JP2863047B2 - Semiconductor exposure equipment - Google Patents

Semiconductor exposure equipment

Info

Publication number
JP2863047B2
JP2863047B2 JP4265605A JP26560592A JP2863047B2 JP 2863047 B2 JP2863047 B2 JP 2863047B2 JP 4265605 A JP4265605 A JP 4265605A JP 26560592 A JP26560592 A JP 26560592A JP 2863047 B2 JP2863047 B2 JP 2863047B2
Authority
JP
Japan
Prior art keywords
line
electric field
lamp
average electric
mercury
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4265605A
Other languages
Japanese (ja)
Other versions
JPH0697048A (en
Inventor
修 井上
清忠 中村
孝司 森
哲男 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Ushio Denki KK
Original Assignee
Nikon Corp
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Ushio Denki KK filed Critical Nikon Corp
Priority to JP4265605A priority Critical patent/JP2863047B2/en
Publication of JPH0697048A publication Critical patent/JPH0697048A/en
Priority to US08/417,591 priority patent/US5791767A/en
Application granted granted Critical
Publication of JP2863047B2 publication Critical patent/JP2863047B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70575Wavelength control, e.g. control of bandwidth, multiple wavelength, selection of wavelength or matching of optical components to wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体製造用の露光装
置に関し、更に詳しくは効率良くi線の出力が得られ、
かつi線の半値巾の狭い水銀ランプが露光用光源として
搭載された露光装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure apparatus for manufacturing semiconductors, and more particularly, to an apparatus capable of efficiently obtaining an i-line output.
The present invention relates to an exposure apparatus in which a mercury lamp having a narrow i-line half-width is mounted as an exposure light source.

【0002】[0002]

【従来の技術】LSIや超LSIなどの極微細パターン
からなる半導体素子の製造に、縮小投影型露光装置が使
用されているが、より一層微細なパターンを転写するた
めに、露光装置の解像度Rおよび焦点深度DOFが重要
である。ここで、解像度Rおよび焦点深度DOFは、投
影光学系の開口数NAと露光波長λの間に次の関係があ
る。 R=K1・λ/NA DOF=K2・λ/NA2
(K1、K2 は定数)
2. Description of the Related Art A reduction projection type exposure apparatus is used for manufacturing a semiconductor device having an extremely fine pattern such as an LSI or a super LSI. However, in order to transfer a finer pattern, a resolution R of the exposure apparatus is required. And DOF are important. Here, the resolution R and the depth of focus DOF have the following relationship between the numerical aperture NA of the projection optical system and the exposure wavelength λ. R = K 1 · λ / NA DOF = K 2 · λ / NA 2
(K 1 and K 2 are constants)

【0003】この関係式から、パターンの微細化は、露
光装置の投影光学系の開口数NAの拡大および露光波長
λの短波長化によって達成されることが分かる。開口数
NAについては、近年0.5〜0.6といった大きな開
口数のものが実現されており、パターンの微細化に寄与
している。また、実際の半導体製造のプロセスにおいて
は、先工程で段差の生じたウエハ面上に回路パターンを
露光する必要があり、更にはウエハ自身の平面度誤差を
吸収するために十分大きな焦点深度を確保する必要があ
るが、上記の関係式から、露光波長λの短波長化によっ
て解像度を向上させる方が焦点深度を確保する上で有利
となる。このため従来は、g線(436nm)と呼ばれる水銀
ランプの輝線を露光用光源として利用していたが、現在
ではより波長の短いi線(365nm) と呼ばれる輝線を露光
用光源として利用することが主流になっている。
From this relational expression, it can be seen that miniaturization of the pattern can be achieved by increasing the numerical aperture NA of the projection optical system of the exposure apparatus and shortening the exposure wavelength λ. In recent years, a numerical aperture NA as large as 0.5 to 0.6 has been realized, contributing to miniaturization of patterns. In the actual semiconductor manufacturing process, it is necessary to expose a circuit pattern on the wafer surface where a step has occurred in the previous process, and furthermore, a sufficiently large depth of focus is secured to absorb a flatness error of the wafer itself. Although it is necessary to improve the resolution by shortening the exposure wavelength λ from the above relational expression, it is more advantageous to secure the depth of focus. For this reason, conventionally, the emission line of a mercury lamp called g-line (436 nm) was used as an exposure light source, but now an emission line called i-line (365 nm) having a shorter wavelength can be used as an exposure light source. It has become mainstream.

【0004】一方、半導体素子は、パターンの微細化と
同時にチップ面積も拡大させる方向で発展しており、露
光装置の1ショットで露光できる面積もそれに対応して
拡大させる努力がなされている。つまり、従来の露光面
積は15mm角エリアが主流であったが、現在では、20
mm角を超えるものも実現されている。このような露光面
積の大きな露光装置で、スループットを向上させるため
には、ウエハ面上での露光光量を更に増大させる必要が
ある。
[0004] On the other hand, semiconductor elements have been developed to increase the chip area simultaneously with the miniaturization of patterns, and efforts have been made to correspondingly increase the area that can be exposed with one shot of an exposure apparatus. In other words, the conventional exposure area is mainly 15 mm square area, but at present, it is 20 mm area.
Some have exceeded mm square. In such an exposure apparatus having a large exposure area, it is necessary to further increase the amount of exposure light on the wafer surface in order to improve the throughput.

【0005】この種の露光装置の露光用光源として、シ
ョートアーク型の水銀ランプが搭載されているが、ショ
ートアーク型の水銀ランプは、石英ガラスからなるバル
ブ内に所定量の水銀と始動用の希ガスを封入し、主とし
てタングステンからなる電極間に直流を印加して放電発
光させるが、高効率、高輝度の放射紫外線束が比較的容
易に得ることができ、かつ光学的な取り扱いが容易であ
り、最適の光源とされている。そして、この水銀ランプ
の放射紫外線束を増大させることは、入力電力の増大や
水銀動作圧力の増大によって行っていた。
[0005] A short arc type mercury lamp is mounted as an exposure light source of this type of exposure apparatus. The short arc type mercury lamp is provided with a predetermined amount of mercury and a starter in a bulb made of quartz glass. A rare gas is sealed, and a direct current is applied between electrodes mainly made of tungsten to discharge and emit light. However, a high-efficiency, high-luminance radiated ultraviolet ray flux can be obtained relatively easily, and optical handling is easy. Yes, it is considered the optimal light source. In addition, increasing the radiated ultraviolet ray flux of this mercury lamp has been performed by increasing the input power or the operating pressure of mercury.

【0006】ショートアーク型水銀ランプの電極間の電
位分布を模式的に示すと図1のようになる。陰極付近の
電圧降下Vc と陽極付近の電圧降下Va は、電極材料、
封入水銀量、始動用希ガスの種類およびその量によら
ず、Vc =10V、Va =1Vの一定値になる。(例え
ば、P.Gerthsen und P.Schulz:Z.Physik 140, 5
10(1955)参照) 従って、ランプ電圧をVL (V)、
陽光柱における電圧降下をVp (V)、電極間距離をd
(mm)とすると、Vp =VL −11であり、発光アーク
(陽光柱)中の平均電場EはE=(VL −11)/dと
なる。
FIG. 1 schematically shows a potential distribution between electrodes of a short arc type mercury lamp. The voltage drop Vc near the cathode and the voltage drop Va near the anode depend on the electrode material,
Regardless of the amount of the enclosed mercury, the type of the starting rare gas, and the amount thereof, the constant values are Vc = 10 V and Va = 1 V. (For example, P. Gerthsen und P. Schulz: Z. Physik 140 , 5
10 (1955)) Therefore, the lamp voltage is V L (V),
The voltage drop in the positive column is Vp (V), and the distance between the electrodes is d.
(Mm), Vp = VL- 11, and the average electric field E in the light-emitting arc (positive column) is E = ( VL- 11) / d.

【0007】次に、発光に寄与する有効な電力をWeff
(W)、ランプ電流をIL (A)とするとき、Weff
L ・(VL −11)であり、(VL −11)=E・d
であるので、Weff =IL ・E・dとなる。従って、放
射紫外線束を増大させるためにWeff を大きくとるに
は、ランプ電流IL を増すこと、および平均電場Eを大
きくとることが有効であることがわかる。また、電極間
距離dを大きくすることでランプ電圧が増大し、Weff
を大きくできるが、この場合はアークが大きくなり、輝
度が低下する。従って、効率の良い光学系の設計が困難
になり、Weff を増大させる手段としては適当でない。
なお、平均電場Eは、主として水銀の動作圧力や希ガス
の封入量により支配されるものである。
Next, the effective power contributing to light emission is represented by W eff
(W), when the lamp current is I L (A), W eff =
I L · (V L− 11), and (V L− 11) = E · d
Since it is, the W eff = I L · E · d. Accordingly, it can be seen that it is effective to increase the lamp current IL and increase the average electric field E in order to increase W eff in order to increase the radiated ultraviolet ray flux. Also, by increasing the distance d between the electrodes, the lamp voltage increases, and W eff
Can be increased, but in this case, the arc increases and the luminance decreases. Therefore, it becomes difficult to design an efficient optical system, and it is not suitable as a means for increasing W eff .
The average electric field E is mainly governed by the operating pressure of mercury and the amount of rare gas charged.

【0008】一方、水銀ランプの放射光の分光分布は、
図2に示すように、種々の輝線スペクトルと低いレベル
の連続スペクトルからなっている。この分布は、封入水
銀の動作圧力によってほとんど決定され、動作圧力が高
いほど輝線はブロードニングを示し、連続スペクトルも
高くなり、投影光学系の色収差の補正が困難になってく
る。
On the other hand, the spectral distribution of the emitted light of a mercury lamp is
As shown in FIG. 2, it is composed of various bright line spectra and a low level continuous spectrum. This distribution is almost determined by the operating pressure of the enclosed mercury. The higher the operating pressure, the broader the emission line becomes, the higher the continuous spectrum becomes, and the more difficult it becomes to correct the chromatic aberration of the projection optical system.

【0009】[0009]

【発明が解決しようとする課題】ところで、現在半導体
露光装置の光源に主として使用されているi線(365nm)
は、屈折光学系用として使用できる光学ガラス材料の種
類がその透過率により大きく制限を受けるため、色収差
の補正が困難であって、その輝線巾には制限が大きい。
つまり、できるだけ半値巾の小さなi線を使用する必要
があるが、従来、Deep UVランプと称して商品化
され、露光用光源ランプとして使用されている水銀ラン
プから放射されるi線の半値巾は必ずしも満足できるも
のではなかった。
By the way, i-line (365 nm) which is mainly used as a light source of a semiconductor exposure apparatus at present.
However, since the type of optical glass material that can be used for a refractive optical system is greatly restricted by its transmittance, it is difficult to correct chromatic aberration, and the emission line width is greatly limited.
In other words, it is necessary to use an i-line having a half-value width as small as possible, but the half-value width of the i-line radiated from a mercury lamp conventionally commercialized as a Deep UV lamp and used as an exposure light source lamp is It was not always satisfactory.

【0010】また、封入水銀の動作圧力を増して平均電
場Eを大きくすると、発光に寄与する有効な電力Weff
が増大するが、封入水銀の動作圧力がある程度以上大き
くなると、励起された水銀からの放射光が水銀原子に吸
収される確率が増し、自己吸収が顕著となってi線の出
力が低下してしまう不具合がある。この様子を図3に示
すが、封入水銀の動作圧力を大きくして平均電場Eが大
きくなると、i線の出力が低下していることが分かる。
従って、封入水銀の動作圧力は無制限に大きくすること
はできない。また、入力電力を無制限に大きくすれば、
ランプが大型化して露光装置自体が大型化することや、
更には排熱対策が困難になるなどの不具合がある。
When the average electric field E is increased by increasing the operating pressure of the enclosed mercury, the effective power W eff contributing to light emission is increased.
However, when the operating pressure of the enclosed mercury becomes larger than a certain level, the probability that the radiation emitted from the excited mercury is absorbed by mercury atoms increases, self-absorption becomes remarkable, and the output of i-line decreases. There is a problem that goes wrong. FIG. 3 shows this state, and it can be seen that when the operating pressure of the enclosed mercury is increased and the average electric field E is increased, the output of the i-line is reduced.
Therefore, the operating pressure of the enclosed mercury cannot be increased without limit. Also, if the input power is increased without limit,
Exposure equipment itself becomes larger due to larger lamps,
Further, there is a problem that it becomes difficult to take measures against exhaust heat.

【0011】そこで本発明は、効率良くi線の出力が得
られ、かつi線の半値巾が小さくて色収差の補正が十分
に可能な高輝度水銀ランプを露光用光源として搭載し、
スループットの優れた半導体露光装置を提供することを
目的とする。
Therefore, the present invention comprises, as an exposure light source, a high-intensity mercury lamp capable of efficiently obtaining an i-line output, having a small half-value width of the i-line, and capable of sufficiently correcting chromatic aberration.
An object of the present invention is to provide a semiconductor exposure apparatus having excellent throughput.

【0012】[0012]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明の半導体露光装置は、水銀ランプのランプ
電圧V(V)から11Vを差し引き、電極間距離d
(mm)で割った値を平均電場E(V/mm)としたと
き、平均電場Eがランプ入力電力W(W)に対し、次
式を満足する平均電場Eを有する水銀ランプを露光用光
源として搭載する。 E(W)−1.0V/mm≦ E≦ E(W 但し、E(W)=a+bW, E ≦ 6V/mm a,bは定数であってa=1.4V/mm,b=0.71×10−3 V/mm・W
In order to achieve the above object,
First, the semiconductor exposure apparatus of the present invention uses a mercury lamp
Voltage VL11V is subtracted from (V) to obtain a distance d between the electrodes.
(Mm) is defined as the average electric field E (V / mm).
The average electric field E is the lamp input power WL(W)
A mercury lamp having an average electric field E satisfying the formula
Mounted as a source. EP(WL) −1.0V / mm ≦ E ≦ EP(WL ) Where EP(WL) = A + bWL, E ≦ 6 V / mm a and b are constants, a = 1.4 V / mm, b = 0.71 × 10-3  V / mm · W

【0013】[0013]

【作用】平均電場Eが増加するとi線の照度は増大する
が、平均電場Eがある値以上になると逆にi線の照度は
減少し、i線の照度は極大値を有する。そして、平均電
場Eとランプ入力電力WL の関係を上記の式を満足させ
る事によって、一定のランプ電力でi線の照度は極大値
の90%以上の値を得ながら、狭い半値巾のi線を得ら
れることを見い出した。
When the average electric field E increases, the illuminance of the i-line increases. However, when the average electric field E exceeds a certain value, the illuminance of the i-line decreases, and the illuminance of the i-line has a maximum value. Then, by the relationship between the average electric field E and the lamp input power W L that satisfies the above equation, the illuminance of the i-line with a constant lamp power while obtaining more than 90% of the value of the maximum value of the narrow half width i I found that I could get a line.

【0014】[0014]

【実施例】半導体露光装置の露光用光源として使用され
る水銀ランプを図4に基づいて説明すると、石英ガラス
からなるバルブ 11 の中央が発光空間膨出部 12 であ
り、発光空間膨出部 12 の両側から封止管部 15 が伸び
ている。封止管部 15 の端部に口金 16 が取り付けられ
ている。発光空間膨出部 12 内で、タングステンからな
る陽極 13 と陰極 14 が電極間距離dで対向配置されて
おり、バルブ 11 内には、所定量の水銀と始動用の希ガ
スが封入されている。そして、陽極 13 と陰極14 の間
に直流を印加すると放電発光する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 4, a mercury lamp used as an exposure light source of a semiconductor exposure apparatus will be described. The center of a bulb 11 made of quartz glass is a luminous space bulge 12, and the luminous space bulge 12 is provided. The sealing tube portion 15 extends from both sides of the sealing tube. A base 16 is attached to an end of the sealing tube 15. An anode 13 and a cathode 14 made of tungsten are opposed to each other with a distance d between the electrodes in the bulging portion 12 of the light emitting space, and a predetermined amount of mercury and a rare gas for starting are sealed in the bulb 11. . When a direct current is applied between the anode 13 and the cathode 14, discharge light emission occurs.

【0015】かかる水銀ランプを露光用光源とする半導
体露光装置の照明光学系は、例えば図5に示すとおりで
ある。水銀ランプ1は、楕円鏡2の第1焦点 21 に配置
され、水銀ランプ1からの放射光束は楕円鏡2により集
光されてもう一方の第2焦点22 に2次光源像を形成す
る。この2次光源像からの発散光はコリメータレンズ3
によりほぼ平行な光束に変換され、狭帯域のいわゆるバ
ンドパスフィルタ4に入射し、露光波長が選択されてオ
プティカルインテグレータ5に入射する。そして、オプ
ティカルインテグレータ5は、ほぼ平行な光束から多数
の3次光源像を形成する。次に、多数の3次光源像から
の発散光は、コンデンサーレンズ6により集光され、レ
チクルパターン7(被照射面)を重畳的に照明し、投影
光学系8によりレチクルパターン7がウェハ9上に縮小
投影する。
An illumination optical system of a semiconductor exposure apparatus using such a mercury lamp as an exposure light source is, for example, as shown in FIG. The mercury lamp 1 is arranged at the first focal point 21 of the elliptical mirror 2, and the luminous flux from the mercury lamp 1 is collected by the elliptical mirror 2 to form a secondary light source image at the other second focal point 22. The divergent light from this secondary light source image is
The light is converted into a substantially parallel light flux, enters the narrow-band so-called band-pass filter 4, and the exposure wavelength is selected and enters the optical integrator 5. Then, the optical integrator 5 forms a number of tertiary light source images from substantially parallel light beams. Next, divergent light from a number of tertiary light source images is condensed by a condenser lens 6 and illuminates a reticle pattern 7 (surface to be irradiated) in a superimposed manner. To reduce projection.

【0016】次に、かかる照明光学系において、水銀ラ
ンプの平均電場Eと被照射面(レチクル面)におけるi
線の照度の関係を調査した結果を説明する。水銀ランプ
は、電極間距離および電極形状が同一であり、従って光
学系の効率が一定であり、水銀封入量のみを変化させた
ものを使用した。つまり、水銀の動作圧力が異なる7本
の水銀ランプを入力電力(ランプ電力)を変化させて点
灯し、その時の水銀ランプの平均電場Eを調べるととも
に、被照射面におけるi線の照度を測定した。その測定
結果を図6に示す。
Next, in the illumination optical system, the average electric field E of the mercury lamp and i on the illuminated surface (reticle surface) are determined.
The result of investigating the relationship between the illuminance of the line will be described. The mercury lamp used had the same distance between the electrodes and the same electrode shape, and therefore had a constant optical system efficiency, and was changed only in the amount of mercury enclosed. That is, seven mercury lamps having different operating pressures of mercury were turned on while changing the input power (lamp power), the average electric field E of the mercury lamp at that time was examined, and the illuminance of the i-line on the irradiated surface was measured. . FIG. 6 shows the measurement results.

【0017】これから分かるように、いずれのランプ電
力においてもそのi線の照度特性曲線は極大値を有し、
各照度特性曲線の形状はほぼ同一である。そして、i線
照度が極大値をとる平均電場をEp(WL)とするとき、
平均電場E<Ep(WL)の領域では、平均電場Eが大き
くなるほど発光に寄与する有効な電力Weff が増大し、
i線の照度が増加するが、平均電場E>Ep(WL)の領
域では、平均電場Eが大きくなるほど励起された水銀か
らの放射光が水銀原子に吸収される確率が増し、自己吸
収が顕著となってi線の出力が低下してしまうためと考
えられる。
As can be seen, the illuminance characteristic curve of the i-line has a maximum value at any lamp power,
The shape of each illuminance characteristic curve is almost the same. When the average electric field at which the i-line illuminance takes a maximum value is Ep (W L ),
In a region where the average electric field E <Ep (W L ), the effective electric power W eff contributing to light emission increases as the average electric field E increases,
Although the illuminance of the i-line increases, in the region where the average electric field E> Ep (W L ), as the average electric field E increases, the probability that the emitted light from the excited mercury is absorbed by the mercury atoms increases, and the self-absorption increases. This is considered to be because the output of the i-line becomes remarkable and decreases.

【0018】ランプ電力WL を横軸にして極大値をとる
平均電場Ep(WL)をプロットすると、図7に示すよう
に、直線が得られる。つまり、ランプ電圧WL と極大値
をとる平均電場Ep(WL)は直線関係にあり、E
P(WL)=a+bWL (直線A)となる。そして、定数
aおよびbを図7から求めると、a=1.4V/mm, b=
0.71×10-3V/mm・W となる。次に、i線の極大値の
90%の照度が得られる平均電場Eを同じくプロットす
ると、それぞれ直線B,Cが得られ、直線Bの直線式
は、EP(WL)−1.0V/mm、直線Cの直線式はEP
(WL)+1.5V/mmとなる。従って、平均電場Eと
ランプ電圧WL を2つの直線B,Cに挾まれた範囲内の
条件で点灯すれば、ランプ電力が一定であっても、きわ
めて効率良くi線を放射することが分かる。
[0018] The lamp power W L with the horizontal axis plotting the average electric field Ep (W L) which takes a maximum value, as shown in FIG. 7, a straight line is obtained. In other words, the average electric field Ep take ramp voltage W L and the maximum value (W L) is in the linear relationship, E
P (W L ) = a + bW L (Line A) When the constants a and b are obtained from FIG. 7, a = 1.4 V / mm, b =
0.71 × 10 −3 V / mm · W Next, when 90% of the intensity of the maximum value of the i-line is also plotted the mean electric field E is obtained, respectively linear B, C is obtained, the linear equation of the straight line B is, E P (W L) -1.0V / Mm, the straight line formula of the straight line C is E P
(W L ) +1.5 V / mm. Therefore, if light the average electric field E and the lamp voltage W L 2 one linear B, and conditions within the range sandwiched and C, even the lamp power is constant, it can be seen that emit very efficiently i line .

【0019】次に、i線の半値巾Δλと平均電場Eの関
係を調査したところ、図8に示すように、ランプ電圧に
よらず直線関係にあることが分かった。つまり、平均電
場Eが大きくなるとi線の半値巾Δλも大きくなる。
して、i線の半値幅が大きくなると、図5に示した投影
光学系8の色収差の補正が困難になる。このため、前記
のとおり、平均電場Eとランプ電力W を2つの直線
B,Cに挾まれた範囲内で点灯すれば、ランプ電力が一
定であっても、きわめて効率良くi線を放射できるが、
i線の半値幅を考慮すると、平均電場Eが小さな2つの
直線A,Bに挾まれた範囲内で点灯する必要がある。し
かし、2つの直線A,Bに挾まれた範囲内であっても、
ランプ電力W が大きくなると平均電場Eも大きくな
り、従って、i線の半値幅が大きくなるので、平均電場
Eは、6V/mm以下にする必要がある。これによっ
て、i線の半値幅は4nm以下となり、色収差の補正が
可能になる。
Next, when the relationship between the half width Δλ of the i-line and the average electric field E was examined, it was found that the relationship was linear regardless of the lamp voltage, as shown in FIG. That is, as the average electric field E increases, the half-value width Δλ of the i-line also increases. So
Then, when the half-value width of the i-line increases, the projection shown in FIG.
It becomes difficult to correct the chromatic aberration of the optical system 8. For this reason,
Of As, the average electric field E and the lamp power W L two straight
If the lamp is lit within the range between B and C, the lamp power is reduced to one.
Even if it is constant, it can emit i-line very efficiently,
Considering the half width of the i-line, the two
It is necessary to light within the range between the straight lines A and B. I
However, even within the range between the two straight lines A and B,
Lamp power W L becomes large as it increases the average electric field E
Therefore, since the half width of the i-line becomes large, the average electric field
E needs to be 6 V / mm or less. By this
Therefore, the half width of the i-line becomes 4 nm or less, and the correction of the chromatic aberration is not performed.
Will be possible.

【0020】そこで、極めて効率良くi線を放射させな
がらi線の半値幅を4nm以下とし得る範囲について見
ると、先ず、図7の直線の直線式に基づいて6V/m
m以下の平均電場Eを得るためには、E(W)/m
m≦6V/mmの関係より、ランプ電力Wは、W
6.5kWとなる。一方、図7の直線Bの直線式に基づ
いて6V/mm以下の平均電場Eを得るためには、E
(W)−1.0V/mm≦6V/mmの関係より、ラ
ンプ電力Wは、W≦7.9kWとなる。従って、平
均電場Eとランプ電力Wとを図9の斜線で示す範囲の
条件のもとで点灯すれば良いことが分かる。これを条件
式化して示せば次のとおりである。 E(W)−1.0V/mm≦E≦E(W E≦6V/mm 但し、E(W)=a+bW, a=1.4V/mm,b=0.71 ×10−3V/mm・W
Therefore, looking at a range in which the half width of the i-line can be set to 4 nm or less while emitting the i-line very efficiently, first, 6 V / m is obtained based on the linear expression of the straight line A in FIG.
In order to obtain an average electric field E of less than or equal to m, E P (W L ) / m
the relationship of m ≦ 6V / mm, the lamp power W L is, W L
6.5 kW. Meanwhile, in order to obtain a 6V / mm or less of the average electric field E on the basis of a linear equation of the straight line B in FIG. 7, E P
From the relationship of (W L ) −1.0 V / mm ≦ 6 V / mm, the lamp power W L is W L ≦ 7.9 kW. Therefore, it can be seen that it is sufficient to light the average electric field E and the lamp power W L under the conditions of the range shown by oblique lines in FIG. This is expressed as a conditional expression as follows. E P (W L ) −1.0 V / mm ≦ E ≦ E P (W L ) E ≦ 6 V / mm where E P (W L ) = a + bW L , a = 1.4 V / mm, b = 0. 71 × 10 −3 V / mm · W

【0021】このように、図9の斜線で示す範囲、すな
わち上記の条件式の範囲を満足すれば、従来の水銀ラン
プと比べて、より一層の半値幅を小さくしつつ効率良く
i線を放射させることが保証される。従って、投影光学
系での色収差の補正に対する設計上の負荷を大幅に軽減
させながら、高いスループットのもとでの露光が実現で
きる。
As described above, if the range indicated by the oblique line in FIG. 9, that is, the range of the above conditional expression is satisfied, the i-line can be efficiently emitted while further reducing the half width as compared with the conventional mercury lamp. It is guaranteed to be. Therefore, exposure with high throughput can be realized while greatly reducing the design load for correcting chromatic aberration in the projection optical system.

【0022】[0022]

【発明の効果】以上説明したように、本発明の半導体露
光装置は、平均電場Eとランプ電圧を特許請求の範囲に
記載した式を満たす条件で点灯する水銀ランプを露光用
光源として搭載するので、所定のランプ電圧で効率良く
i線の出力が得られ、かつi線の半値巾が小さくて色収
差の補正が十分に可能であり、スループットの優れた半
導体露光装置とすることができる。
As described above, the semiconductor exposure apparatus of the present invention is equipped with a mercury lamp which is turned on under the condition that the average electric field E and the lamp voltage satisfy the conditions described in the claims. In addition, an i-line output can be efficiently obtained at a predetermined lamp voltage, the FWHM of the i-line is small, chromatic aberration can be sufficiently corrected, and a semiconductor exposure apparatus with excellent throughput can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】水銀ランプの電極間の電位分布の説明図であ
る。
FIG. 1 is an explanatory diagram of a potential distribution between electrodes of a mercury lamp.

【図2】水銀ランプの代表的な分光分布の説明図であ
る。
FIG. 2 is an explanatory diagram of a typical spectral distribution of a mercury lamp.

【図3】平均電場とi線の分光分布の関係図である。FIG. 3 is a relationship diagram between an average electric field and an i-line spectral distribution.

【図4】水銀ランプの説明図である。FIG. 4 is an explanatory diagram of a mercury lamp.

【図5】半導体露光装置の代表的な照明光学系の説明図
である。
FIG. 5 is an explanatory diagram of a typical illumination optical system of the semiconductor exposure apparatus.

【図6】平均電場とi線照度の関係図である。FIG. 6 is a diagram illustrating a relationship between an average electric field and i-line illuminance.

【図7】ランプ電力と平均電場の関係図である。FIG. 7 is a diagram showing a relationship between lamp power and an average electric field.

【図8】平均電場とi線の半値巾の関係図である。FIG. 8 is a graph showing the relationship between the average electric field and the half width of the i-line.

【図9】ランプ電力と平均電場の最適な範囲を示す図で
ある。
FIG. 9 is a diagram showing optimal ranges of lamp power and average electric field.

【符号の説明】[Explanation of symbols]

1 水銀ランプ 2 楕円鏡 3 コリメータレンズ 4 バンドパスフィルタ 5 オプティカルインテグレータ 6 コンデンサーレンズ 7 レチクルパターン 8 投影光学系 9 ウェハ 13 陽極 14 陰極 DESCRIPTION OF SYMBOLS 1 Mercury lamp 2 Elliptic mirror 3 Collimator lens 4 Band pass filter 5 Optical integrator 6 Condenser lens 7 Reticle pattern 8 Projection optical system 9 Wafer 13 Anode 14 Cathode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森 孝司 東京都品川区西大井1丁目6番3号 株 式会社ニコン内 (72)発明者 菊池 哲男 東京都品川区西大井1丁目6番3号 株 式会社ニコン内 (56)参考文献 特開 平4−137349(JP,A) 実開 平2−127025(JP,U) (58)調査した分野(Int.Cl.6,DB名) H01L 21/027 G03F 7/20 521 H01J 61/20────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Takashi Mori 1-6-3 Nishioi, Shinagawa-ku, Tokyo Inside Nikon Corporation (72) Inventor Tetsuo Kikuchi 1-6-3 Nishioi, Shinagawa-ku, Tokyo Stock Company (56) References JP-A-4-137349 (JP, A) JP-A-2-127,025 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 21/027 G03F 7/20 521 H01J 61/20

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水銀ランプのランプ電圧V(V)から1
1Vを差し引き、電極間距離d(mm)で割った値を平
均電場E(=(V−11)/d)(V/mm)とした
とき、平均電場Eがランプ入力電力W(W)に対し、
次式を満足する平均電場Eを有する水銀ランプを露光用
光源として搭載したことを特徴とする半導体露光装置。 E(W)−1.0V/mm≦ E ≦E(W 但し、E(W)=a+bW, E ≦ 6V/mm a,bは定数であって a=1.4V/mm,b=0.71×10−3 V/mm・W
1. The lamp voltage V of a mercury lampL(V) from 1
1V is subtracted, and the value obtained by dividing by the distance d (mm) between the electrodes is taken as a flat value.
Equalizing electric field E (= (VL−11) / d) (V / mm)
When the average electric field E is the lamp input power WL(W)
A mercury lamp having an average electric field E satisfying the following formula is used for exposure
A semiconductor exposure apparatus mounted as a light source. EP(WL) −1.0 V / mm ≦ E ≦ EP(WL ) Where EP(WL) = A + bWL, E ≦ 6 V / mm a and b are constants, a = 1.4 V / mm, b = 0.71 × 10-3  V / mm · W
JP4265605A 1992-09-09 1992-09-09 Semiconductor exposure equipment Expired - Lifetime JP2863047B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4265605A JP2863047B2 (en) 1992-09-09 1992-09-09 Semiconductor exposure equipment
US08/417,591 US5791767A (en) 1992-09-09 1995-04-07 Semiconductor exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4265605A JP2863047B2 (en) 1992-09-09 1992-09-09 Semiconductor exposure equipment

Publications (2)

Publication Number Publication Date
JPH0697048A JPH0697048A (en) 1994-04-08
JP2863047B2 true JP2863047B2 (en) 1999-03-03

Family

ID=17419459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4265605A Expired - Lifetime JP2863047B2 (en) 1992-09-09 1992-09-09 Semiconductor exposure equipment

Country Status (1)

Country Link
JP (1) JP2863047B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6217146B2 (en) 2013-06-05 2017-10-25 ウシオ電機株式会社 Light source device, light irradiation device equipped with the light source device, and patterning method of self-assembled monolayer using the light irradiation device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533003Y2 (en) * 1989-03-29 1993-08-23
JP2782610B2 (en) * 1990-09-27 1998-08-06 ウシオ電機株式会社 Lighting method of short arc type mercury vapor discharge lamp

Also Published As

Publication number Publication date
JPH0697048A (en) 1994-04-08

Similar Documents

Publication Publication Date Title
US4988918A (en) Short arc discharge lamp
JP2915362B2 (en) Short arc mercury lamp
US4190786A (en) Discharge lamp
JP3020397B2 (en) Short arc type cadmium rare gas discharge lamp and projection exposure apparatus equipped with the same
JP2863047B2 (en) Semiconductor exposure equipment
US20050151471A1 (en) Light emitting apparatus and extra-high pressure mercury lamp therefor
US5791767A (en) Semiconductor exposure device
US5670844A (en) Discharge lamp
JPH06290754A (en) High pressure discharge lamp and semiconductor exposure device and projection device using this discharge lamp
US6373189B1 (en) Mercury lamp of the short arc type having specific relationship with various dimensions of the bulb and UV emission device
JP2915385B1 (en) Short arc mercury lamp
JP3016061U (en) High pressure mercury lamp
JP2915368B2 (en) Short arc mercury lamp
US6545413B1 (en) Metal halide lamp
JP2975159B2 (en) Photolithography
JP2730001B2 (en) Semiconductor wafer exposure method and mercury lamp for exposure
JP2732456B2 (en) Short arc type mercury vapor discharge lamp
JP2991933B2 (en) Discharge lamp for semiconductor exposure
JP2002279932A (en) Discharge lamp
JP2732457B2 (en) Short arc type mercury vapor discharge lamp
JP2880582B2 (en) Short arc type high pressure mercury lamp
JP2732453B2 (en) Mercury rare gas discharge lamp for reduction mirror projection
JPH087835A (en) Discharge lamp for semiconductor exposure
Marden et al. High-intensity mercury-arc lamps
JPH025357A (en) Short arc electric discharge lamp

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091211

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101211

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111211

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111211

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 14