JP2863326B2 - Crude oil refining method - Google Patents

Crude oil refining method

Info

Publication number
JP2863326B2
JP2863326B2 JP41406490A JP41406490A JP2863326B2 JP 2863326 B2 JP2863326 B2 JP 2863326B2 JP 41406490 A JP41406490 A JP 41406490A JP 41406490 A JP41406490 A JP 41406490A JP 2863326 B2 JP2863326 B2 JP 2863326B2
Authority
JP
Japan
Prior art keywords
fraction
oil
crude oil
heavy
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP41406490A
Other languages
Japanese (ja)
Other versions
JPH04224892A (en
Inventor
明示 田中
修二 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP41406490A priority Critical patent/JP2863326B2/en
Priority to PCT/JP1991/001377 priority patent/WO1992010557A1/en
Priority to DE69117937T priority patent/DE69117937D1/en
Priority to EP91917699A priority patent/EP0514549B1/en
Publication of JPH04224892A publication Critical patent/JPH04224892A/en
Priority to US08/400,494 priority patent/US5851381A/en
Application granted granted Critical
Publication of JP2863326B2 publication Critical patent/JP2863326B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は原油の精製法に関し、詳
しくは原油の精製設備を簡略化して効率よく原油を精製
する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for refining crude oil, and more particularly to a method for refining crude oil efficiently by simplifying a crude oil refining facility.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】一般に
原油の精製方法は、原油を常圧蒸留して各成分にそれぞ
れ分離し、分離した各留分について脱硫などの処理を行
うものである。しかし、この方法では、原油を分留した
後にそれぞれについて独立に精製処理を実施しているた
め、精製設備の基数が多くなり複雑な設備となってい
た。そのため、各精製設備の運転管理もそれぞれ独立に
制御する必要があり、運転管理用の設備やこれに付随す
る各種設備も多く、複雑な運転管理を余儀なくされてい
た。そこで、設備の単純化による設備コストの低減,エ
ネルギーの有効利用による運転コストの低減及び総合的
な運転管理の容易化などが望まれていた。
2. Description of the Related Art Generally, a crude oil refining method is one in which crude oil is distilled under normal pressure to separate each component, and each separated fraction is subjected to a treatment such as desulfurization. However, in this method, since crude oil is fractionated and subjected to refining treatment independently of each other, the number of refining equipment is increased and the equipment is complicated. Therefore, it is necessary to independently control the operation of each of the refining facilities, and there are many facilities for the operation management and various facilities associated therewith, and complicated operation management has been forced. Therefore, it has been desired to reduce equipment costs by simplifying the equipment, reduce operating costs by effectively utilizing energy, and facilitate comprehensive operation management.

【0003】また、原油の精製効率を向上させる方法と
して、従来から次の方法〜が知られている。原油
を昇圧し、水素を混合して軽質油と重質油に分離した
後、重質油をさらに昇圧し、水素を混合して水素化脱硫
する方法(特公昭50−37043号公報)。重質油
の水素化脱硫油及び/または水素化分解油を原油と熱交
換し、加圧下で蒸留する方法(特公昭51−21407
号公報)。原油を昇圧し、水素を混合して軽質油と重
質油に分離した後、軽質油を水素化脱硫する方法(特公
平2−25952号公報)。重油を流動接触分解して
生成する沸点150〜360℃の留分を、水素化精製し
て高セタン価の炭化水素油を製造する方法(特開昭63
−291985号公報)。しかし、従来の方法では、一
般に脱硫処理を、原油を灯油,軽油,重質軽油,残油に
分留した後、個別に実施しており、一括処理した場合の
技術的検証が確立されていなかった。
[0003] As a method for improving the refining efficiency of crude oil, the following methods have been conventionally known. A method in which crude oil is pressurized and mixed with hydrogen to separate it into light oil and heavy oil, and then the heavy oil is further pressurized and mixed with hydrogen for hydrodesulfurization (Japanese Patent Publication No. 50-37043). A method of heat-exchanging hydrodesulfurized oil and / or hydrocracked oil of heavy oil with crude oil and distilling it under pressure (Japanese Patent Publication No. 51-21407).
No.). A method in which crude oil is pressurized, mixed with hydrogen and separated into light oil and heavy oil, and then the light oil is hydrodesulfurized (Japanese Patent Publication No. 2-25952). A method of producing a hydrocarbon oil having a high cetane number by hydrorefining a fraction having a boiling point of 150 to 360 ° C produced by fluid catalytic cracking of heavy oil (Japanese Patent Application Laid-Open No. Sho 63).
-291985). However, in the conventional method, desulfurization treatment is generally carried out individually after fractionating crude oil into kerosene, gas oil, heavy gas oil, and residual oil, and no technical verification has been established for batch treatment. Was.

【課題を解決するための手段】[Means for Solving the Problems]

【0004】そこで本発明者等は、設備コストや運転コ
ストの低減が可能で、しかも簡単な運転管理で安定した
運転を行うことができる原油の精製法を開発すべく鋭意
研究を重ねた。最近、本発明者等の研究グループは原油
中のナフサ成分のみを分離した留分を一括して脱硫処理
した後に、各成分に分留する方法を開発した(特願平2
−94967号明細書参照)。この方法は、精製設備の
簡略化が達成できると共に比較的安定した性状の製品が
得られ、すぐれた方法である。また、上記方法を改良し
たものとして、上述の一括した脱硫処理の後に、水素化
精製し、しかる後に分留する方法を開発した(平成2年
12月7日付けの特許願(発明の名称:原油の精製方
法))。この方法は、簡略な工程で一層すぐれた性状の
各留分を得る方法として有効である。さらに、本発明者
等は、簡略な工程で極めて高品質の各留分を得るととも
に、灯油,軽油等の中間留分の得率を高める方法を開発
すべく、研究を続けた。その結果、あらかじめ原油中の
ナフサ成分を分離してから脱硫操作を行い、さらに高圧
分離処理して得られる軽質留分を、分離した重質残油を
流動接触分解処理して得られる分解軽油と共に水素化精
製し、しかる後に分留することにより、上記の目的を達
成できることを見出した。本発明は、かかる知見に基づ
いて完成したものである。
[0004] The inventors of the present invention have intensively studied to develop a crude oil refining method that can reduce the equipment cost and the operating cost and can perform a stable operation with a simple operation management. Recently, a research group of the present inventors has developed a method of collectively desulfurizing a fraction obtained by separating only naphtha components in crude oil and then fractionating the components into each component (Japanese Patent Application No. Hei.
-94967). This method is an excellent method that can achieve simplification of the purification equipment and can obtain a product having relatively stable properties. Further, as an improvement of the above method, a method of hydrorefining after the above-mentioned batch desulfurization treatment and then fractionating it has been developed (Patent application dated December 7, 1990 (Title of Invention: Crude oil refining method)). This method is effective as a method for obtaining fractions having more excellent properties by simple steps. Further, the present inventors have continued their research to develop a method for obtaining each fraction of extremely high quality in a simple process and increasing the yield of middle distillates such as kerosene and light oil. As a result, the naphtha component in the crude oil is separated in advance, then the desulfurization operation is performed, and the light fraction obtained by the high pressure separation treatment is further combined with the cracked light oil obtained by the fluid catalytic cracking treatment of the separated heavy residual oil. It has been found that the above object can be achieved by hydrorefining and then fractionation. The present invention has been completed based on such findings.

【0005】すなわち、本発明は、原油中のナフサ留分
を分離した後、該ナフサ留分を除いた残りの留分を水素
化脱硫し、次いで高圧分離槽で軽質留分と重質残油とに
分離し、分離した重質残油は流動接触分解後分留し、該
分留により得られた分解軽油と前記軽質留分を水素化精
製し、又は該分解軽油を前記軽質留分と共に水素化精製
することを特徴とする原油の精製法を提供するものであ
る。
That is, according to the present invention, after separating a naphtha fraction in crude oil, the remaining fraction excluding the naphtha fraction is hydrodesulfurized, and then a light fraction and a heavy residue are separated in a high-pressure separation tank. And the separated heavy residue is fractionated after fluid catalytic cracking, and the cracked gas oil obtained by the fractionation and the light fraction are hydro-refined.
It is intended to provide a method for refining crude oil, which comprises producing or cracking the cracked gas oil together with the light fraction.

【0006】図1は本発明を実施するための基本的な装
置構成の一例を示すものである。本発明の精製法を実施
する精製装置には、原油中のナフサ留分を蒸留分離する
ための予備蒸留塔1と、該ナフサ留分を除いた残りの留
分の脱硫を行う脱硫装置、例えば該留分を水素と共に脱
硫触媒に接触させて脱硫するための水素化脱硫装置2
と、脱硫後の留分の高圧分離を行う高圧分離槽3、高圧
分離により分離された重質残油を分解処理するための重
質残油流動接触分解装置4、高圧分離槽3にて分離され
た軽質留分と重質残油流動接触分解装置4にて分解され
た分解軽油を精製するための水素化精製装置5、その後
蒸留して各留分、すなわちナフサ,灯油,軽油等に分留
するための常圧蒸留塔6が備えられている。また、前記
予備蒸留塔1で分離したナフサ留分の脱硫を行うための
脱硫装置7も備えられている。
FIG. 1 shows an example of a basic device configuration for carrying out the present invention. The refining apparatus for performing the refining method of the present invention includes a pre-distillation column 1 for distilling and separating a naphtha fraction in crude oil, and a desulfurization apparatus for desulfurizing the remaining fraction excluding the naphtha fraction, for example, A hydrodesulfurization apparatus 2 for bringing the fraction into contact with a desulfurization catalyst together with hydrogen for desulfurization
And a high-pressure separation tank 3 for high-pressure separation of the fraction after desulfurization, a heavy-residue fluid catalytic cracking device 4 for decomposing heavy heavy oil separated by high-pressure separation, and a high-pressure separation tank 3 A hydrorefining unit 5 for purifying the light fraction obtained and the cracked gas oil cracked by the heavy residual oil fluid catalytic cracking unit 4, and then distilling it into fractions, that is, naphtha, kerosene, gas oil, etc. An atmospheric distillation column 6 for distillation is provided. Further, a desulfurization device 7 for desulfurizing the naphtha fraction separated in the preliminary distillation column 1 is provided.

【0007】まず予備蒸留塔1においては、原油中のナ
フサ留分(C5 〜157℃)を、原油から蒸留分離す
る。このときの蒸留条件は、原油の組成,性状,蒸留塔
の構成,段数により最適な条件を選択する。通常は圧力
を常圧〜10kg/cm2G,温度を145〜200℃とすれ
ばよいが、好ましくは圧力を1.5kg/cm2G前後として上
記温度範囲で原油中のナフサ留分を分離する。この予備
蒸留塔1で分離したナフサ留分は、脱硫装置7において
従来と同様にして脱硫することができる。例えば触媒に
Co −Mo 系触媒を用いて、温度を280〜340℃,
圧力を20〜40kg/cm2G,液時空間速度 (以下LHS
Vと記す。) を3〜10hr-1及び水素量を50〜100
Nm3 /klとすることにより、該ナフサ留分中の硫黄残留
分を1重量ppm 以下にすることができる。なお、上述し
たナフサ留分の分離は、蒸留により行うことが好ましい
が、その他、フラッシュ操作により行うこともできる。
First, in the preliminary distillation column 1, a naphtha fraction (C 5 to 157 ° C.) in crude oil is separated by distillation from crude oil. The most suitable distillation conditions at this time are selected according to the composition and properties of the crude oil, the configuration of the distillation column, and the number of stages. Normally, the pressure may be normal pressure to 10 kg / cm 2 G and the temperature may be 145 to 200 ° C., preferably, the pressure is set to about 1.5 kg / cm 2 G to separate the naphtha fraction in crude oil in the above temperature range. I do. The naphtha fraction separated in the pre-distillation column 1 can be desulfurized in the desulfurizer 7 in the same manner as in the prior art. For example, using a Co-Mo type catalyst as the catalyst, the temperature is 280-340 ° C,
When the pressure is 20-40 kg / cm 2 G, the liquid hourly space velocity (hereinafter LHS
Recorded as V. ) For 3 to 10 hr -1 and the amount of hydrogen for 50 to 100
By setting Nm 3 / kl, the sulfur residue in the naphtha fraction can be reduced to 1 ppm by weight or less. The above naphtha fraction is preferably separated by distillation, but may also be separated by a flash operation.

【0008】一方、予備蒸留塔1の蒸留残分である灯油
留分以上の重質分は、これらが全て混合した状態で一括
して水素化脱硫装置2に導入される。この脱硫装置2の
運転は、最終的な重質残油の硫黄含量を目標値として制
御することが望ましく、運転条件としては、例えば重質
残油の硫黄残留分を1重量%以下、好ましくは0.5重量
%以下にする場合には、触媒として通常の脱硫触媒、例
えばMo,W,Co,Ni等の周期律表第VI族金属と同
第VIII族金属の1種または2種以上、具体的には、Co
−Mo又はNi−Moをアルミナ,シリカ,ゼオライト
あるいはこれらの混合物等の担体に担持した触媒を用
い、温度を300〜450℃,圧力を50〜400kg/
cm2Gとし、LHSVを0.1〜5.0hr-1及び水素量を50
0〜5000Nm3 /kl、より好ましくは500〜200
0Nm 3 /klとすることが好ましい。また、更に好ましく
は温度を370〜420℃,圧力を100〜200kg/
cm2Gとし、LHSVを0.2〜2.0hr-1及び水素量を80
0〜2000Nm3 /klの範囲に設定する。これにより、
残油以外の各留分の硫黄分も充分に除去することができ
る。
[0008] On the other hand, heavy fractions equal to or higher than the kerosene fraction, which is the distillation residue of the pre-distillation column 1, are collectively introduced into the hydrodesulfurization unit 2 in a state where they are all mixed. In the operation of the desulfurizer 2, it is desirable to control the final sulfur content of the heavy residual oil as a target value, and the operating conditions include, for example, the sulfur residue of the heavy residual oil of 1% by weight or less, preferably When the content is 0.5% by weight or less, a usual desulfurization catalyst, for example, one or more of the Group VI metals and Group VIII metals such as Mo, W, Co, and Ni as the catalyst, Specifically, Co
Using a catalyst in which -Mo or Ni-Mo is supported on a carrier such as alumina, silica, zeolite or a mixture thereof, at a temperature of 300 to 450 ° C and a pressure of 50 to 400 kg /
cm 2 G, LHSV of 0.1 to 5.0 hr −1 and hydrogen amount of 50
0 to 5000 Nm 3 / kl , more preferably 500 to 200
It is preferably 0 Nm 3 / kl . More preferably, the temperature is 370 to 420 ° C. and the pressure is 100 to 200 kg /
cm 2 G, LHSV of 0.2 to 2.0 hr −1 and hydrogen amount of 80
Set within the range of 0 to 2000 Nm 3 / kl. This allows
The sulfur content of each fraction other than the residual oil can be sufficiently removed.

【0009】上記のようにして脱硫された留分は、一括
して高圧分離槽3に導入される。ここでは、各種の分離
法があるが、例えば分離槽の底部より水素を導入すれ
ば、上記留分を軽質留分と重質残油とに効果的に分離す
ると共に、後の水素化精製時に必要となる水素も充分に
供給される。得られた重質残油は依然として原油に対し
て50重量%近くあり、利用価値が低い。このため、本
発明では、この重質残油を流動接触分解装置によって接
触分解し、8〜18重量%(原油に対して)の分解軽油
とガソリン等を得る。これによって最終的には、重質残
油は2〜5重量%(原油に対して)減少させることが
できる。ここで、流動接触分解の条件としては、触媒と
して市販の重質残油分解触媒、例えばゼオライト系分解
触媒(希土類元素5重量%以下、好ましくは0.5〜2重
量%を含み、ゼオライト量20〜60重量%、さらに好
ましくは30〜40重量%)を、触媒/油比=5〜15
(重量比)、好ましくは8〜10(重量比)で用い、温
度を450〜560℃、好ましくは510〜540℃と
し、圧力を1.0〜3.0kg/cm2Gに設定すべきである。
The fraction desulfurized as described above is collectively introduced into the high-pressure separation tank 3. Here, there are various separation methods.For example, if hydrogen is introduced from the bottom of the separation tank, the above-mentioned fraction is effectively separated into a light fraction and heavy residual oil, and at the time of subsequent hydrorefining, The required hydrogen is also supplied sufficiently. The obtained heavy resid is still close to 50% by weight with respect to the crude oil, and its utility value is low. Therefore, in the present invention, the heavy residual oil is catalytically cracked by a fluid catalytic cracking device to obtain 8 to 18% by weight (based on crude oil) of cracked light oil and gasoline. This can ultimately reduce heavy resid to 2-5% by weight (relative to crude). Here, the conditions for the fluid catalytic cracking are as follows: a catalyst for cracking a heavy residual oil commercially available as a catalyst, for example, a zeolite-based cracking catalyst (containing 5% by weight or less of rare earth elements, preferably 0.5 to 2% by weight, and having a -60% by weight, more preferably 30-40% by weight), the catalyst / oil ratio = 5-15
(Weight ratio), preferably 8 to 10 (weight ratio), the temperature should be 450 to 560 ° C, preferably 510 to 540 ° C, and the pressure should be set to 1.0 to 3.0 kg / cm 2 G. is there.

【0010】次いで、上記高圧分離槽3で得られた軽質
留分と上記重質残油流動接触分解装置4で得られた分解
軽油は、水素化精製装置5に導入される。この水素化精
製装置5の運転は、最終的な軽油の硫黄分のみでなく他
の不純物である窒素分等の除去を目標として制御するこ
とが望ましい。その運転条件としては、触媒として通常
の公知触媒、例えば周期律表第VI族金属(好ましくはM
o またはWを酸化物として10重量%以上、より好まし
くは15重量%以上含有)と同第VIII族金属(好ましく
はNiを酸化物として1重量%以上、より好ましくは3
〜8重量%含有)をアルミナ,シリカ,ゼオライト,酸
化ホウ素等の担体、特に平均細孔径60〜200オング
ストローム、より好ましくは80〜120オングストロ
ームの多孔質担体に担持した触媒を用い、温度を300
〜400℃,圧力を50〜400kg/cm2Gとし、LHS
Vを0.1〜5hr-1 、より好ましくは0.2〜4hr -1 及び水
素量を500〜5000Nm3 /klに設定することが好ま
しい。状況により異なるが、更に好ましくは、温度を3
40〜360℃,圧力を100〜200kg/cm2Gとし、
LHSVを0.2〜2.0hr-1及び水素量を800〜200
0Nm3 /klとすべきである。
Next, the light fraction obtained in the high-pressure separation tank 3 and the cracked light oil obtained in the heavy residual oil fluid catalytic cracking unit 4 are introduced into a hydrorefining unit 5. It is desirable to control the operation of the hydrorefining apparatus 5 so as to remove not only the sulfur content of the final gas oil but also other impurities such as nitrogen content. The operating conditions include a usual catalyst known as a catalyst, for example, a metal of Group VI of the periodic table (preferably M
o or W as an oxide in an amount of 10% by weight or more, more preferably 15% by weight or more, and a Group VIII metal (preferably 1% by weight or more, more preferably 3% by weight of Ni as an oxide).
-8% by weight) on a carrier such as alumina, silica, zeolite or boron oxide, particularly a porous carrier having an average pore diameter of 60 to 200 Å, more preferably 80 to 120 Å, and a temperature of 300 ° C.
~ 400 ° C, pressure 50 ~ 400kg / cm 2 G, LHS
V is preferably set to 0.1 to 5 hr -1 , more preferably 0.2 to 4 hr -1 and the amount of hydrogen is set to 500 to 5000 Nm 3 / kl. Varies depending on the situation, more preferably, a temperature 3
40-360 ° C, pressure 100-200kg / cm 2 G,
LHSV is 0.2 to 2.0 hr -1 and the amount of hydrogen is 800 to 200.
It should be 0 Nm 3 / kl.

【0011】次に、上記のようにして水素化精製を終え
た留分を常圧蒸留塔6に導入して、さらに各留分に分留
(分離)する。この分留時の条件としては、例えば常圧
下において、ナフサ留分のカット温度を145〜170
℃、灯油留分のカット温度を235〜265℃、軽油留
分のカット温度を360〜380℃とすることにより、
ナフサ留分,灯油留分及び軽油留分に分離することがで
きる。
Next, the fractions which have been subjected to hydrorefining as described above are introduced into the atmospheric distillation column 6 and further fractionated (separated) into each fraction. As conditions for this fractionation, for example, under normal pressure, the cut temperature of the naphtha fraction is set to 145 to 170
C, the cut temperature of the kerosene fraction is 235-265 ° C, and the cut temperature of the gas oil fraction is 360-380 ° C,
It can be separated into naphtha fraction, kerosene fraction and gas oil fraction.

【0012】このようにして常圧蒸留塔6から得られる
灯油,軽油の各留分は、すでに水素化脱硫及び水素化精
製を終えているため、必要に応じてそのまま熱交換器で
原油と熱交換させて熱回収した後に、直接各製品貯槽に
送られて貯留し、あるいは直接需要先に供給することが
できる。また、ナフサ留分は、原油から分離されたナフ
サと共に前記脱硫装置7で精製される。
The kerosene and gas oil fractions obtained from the atmospheric distillation column 6 in this manner have already been subjected to hydrodesulfurization and hydrorefining. After the heat is exchanged and recovered, it can be directly sent to each product storage tank for storage or directly supplied to a demand destination. The naphtha fraction is refined in the desulfurizer 7 together with the naphtha separated from the crude oil.

【0013】ここで、予備蒸留により原油中のナフサ留
分を分離せずに、原油を直接脱硫工程に導入すると、ナ
フサの硫黄分を必要限度まで下げることが非常に困難で
あり、硫黄分を1重量ppm 程度にすることができず、リ
フォーマーにかけると触媒毒として作用するため、後工
程に支障をきたすことがある。したがって上記の如くナ
フサ留分を除去した後に、脱硫,水素化精製の一連の操
作に流動接触分解装置を組み込み、しかる後に精製油留
分を分留することにより、従来と同程度以上の性状を保
持しながら、原油の精製に必要な設備を大幅に簡略化す
ることができる。これによる中間タンクの省略によっ
て、該タンクへの導入,導出に伴うエネルギー損失を低
減することができる。さらに水素化脱硫処理や水素化精
製処理を一括して行うために、その運転管理が容易とな
り、管理用機器の設備費の低減や運転員の数の低減も図
ることが可能となる。
Here, if the crude oil is directly introduced into the desulfurization step without separating the naphtha fraction in the crude oil by pre-distillation, it is very difficult to lower the sulfur content of the naphtha to a necessary limit. It cannot be reduced to about 1 ppm by weight, and when it is subjected to a reformer, it acts as a catalyst poison, which may hinder subsequent processes. Therefore, after removing the naphtha fraction as described above, the fluid catalytic cracking unit is incorporated in a series of operations of desulfurization and hydrorefining, and then the refined oil fraction is fractionated to obtain properties equivalent to those of the conventional type. While maintaining, the equipment required for crude oil refining can be greatly simplified. By omitting the intermediate tank in this way, it is possible to reduce energy loss due to introduction and discharge to the tank. Furthermore, since the hydrodesulfurization treatment and the hydrorefining treatment are collectively performed, the operation management thereof is facilitated, and it is possible to reduce the equipment cost of the management equipment and the number of operators.

【0014】また本発明によれば、脱硫工程において生
成するおそれのある不安定物質を主蒸留塔での蒸留で分
離除去することも可能である。さらに脱硫処理を残油の
残留硫黄分を目標値として行うことにより、軽質留分中
の硫黄分を従来より低減することができる。さらに、本
発明では、高圧分離, 重質残油流動接触分解及び水素化
精製を行うことにより、軽質留分(分解軽油を含む)中
の窒素などの不純物を除去することができるので、軽質
留分の安定性が向上するとともに、利用価値の高い軽質
留分の得率を大巾に上げることが可能となる。
According to the present invention, it is also possible to separate and remove unstable substances which may be generated in the desulfurization step by distillation in the main distillation column. Further, by performing the desulfurization treatment with the residual sulfur content of the residual oil as the target value, the sulfur content in the light fraction can be reduced as compared with the conventional case. Furthermore, in the present invention, impurities such as nitrogen in light fractions (including cracked gas oil) can be removed by performing high pressure separation, fluid catalytic cracking of heavy residue, and hydrorefining. In addition to improving the stability of the fraction, the yield of the light fraction having high utility value can be greatly increased.

【0015】[0015]

【実施例】次に、本発明を実施例によりさらに詳しく説
明する。 比較例1及び実施例1 原油として、 密度(15℃) 0.9040g/cm3 硫黄分 2.60重量% 窒素分 0.15重量% バナジウム 50重量ppm ニッケル 15重量ppm ナフサ留分(C5 〜157℃) 14.5重量% 灯油留分(157〜239℃) 11.7重量% 軽油留分(239〜370℃) 20.9重量% 残油(370℃以上) 52.9重量% の性状のものを用い、これを圧力1.5kg/cm2Gで運転す
る予備蒸留塔にて、145〜170℃でカットし、C5
〜157℃のナフサ留分を分離した。このナフサ留分を
分離した後の原油をCo −Mo 系触媒(CoO:1.2重
量%,Mo23 :10.5重量%,担体:シリカ/アルミ
ナ)を充填した水素化脱硫装置に導入し、圧力135kg
/cm2G,温度380℃,LHSV0.6hr-1,水素量10
00Nm3 /klの条件下で脱硫を行った。この脱硫された
生成油を系の圧力を落とすことなく高圧分離槽に移し、
槽の底部より水素を導入することにより軽質留分の分離
を行った。重質残油は、引続き重質残油流動接触分解装
置に通油し、ガス,LPG,ガソリン,分解軽油及び重
油に分解した。ここにおける分解条件は、触媒として市
販流動接触分解触媒〔希土類元素0.5重量%:USY型
ゼオライト40重量%含有カオリン/アルミナ〕を用
い、触媒/油比=7(重量比),温度520℃,圧力1.
5kg/cm2Gであった。ここで得られた分解軽油を比較例
1とし、その性状を第1表に示す。なお、分解軽油の得
率は9.6重量%(原油に対し)であった。引続き、分解
軽油は、昇圧後、先の軽質留分と混合して水素化精製装
置に導入し、水素化精製した。得られた精製油を常圧蒸
留塔にてC5 〜157℃のナフサ留分,157〜239
℃の灯油留分,239〜370℃の軽油留分に分留し
た。得られた軽油留分の分析結果を実施例1として第1
表に示す。この場合の軽油留分の得率は、35.1重量%
(原油に対し)であった。なお、このときの水素化精製
の処理条件は、触媒としてNi −Mo 系触媒(Ni4重
量%,Mo25重量%,担体アルミナ)を使用し、圧力
135kg/cm2G,温度340℃,水素量1000Nm3
kl,LHSV1.0hr-1とした。
Next, the present invention will be described in more detail with reference to examples.
I will tell. Comparative Example 1 and Example 1 As crude oil, density (15 ° C.) 0.9040 g / cmThree  Sulfur content 2.60% by weight Nitrogen content 0.15% by weight Vanadium 50% by weight Nickel 15% by weight Naphtha fraction (CFive15.7% by weight Kerosene fraction (157-239 ° C) 11.7% by weight Gas oil fraction (239-370 ° C) 20.9% by weight Residual oil (above 370 ° C) 52.9% by weight Use a material with a pressure of 1.5 kg / cmTwoDrive with G
Cut at 145 to 170 ° C.Five
The naphtha fraction at 〜157 ° C. was separated. This naphtha fraction
The separated crude oil is used as a Co-Mo based catalyst (CoO: 1.2 times
Amount%, MoTwoOThree10.5% by weight, carrier: silica / aluminum
Into a hydrodesulfurization unit filled with
/cmTwoG, temperature 380 ° C, LHSV 0.6hr-1, Hydrogen amount 10
00NmThreeThe desulfurization was performed under the conditions of / kl. This desulfurized
Transfer the generated oil to the high-pressure separation tank without lowering the system pressure,
Separation of light fractions by introducing hydrogen from the bottom of the tank
Was done. Heavy residual oil will continue to be
Gas, LPG, gasoline, cracked light oil and heavy oil
Decomposed into oil. The decomposition conditions here are marketed as catalysts.
Commercial fluid catalytic cracking catalyst [rare earth element 0.5% by weight: USY type
Kaolin / alumina containing 40% by weight of zeolite)
Catalyst / oil ratio = 7 (weight ratio), temperature 520 ° C, pressure 1.
5kg / cmTwoG. The cracked gas oil obtained here is a comparative example
The properties are shown in Table 1. Note that cracked light oil
The rate was 9.6% by weight (relative to crude oil). Continue to disassemble
Light oil is pressurized, mixed with the light fraction, and hydrorefined.
And hydrotreated. The refined oil obtained is steamed at normal pressure
C at the retaining towerFiveNaphtha fraction from 157 to 157 ° C, 157 to 239
Fractionated into kerosene fraction at ℃, and light oil fraction at 239-370 ℃
Was. The analysis result of the obtained gas oil fraction was designated as Example 1
It is shown in the table. In this case, the gas oil fraction yield was 35.1% by weight.
(Relative to crude oil). In this case, the hydrorefining
The treatment conditions of Ni-Mo based catalyst (Ni4
%, Mo 25% by weight, alumina carrier)
135kg / cmTwoG, temperature 340 ° C, hydrogen amount 1000NmThree/
kl, LHSV 1.0hr-1And

【0016】比較例2 実施例1と同じ原油を用いて、従来法に従い常圧蒸留
後、灯油留分,軽油留分及び重質残油留分の各留分に分
離し、それぞれ水素化脱硫を行った。このときの脱硫条
件を第2表に示す。重質残油を脱硫して得られた脱硫し
た重質残油は、引続き重質残油流動接触分解装置に通油
し、ガス,LPG,ガソリン,分解軽油及び重油に分解
した。このときの分解条件は実施例1と同じである。得
られた分解軽油の性状を第1表に示す。
Comparative Example 2 The same crude oil as in Example 1 was distilled under normal pressure according to the conventional method, then separated into a kerosene fraction, a gas oil fraction and a heavy residue fraction, each of which was hydrodesulfurized. Was done. Table 2 shows the desulfurization conditions at this time. The desulfurized heavy resid obtained by desulfurizing the heavy resid was continuously passed through a heavy resid fluid fluidized catalytic cracker to be decomposed into gas, LPG, gasoline, cracked gas oil and heavy oil. The decomposition conditions at this time are the same as in the first embodiment. Table 1 shows the properties of the obtained cracked gas oil.

【0017】次に実施例1,比較例1及び比較例2で得
られた軽油留分の貯蔵安定性試験を行った。具体的に
は、ベントを有した500mlのガラス容器に上記の軽油
留分を400ml入れ、43℃に保たれた暗所に貯蔵し、
一定時間毎に470nmにおける吸光度を測定した。こ
の測定結果を、図2及び第1表に示す。ここで、貯蔵安
定性試験は、ASTM D4625−86に準拠した。
なお、通常の市販軽油の貯蔵安定性試験のレベルは、3
0日間の貯蔵で0.12〜0.40程度である。この結果か
らわかるように、比較例2の如き分解軽油は、そのまま
ではセタン指数が低く、芳香族分が著しく多い。また安
定性に劣り、貯蔵時間の経過に従って変色が激しく、濃
い褐色を呈するに至るが、軽質留分とともに水素化精製
することによって、これらの問題がすべて改善され、軽
油としての性状ならびに品質が充分に満足すべきものと
なる。
Next, a storage stability test of the gas oil fractions obtained in Example 1, Comparative Examples 1 and 2 was performed. Specifically, 400 ml of the above light oil fraction was placed in a 500 ml glass container having a vent, and stored in a dark place kept at 43 ° C.
The absorbance at 470 nm was measured at regular intervals. The measurement results are shown in FIG. 2 and Table 1. Here, the storage stability test was based on ASTM D4625-86.
Incidentally, the level of the storage stability test of ordinary commercial gas oil is 3
It is about 0.12 to 0.40 when stored for 0 days. As can be seen from the results, the cracked gas oil as in Comparative Example 2 has a low cetane index and a remarkably high aromatic content as it is. In addition, the stability is inferior, and the discoloration becomes severe with the lapse of storage time, resulting in the appearance of a dark brown color. Will be satisfactory.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【発明の効果】以上説明した如く、本発明によれば、中
間タンクの省略や脱硫設備の一元化により、設備コスト
を大幅に低減することができる。さらに予備蒸留装置か
ら最終的な分留までを一体的な装置として機能させるこ
とができるため、中間タンクの省略や脱硫設備の一元化
と合わせて運転管理性も向上させることができ、設備管
理に必要な機器,費用の低減とともに運転員の数も低減
できる。また、高圧分離装置,重質残油流動接触分解装
置及び水素化精製装置を加えることにより、脱硫及び脱
窒素等の不純物の除去が徹底され、特に軽油の貯蔵安定
性の向上やセタン指数等の性能を向上させることができ
る。しかも、安定性が悪く製品としての価値の低い分解
軽油の品質を高め、付加価値を与えることができるとと
もに、灯油,軽油等の中間留分の得率を大幅に増大させ
ることができる。このように、本発明によれば、石油精
製のコストを大幅に低減することができ、安価な各種石
油製品あるいは石油化学分野における安価な原料油を提
供することができる。
As described above, according to the present invention, equipment costs can be greatly reduced by omitting the intermediate tank and unifying the desulfurization equipment. In addition, since the process from the pre-distillation unit to the final fractionation can be functioned as an integrated unit, operation controllability can be improved together with the omission of an intermediate tank and unification of desulfurization equipment, which is necessary for equipment management. The number of operators can be reduced as well as the equipment and cost. In addition, by adding a high-pressure separation unit, a heavy residue fluid catalytic cracking unit and a hydrorefining unit, the removal of impurities such as desulfurization and denitrification is thoroughly carried out. Performance can be improved. In addition, the quality of cracked gas oil, which has poor stability and is of low value as a product, can be enhanced to provide added value, and the yield of middle distillates such as kerosene and gas oil can be greatly increased. As described above, according to the present invention, the cost of petroleum refining can be significantly reduced, and various petroleum products that are inexpensive or inexpensive feedstocks in the petrochemical field can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明を実施するための基本的な装置構
成を示すフローシートである。
FIG. 1 is a flow sheet showing a basic device configuration for carrying out the present invention.

【図2】図2は貯蔵安定性試験の結果を示す。FIG. 2 shows the results of a storage stability test.

【符号の説明】[Explanation of symbols]

1 予備蒸留塔 2 水素化脱硫装置 3 高圧分離装置 4 重質残油流動接触分解装置 5 水素化精製装置 6 常圧蒸留塔 7 水素化脱硫装置 DESCRIPTION OF SYMBOLS 1 Pre-distillation tower 2 Hydrodesulfurization apparatus 3 High pressure separation apparatus 4 Heavy residual oil fluid catalytic cracking apparatus 5 Hydrorefining apparatus 6 Atmospheric pressure distillation tower 7 Hydrodesulfurization apparatus

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C10G 69/04──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) C10G 69/04

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 原油中のナフサ留分を分離した後、該ナ
フサ留分を除いた残りの留分を水素化脱硫し、次いで高
圧分離槽で軽質留分と重質留分とに分離し、分離した重
質残油は流動接触分解後分留し、該分留により得られた
分解軽油は前記軽質留分と共に水素化精製することを特
徴とする原油の精製法。
After separating a naphtha fraction in crude oil, the remaining fraction excluding the naphtha fraction is hydrodesulfurized, and then separated into a light fraction and a heavy fraction in a high-pressure separation tank. A method for refining crude oil, comprising separating the separated heavy residue after fluid catalytic cracking, and hydrocracking the cracked gas oil obtained by the fractionation together with the light fraction.
【請求項2】 高圧分離槽に水素を導入して軽質留分を
分離する請求項1記載の原油の精製法。
2. The method according to claim 1, wherein hydrogen is introduced into the high-pressure separation tank to separate a light fraction.
【請求項3】 水素化精製後、蒸留して各留分に分離す
る請求項1記載の原油の精製法。
3. The method for refining crude oil according to claim 1, wherein after the hydrorefining, distillation is carried out to separate each fraction.
【請求項4】(4) 原油中のナフサ留分を分離した後、該ナAfter separating the naphtha fraction in crude oil,
フサ留分を除いた残りの留分を水素化脱硫し、次いで高The remaining fraction excluding the Husa fraction is hydrodesulfurized and then
圧分離槽で軽質留分と重質留分とに分離し、分離した重The light fraction and the heavy fraction are separated in a pressure separation tank, and the separated heavy fraction is separated.
質残油は流動接触分解後分留し、該分留により得られたThe residual oil was fractionated after fluid catalytic cracking and was obtained by the fractionation.
分解軽油と前記軽質留分を水素化精製することを特徴とHydrocracking the cracked gas oil and the light fraction
する原油の精製法。Crude oil refining method.
JP41406490A 1990-12-07 1990-12-26 Crude oil refining method Expired - Fee Related JP2863326B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP41406490A JP2863326B2 (en) 1990-12-26 1990-12-26 Crude oil refining method
PCT/JP1991/001377 WO1992010557A1 (en) 1990-12-07 1991-10-09 Method of refining crude oil
DE69117937T DE69117937D1 (en) 1990-12-07 1991-10-09 RAW OIL REFINING PROCESS
EP91917699A EP0514549B1 (en) 1990-12-07 1991-10-09 Method of refining crude oil
US08/400,494 US5851381A (en) 1990-12-07 1995-03-08 Method of refining crude oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41406490A JP2863326B2 (en) 1990-12-26 1990-12-26 Crude oil refining method

Publications (2)

Publication Number Publication Date
JPH04224892A JPH04224892A (en) 1992-08-14
JP2863326B2 true JP2863326B2 (en) 1999-03-03

Family

ID=18522600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41406490A Expired - Fee Related JP2863326B2 (en) 1990-12-07 1990-12-26 Crude oil refining method

Country Status (1)

Country Link
JP (1) JP2863326B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860165A (en) * 1994-08-24 1996-03-05 Idemitsu Kosan Co Ltd Fuel oil composition and production thereof
JP4589940B2 (en) * 2007-05-15 2010-12-01 株式会社ジョモテクニカルリサーチセンター High power diesel oil composition
WO2013019320A1 (en) * 2011-07-29 2013-02-07 Saudi Arabian Oil Company Hydrogen-enriched feedstock for fluidized catalytic cracking process
CN106701186B (en) * 2015-11-12 2018-03-16 中国石油化工股份有限公司 A kind of high temperature coal-tar processing method
CN106701176B (en) * 2015-11-12 2018-02-09 中国石油化工股份有限公司 A kind of process for handling high temperature coal-tar

Also Published As

Publication number Publication date
JPH04224892A (en) 1992-08-14

Similar Documents

Publication Publication Date Title
US5851381A (en) Method of refining crude oil
US6841062B2 (en) Crude oil desulfurization
EP0665283B1 (en) Integrated process for upgrading middle distillate production
US5358627A (en) Hydroprocessing for producing lubricating oil base stocks
EP0523679B2 (en) A process for the production of low-sulfur diesel gas oil
US20050269245A1 (en) Process for desulphurising and dewaxing a hydrocarbon feedstock boiling in the gasoil boiling range
JP3098030B2 (en) How to improve the quality of residual oil
JP4366583B2 (en) Integrated process for desulfurization of effluents from hydrocarbon cracking or steam cracking processes
EP0550079B1 (en) Process for upgrading a hydrocarbonaceous feedstock
KR100980324B1 (en) A process for reducing sulfur and olefin contents in gasoline
JP2863326B2 (en) Crude oil refining method
KR20050008672A (en) Hydroprocessing of hydrocarbon feedstock
JPH10510001A (en) Centralized rationalization process to increase the aromatics content in the reformate produced from the C-lower 9-upper + aromatic-containing charge
CA2491012C (en) An improved hydrocracking process
JP2980436B2 (en) Treatment method for heavy hydrocarbon oil
JP2863325B2 (en) Crude oil refining method
JP4217324B2 (en) Gas oil desulfurization method and gas oil desulfurization system
JPH05230473A (en) Treatment of heavy hydrocarbon oil
US4170546A (en) Multistage residual oil hydrodesulfurization process
JPH07102266A (en) Process for reducing sulfur content of petroleum distillate
EP0514549B1 (en) Method of refining crude oil
JP4700153B2 (en) Fuel oil
JPH04209696A (en) Process for refining crude oil
JPH08231965A (en) Hydrogenation treatment of heavy hydrocarbon oil
JPH0413397B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20081211

LAPS Cancellation because of no payment of annual fees