO 2 . The components of NO X generated by the combustion of diesel and gas turbine prime movers are mostly NO and NO 2
Is about 5%. Therefore, NO is mixed with ammonia gas, and this mixed gas is catalytically reduced in the form of a catalyst to form N 2 and H 2.
Decomposed into O. Next, this reaction formula is shown.

しかしながら、上記反応式で示した選択的接触還元法
では次に示すような問題点があった。
However, the selective catalytic reduction method shown in the above reaction formula has the following problems.

(1)NOXを分解するために有害で危険なアンモニアガ
スを使用しなくてはならない。
(1) must be used toxic and hazardous ammonia gas to decompose NO X.

(2)アンモニアガスによる還元触媒性能が劣化する。
特に還元触媒は排気されるガス成分によっても劣化する
ため、交換等を必要としてその操作が面倒である。
(2) The performance of the reduction catalyst by ammonia gas is deteriorated.
In particular, since the reduction catalyst is deteriorated by the exhaust gas component, it requires replacement or the like, and its operation is troublesome.

(3)使用温度の範囲が制限される。(3) The operating temperature range is limited.

即ち、高温(1000℃程度)では触媒成分の焼結が進行
し、結晶の相転移により触媒性能が劣化する。また、32
0℃以下ではアンモニアガスと水分がSOXを含む排気ガス
と反応して酸性硫安などの化合物を生じ、脱硝性能の低
下を生じる。これらのことから、従来の還元法の使用温
度の範囲は320〜450℃であった。従って使用温度範囲が
制限されると共に常温での使用が困難であった。
That is, at a high temperature (about 1000 ° C.), the sintering of the catalyst component proceeds, and the catalytic performance deteriorates due to the phase transition of the crystal. Also, 32
At 0 ° C. or lower, ammonia gas and moisture react with the exhaust gas containing SO X to produce compounds such as acidic ammonium sulfate, which lowers the denitration performance. From these facts, the range of operating temperature in the conventional reduction method was 320 to 450 ° C. Therefore, the working temperature range is limited, and it is difficult to use at room temperature.

(4)処理装置全体の小型化が困難である。(4) It is difficult to reduce the size of the entire processing apparatus.

このことは、上記反応式からNOXの還元反応は等モル
であるため、脱硝率に合せてNOX量にほぼ等しいアンモ
ニアガスを排気ガス中へ注入しなければならず、そのた
めアンモニアガスボンベ、触媒等が大型となり装置全体
の小型化が困難なためである。
This means that since the reduction reaction of NO X is equimolar from the above reaction formula, it is necessary to inject ammonia gas approximately equal to the amount of NO X into the exhaust gas in accordance with the denitration rate. This is because it is difficult to reduce the size of the entire apparatus due to large size.

このため本発明者らは上記問題点を解決すべく鋭意研
究した結果、有害で危険なアンモニアガスに代えてアジ
化ナトリウムを用いること、及び酸素及びプラズマ処理
から選ばれる少なくとも一種を用いることにより著しく
NOXを低減できることを見い出しNOXガスの処理方法及び
その装置を完成した(特願平第2−29255号)。
Therefore, the present inventors have conducted intensive studies to solve the above problems, and as a result, using sodium azide instead of harmful and dangerous ammonia gas, and using at least one selected from oxygen and plasma treatment, significantly
To complete the processing method and apparatus of the NO X gas it found that can reduce the NO X (Japanese Patent Application No. 2-29255).

D.発明が解決しようとする課題 しかしながら、上記出願ではNaN3をHN3に変換し、こ
れによりNOXガスを還元除去していたが、その後の研究
結果からHN3に変換するに際し、酸性条件下、特にpHを
3以下の条件に設定する必要があり操作が煩雑であっ
た。
Problems D. INVENTION However, when the above application converts NaN 3 in HN 3, thereby had been reduced remove NO X gas, to convert the subsequent studies results HN 3, acidic conditions In particular, it was necessary to set the pH to 3 or less, and the operation was complicated.

従って本発明は上記出願に係る問題点を、即ち有害で
危険なアンモニアガスを使用することなくNOXを低減で
きることをNaN3に代えてHN3を直接用いることにより達
成することを目的とする。
Accordingly, the present invention aims to be achieved by the use of HN 3 in place of NaN 3 that can be reduced without NO X using the problems related to the application, i.e. the harmful and dangerous ammonia gas directly.

E.課題を解決するための手段及び作用 本発明者らは上記問題点を解決すべく鋭意研究した結
果、NaN3をHN3に変えて直接用いることにより酸を添加
することなく高いNOX処理率が得られることを見い出
し、本発明に係るNOXガス処理方法を完成した。
E. Summary of and acts inventors result of intensive studies to solve the above problems, a high NO X treatment without addition of an acid by using directly changing the NaN 3 to HN 3 It found that the rate can be obtained and completed the NO X gas treatment method according to the present invention.

即ち、本発明に係るNOXガスの処理方法はHN3を溶解し
た水溶液にNOX及び空気及び酸素から選ばれる一種の混
合気体を導入し、該混合気体と前記HN3を反応させて、
前記NOXガスを還元除去すること、をその解決手段とし
ている。
That is, the processing method of the NO X gas according to the present invention introduces a kind mixed gas selected from the NO X and air and oxygen in an aqueous solution prepared by dissolving HN 3, by reacting the HN 3 with the mixed gas,
The NO X gas to reduce and remove the are and their solutions.

以下、本発明について更に詳細に説明する。 Hereinafter, the present invention will be described in more detail.

先の出願に係る方法(特願平第2−29255号)では特
に理論にこだわるつもりはないが、アジ化化合物(ここ
ではNaN3を具体例として例示する。)を水に溶解し、こ
の水溶液とNOXガスとの反応でNOXをN2+H2Oに化学的に
変えることをその原理としていた。
In the method according to the earlier application (Japanese Patent Application No. 2-29255), although there is no particular intention to stick to the theory, an azide compound (here, NaN 3 is exemplified as a specific example) is dissolved in water, and this aqueous solution is dissolved. The principle was to chemically convert NO X into N 2 + H 2 O by the reaction between NO 2 and NO X gas.

即ち、この反応は次の3つの式から説明される。 That is, this reaction is explained by the following three equations.

NO+NO2+→2HNO2 …(1) 6NaN3+6Hcl→6N3H+6Nacl …(2) 2HNO2+6N3H→10N2+4H2O …(3) 通常、ガスを液体に吸収させるのは非常に効率が悪
い。上記(1)式はNO,NO2を水に吸収させてHNO2にする
反応であり、この反応が全反応速度を支配するいゆる律
速段階である。従ってこの段階の反応が効率よく行うこ
とができれば、上記(3)式の反応は容易に進行する。
このことが本発明が解決せんとする中心課題と言える。
NO + NO 2 + → 2HNO 2 ... (1) 6NaN 3 + 6Hcl → 6N 3 H + 6Nacl ... (2) 2HNO 2 + 6N 3 H → 10N 2 + 4H 2 O ... (3) Normally, to absorb the gas in the liquid is very efficient bad. The above equation (1) is a reaction in which NO and NO 2 are absorbed into water to form HNO 2 , and this reaction is any rate-determining step that controls the overall reaction rate. Therefore, if the reaction at this stage can be carried out efficiently, the reaction of the above formula (3) proceeds easily.
This can be said to be a central problem to be solved by the present invention.

即ち本発明に係る方法では上記(1)式の反応を酸素
を用いることで効率よく進行させることができる。ま
た、酸素を含む限り、空気を用いることもでき、いずれ
を用いても本発明の目的を十分達成し得るが、上記
(1)式をより効率的に進行させるためには酸素濃度は
高い方が好ましい。
That is, in the method according to the present invention, the reaction of the above formula (1) can be efficiently advanced by using oxygen. As long as oxygen is contained, air can be used, and any of them can sufficiently achieve the object of the present invention. However, in order to make the above formula (1) proceed more efficiently, the oxygen concentration is higher. Is preferred.

次に本発明で最も特徴をなす上記(2)式の反応に使
用するアジ化水素について説明する。
Next, the hydrogen azide used in the reaction of the above formula (2), which is the most distinctive feature of the present invention, will be described.

先の出願では上記(2)式の反応を予め別に行い、こ
れよりNaN3アジ化水素に変換していた。
In the earlier application, the reaction of the above formula (2) was separately performed in advance, and the reaction was converted to NaN 3 hydrogen azide.

しかし、上記(2)式の反応でNaN3をHN3に変換する
に際し、酸素条件下(特にPH3以下)にする必要があっ
た。
However, when converting NaN 3 to HN 3 in the reaction of the above formula (2), it was necessary to set it under oxygen conditions (particularly PH3 or less).

本発明に係る方法では直接HN3を添加するため塩酸な
どを添加する必要もなく、またpH条件にこだわる必要も
なく上記(3)式を容易に進行させることができる。
In the method according to the present invention, since HN 3 is directly added, there is no need to add hydrochloric acid or the like, and the above formula (3) can be easily advanced without having to stick to pH conditions.

即ち、上記(3)式の反応は上記(1)式で得られた
HNO2をN3Hにより還元してN2とH2Oに分解する。なお、HN
3は無色の液体で酸の存在下でヒドラジンと亜硝酸との
反応などにより生成させる。こうして処理されたN2を処
理ガスとして排出する。
That is, the reaction of the above formula (3) was obtained by the above formula (1).
HNO 2 is reduced by N 3 H to decompose into N 2 and H 2 O. Note that HN
3 is a colorless liquid which is formed by the reaction of hydrazine and nitrous acid in the presence of an acid. The N 2 thus treated is discharged as a treated gas.

F.実施例 以下、本発明に係るNOXガスの処理方法の詳細な説明
を実施例に基づいて説明する。
F. Examples will be described below with reference to the detailed description of the processing method of the NO X gas according to the present invention in the Examples.

実施例1 HN3を用いたNOXガスの処理方法 まず、HN3を次の反応式に従ったヒドラジンと亜硝酸
との反応により10ml得た。
Example 1 Method for treating NO X gas using HN 3 First, 10 ml of HN 3 was obtained by the reaction of hydrazine and nitrous acid according to the following reaction formula.

N2H4+HNO2→HN3+2H2O 次に、得られたHN310mlを水200mlに溶解した。N 2 H 4 + HNO 2 → HN 3 + 2H 2 O Next, 10 ml of the obtained HN 3 was dissolved in 200 ml of water.

更に、この溶解液中に濃度1000ppmNOXガス(3/mi
n)を酸素(1/min)と共に導入し、HN3と反応させ
た。
Furthermore, the concentration in the lysate 1000PpmNO X gas (3 / mi
The n) is introduced together with oxygen (1 / min), it was reacted with HN 3.

加えて、この反応により発生する気体をNOX濃度分析
計(島津製作所製:島津ポータブルNOX分析計NOA−305
形)で測定した。
In addition, the gas generated by the reaction NO X concentration analyzer (manufactured by Shimadzu Corporation: Shimadzu Portable NO X analyzer NOA-305
Shape).

その測定結果を表1に示す。表1に示すようにNOXを1
000ppm含有した排ガスを酸素と共に吹き込むことで500p
pmまでNOXが希釈される。またNOXを500ppm含有した混合
気体をHN3水溶液に導入することにより更に50ppmまでNO
Xを低減できたことがわかる。なお、この値は比較例と
して添付したNaN3を用いた実験結果と同値であり、かつ
大気汚染防止法で定められている窒素酸化物排出基準値
を大幅に下回るものである。
Table 1 shows the measurement results. The NO X as shown in Table 1 1
500p by blowing 000ppm exhaust gas with oxygen
NO X is diluted to pm. The NO mixture gas was 500ppm contained NO X further to 50ppm by introducing the HN 3 solution
It can be seen that X could be reduced. Note that this value is the same as the experimental result using NaN 3 attached as a comparative example, and is much lower than the nitrogen oxide emission standard value defined by the Air Pollution Control Law.

G.発明の効果 (1)本発明はNaN3をHN3に変えても同様な高いNOX処理
率を達成することを可能とする。
G. Effects of the Invention (1) The present invention makes it possible to achieve a similar high NO X treatment rate even when NaN 3 is changed to HN 3 .

従って本発明に係る方法によれば、酸性条件、特にpH
を3以下に設定しなくとも高いNOX処理率を達成し得る
ことから、NOXガスの処理方法の操作を簡便化できる。
Therefore, according to the method of the present invention, acidic conditions, especially pH
Since the high NO X processing rate can be achieved without setting the value to 3 or less, the operation of the NO X gas processing method can be simplified.

(2)本発明は上述のように構成されているので、次に
記載する効果も同時に奏する。
(2) Since the present invention is configured as described above, the following effects can be simultaneously obtained.

本発明に係る方法によれば、HN3を使用するため有害
で危険なアンモニアを使用することなくNOXを低減でき
る。
According to the method of the present invention can reduce the NO X without the use of toxic and dangerous ammonia for use HN 3.

本発明に係る方法によれば、酸素が反応促進剤として
働くことにより、窒素酸化物排出基準値に比し著しくNO
Xを低減できる。
According to the method of the present invention, oxygen acts as a reaction accelerator, so that NO is significantly reduced compared to the nitrogen oxide emission standard value.
X can be reduced.

本発明に係る方法によれば、還元触媒を必要としない
ことから装置全体を小型化でき、その操作も簡便化でき
る。
According to the method of the present invention, since no reduction catalyst is required, the entire apparatus can be miniaturized, and its operation can be simplified.

本発明に係る方法によれば、室温でNOXガスの還元反
応が可能となり、加熱するための装置等が不要となりNO
Xガスの処理を容易に行うことができる。
According to the method of the present invention enables the reduction reaction of the NO X gas at room temperature, apparatus and the like for heating is unnecessary NO
X gas can be easily processed.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−270713(JP,A) 特開 平3−270714(JP,A) 特開 平3−270715(JP,A) 特開 平3−270716(JP,A) 特開 平3−232518(JP,A) 特開 平2−211218(JP,A) (58)調査した分野(Int.Cl.6,DB名) B01D 53/34/53/56────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-270713 (JP, A) JP-A-3-270714 (JP, A) JP-A-3-270715 (JP, A) JP-A-3-270715 270716 (JP, A) JP-A-3-232518 (JP, A) JP-A-2-211218 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) B01D 53/34/53 / 56

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アジ化水素を溶解した水溶液にNOX、及び
空気及び酸素から選ばれる一種の混合気体を導入し、該
混合気体と前記アジ化水素を反応させて、前記NOXガス
を還元除去することを特徴とするNOXガスの処理方法。
1. A hydrazoic NO in aqueous solution of X, and by introducing one gas mixture selected from air and oxygen, by reacting said hydrazoic with the mixed gas, reducing the NO X gas processing method of the NO X gas and removing.
JP2068909A 1990-02-08 1990-03-19 NO ▲ lower x ▼ Gas treatment method Expired - Lifetime JP2864644B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2068909A JP2864644B2 (en) 1990-03-19 1990-03-19 NO ▲ lower x ▼ Gas treatment method
KR1019910701287A KR940006400B1 (en) 1990-02-08 1990-05-31 Method and apparatus for processing nitrogen oxide gas
AU56772/90A AU644073B2 (en) 1990-02-08 1990-05-31 Method and apparatus for processing nitrogen oxide gas
US07/768,212 US5271915A (en) 1990-02-08 1990-05-31 Method for processing nitrogen oxide gas
EP90908663A EP0466927B1 (en) 1990-02-08 1990-05-31 Method and apparatus for processing nitrogen oxide gas
PCT/JP1990/000709 WO1991012070A1 (en) 1990-02-08 1990-05-31 Method and apparatus for processing nitrogen oxide gas
DE69019346T DE69019346D1 (en) 1990-02-08 1990-05-31 METHOD AND DEVICE FOR TREATING STICKOXYDES.
CA002051627A CA2051627C (en) 1990-02-08 1990-05-31 Method and apparatus for processing nitrogen oxide gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2068909A JP2864644B2 (en) 1990-03-19 1990-03-19 NO ▲ lower x ▼ Gas treatment method

Publications (2)

Publication Number Publication Date
JPH03270717A JPH03270717A (en) 1991-12-02
JP2864644B2 true JP2864644B2 (en) 1999-03-03

Family

ID=13387252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2068909A Expired - Lifetime JP2864644B2 (en) 1990-02-08 1990-03-19 NO ▲ lower x ▼ Gas treatment method

Country Status (1)

Country Link
JP (1) JP2864644B2 (en)

Also Published As

Publication number Publication date
JPH03270717A (en) 1991-12-02

Similar Documents

Publication Publication Date Title
US4119702A (en) Process for abating concentration of nitrogen oxides in combustion flue gas
KR101863940B1 (en) Method and apparatus for denoxing exhaust gas
JP2008296224A (en) Nitrogen oxide removing catalyst, nitrogen oxide removing method using it, and nitrogen oxide removing device
CN104998652A (en) Catalytic additive capable of decreasing FCC exhaust gas NOx emission amount and preparation method thereof
JP2864644B2 (en) NO ▲ lower x ▼ Gas treatment method
JPH05103953A (en) Method for removing nitrogen oxide in exhaust gas and removal catalyst
JP2864642B2 (en) NO ▲ lower x ▼ Gas treatment method
JP2864643B2 (en) NO ▲ lower x ▼ Gas treatment method
JP2864677B2 (en) NOx gas treatment method
JPH0691138A (en) Method for processing exhaust gas and device therefor
KR100197287B1 (en) Reforming reductant for exhaust gas denitrogen and the method of removing nitrogen oxide
JP2864689B2 (en) NOx gas treatment method
JPH09150039A (en) Apparatus and method for purifying exhaust gas
JP2864640B2 (en) NO ▲ lower x gas processing equipment
JP2864641B2 (en) NO ▲ lower x gas processing equipment
JPS5889987A (en) Treatment for purification of waste water after desulfurization and denitration
JP2000300959A (en) Method and apparatus for decomposing halogen- containing organic compound
KR102434010B1 (en) Exhaust gas treatment apparatus
JP2006022735A (en) Exhaust gas treatment device and treatment method for diesel internal combustion engine
JPH05337336A (en) Method for purifying exhaust gas
JPH08108172A (en) Treatment of waste water containing oxide form nitrogen
JPS581616B2 (en) Denitrification reaction tower
JPH10305229A (en) Catalyst for removing nitrogen oxide and removing method of nitrogen oxide
RU2146168C1 (en) Method of cleaning effluent gases from nitrogen oxides
JPH0487620A (en) Treatment of nox gas