JP2856740B2 - ECR type ion thruster - Google Patents

ECR type ion thruster

Info

Publication number
JP2856740B2
JP2856740B2 JP63140421A JP14042188A JP2856740B2 JP 2856740 B2 JP2856740 B2 JP 2856740B2 JP 63140421 A JP63140421 A JP 63140421A JP 14042188 A JP14042188 A JP 14042188A JP 2856740 B2 JP2856740 B2 JP 2856740B2
Authority
JP
Japan
Prior art keywords
discharge vessel
magnet
magnetic field
cyclotron resonance
electron cyclotron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63140421A
Other languages
Japanese (ja)
Other versions
JPH01310179A (en
Inventor
英樹 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63140421A priority Critical patent/JP2856740B2/en
Publication of JPH01310179A publication Critical patent/JPH01310179A/en
Application granted granted Critical
Publication of JP2856740B2 publication Critical patent/JP2856740B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/16Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation
    • H01J27/18Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation with an applied axial magnetic field
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0037Electrostatic ion thrusters

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、人工衛星の軌道制御等を行なうときに用い
られるECR(Electron Cyclotron Resonance)型イオン
スラスタに関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial application field) The present invention relates to an ECR (Electron Cyclotron Resonance) type ion thruster used for controlling the orbit of an artificial satellite.

(従来の技術) 人工衛星の軌道制御等を行なうときに用いられるECR
型イオンスラスタは通常、第4図に示すように構成され
ている。宇宙線等で自然に電離している電子を種に生成
されたプラズマ電子が、放電容器3の壁面に配置された
磁石5の表面から数mmの位置(磁束密度0.0875Tの曲
面)で、マイクロ波(2.450GHz)導入系2から供給され
たマイクロ波を共鳴吸収(電子サイクロトロン共鳴)し
て加速され、加速された電子がガス導入系1より供給さ
れたxeガスに衝突して電極プラズマを放電室内に生成
し、電離プラズマxe +イオンが加速電極(3枚)6によ
って運動エネルギを与えられ、中和器8から放出される
電子によって中和化された後放出されてイオンスラスタ
の推力となる。このとき、電離プラズマの多くは放電容
器3の壁面近傍に形成されたカスプ磁場内(複数のミラ
ー磁場を形成)で生成され、磁場の弱い磁石5と磁石5
の間からフルート不安定性(flute instability)によ
り無磁場領域(放電室中心部分)に放出される。放出さ
れたプラズマ電子はまだxeガスを電離するだけのエネル
ギを持っているため再びxeガスに衝突して残りの電離プ
ラズマを生成する。無磁場領域内の電離プラズマはカス
プ磁場で閉じ込められているため、加速電極6の方向に
大部分が流出していく。なお、図中4はxeガスを拡散す
るための拡散板を示し、7はスラスタケースである。
(Prior art) ECR used for orbit control of artificial satellites
The type ion thruster is usually configured as shown in FIG. Plasma electrons generated by using electrons naturally ionized by cosmic rays or the like as a seed at a position several mm from the surface of the magnet 5 arranged on the wall surface of the discharge vessel 3 (curved surface with a magnetic flux density of 0.0875 T). wave (2.450GHz) resonance absorption was supplied microwaves introduced system 2 is accelerated (electron cyclotron resonance) that the electrode plasma collide with x e gas accelerated electrons is supplied from the gas introduction system 1 The ionized plasma x e + ions generated in the discharge chamber are given kinetic energy by the accelerating electrodes (three), neutralized by the electrons emitted from the neutralizer 8, and then released, so that the thrust of the ion thruster is obtained. Becomes At this time, most of the ionized plasma is generated in a cusp magnetic field (formed of a plurality of mirror magnetic fields) formed near the wall surface of the discharge vessel 3, and the magnets 5 and 5 having weak magnetic fields are generated.
During this period, the ions are released to a magnetic field-free region (central portion of the discharge chamber) due to flute instability. The emitted plasma electrons still collide again x e gas because it has energy enough to ionize the x e gas to produce a remaining ionized plasma. Since the ionized plasma in the non-magnetic field region is confined by the cusp magnetic field, most of the ionized plasma flows out in the direction of the acceleration electrode 6. In the drawing, reference numeral 4 denotes a diffusion plate for diffusing the xe gas, and 7 denotes a thruster case.

ところが、この様なECR型イオンスラスタのカスプ磁
場形状は磁場の強さが等しく、幅の等しいSm−Co磁石列
を直線状にNS交互に同じ長さだけ並べて構成しているた
め、加速電極6の表面近傍周辺部での漏れ磁場が大き
く、第5図実線12に示すようにプラズマ密度の一様な領
域が狭くて加速電極6の口径が狭い欠点がある。
However, because of the structure arranged by the same length NS alternately cusp field shape such ECR ion thruster are equal in strength of the magnetic field, equal S m -C o magnet array width in a straight line, the acceleration There is a disadvantage that the leakage magnetic field is large in the vicinity of the surface of the electrode 6 and the area where the plasma density is uniform is narrow and the aperture of the acceleration electrode 6 is narrow as shown by the solid line 12 in FIG.

(発明が解決しようとする課題) 本発明は、加速電極6の表面近傍周辺部での漏れ磁場
を抑制して、第5図破線13に示すようにプラズマ密度の
一様な領域が広く、加速電極6の口径を広く取れる高効
率のECR型イオンスラスタを提供することを目的として
いる。
(Problems to be Solved by the Invention) The present invention suppresses the leakage magnetic field in the vicinity of the surface of the accelerating electrode 6 and, as shown by a broken line 13 in FIG. It is an object of the present invention to provide a high-efficiency ECR type ion thruster capable of widening the diameter of the electrode 6.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段) 本発明は、周囲に配置される磁石の、N極近傍に形成
される電子サイクロトロン共鳴層と、S極近傍に形成さ
れる電子サイクロトロン共鳴層との面積が同程度である
放電容器と、前記放電容器にガスを導入するガス導入系
と、前記放電容器に設けられ、前記放電容器中の電子
を、電子サイクロトロン共鳴によって加速するべくマイ
クロ波を供給するマイクロ波導入系と、マイクロ波を吸
収して加速された電子が、ガスに衝突することによって
生成されるイオンを加速し、前記放電容器から放出する
加速電極とを有し、前記磁石から発生する磁力線の前記
放電容器外部への漏れを、前記磁石の表面積を所定の面
積に形成することによって抑制することを特徴としてい
る。
(Means for Solving the Problems) According to the present invention, in the magnets arranged around, the electron cyclotron resonance layer formed near the N pole and the electron cyclotron resonance layer formed near the S pole have the same area. A discharge vessel, a gas introduction system for introducing a gas into the discharge vessel, and a microwave introduction provided in the discharge vessel and supplying a microwave to accelerate electrons in the discharge vessel by electron cyclotron resonance. A system and an electron that has been accelerated by absorbing microwaves has an accelerating electrode that accelerates ions generated by colliding with a gas and emits the ions from the discharge vessel. It is characterized in that leakage to the outside of the discharge vessel is suppressed by forming the surface area of the magnet to a predetermined area.

(作 用) 磁場の強さと磁石幅の等しい磁石をNS交互に同じ長さ
だけ環状に配置してカスプ磁場を構成すると、第5図破
線13のような加速電極表面近傍でのプラズマ密度の一様
性の改善を図ることができる(周方向の磁場がないた
め、加速電極を磁石環から離することにより加速電極表
面近傍の磁場を指数関数的に小さくできるため)。しか
し、それだけでは第2図に示すように両端の磁石列の磁
場がミラー磁場配列を構成せず、せっかくECR加速され
た電子の一部が壁に衝突して損失してしまう。ミラー磁
場配列を構成しない電子サイクロトロン共鳴領域を取り
除くことにより加速電極口径の広い高効率のカスプ磁場
配位が実現できたことになる。
(Operation) When a cusp magnetic field is formed by alternately arranging magnets having the same magnetic field strength and the same magnet width by the same length in NS in a ring shape, the plasma density near the accelerating electrode surface as shown by the broken line 13 in FIG. The uniformity can be improved (since there is no magnetic field in the circumferential direction, the magnetic field near the surface of the acceleration electrode can be exponentially reduced by separating the acceleration electrode from the magnet ring). However, only by that, as shown in FIG. 2, the magnetic field of the magnet rows at both ends does not form a mirror magnetic field arrangement, and some of the ECR-accelerated electrons collide with the wall and are lost. By removing the electron cyclotron resonance region that does not constitute the mirror magnetic field arrangement, it is possible to realize a highly efficient cusp magnetic field configuration with a wide aperture of the accelerating electrode.

(実施例) 以下、本発明の実施例を図面を参照しながら説明す
る。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例に係る環状カスプ磁場を用
いたECR型イオンスラスタの概要図である。磁場の強さ
と磁石幅の同程度の環状磁石列5をNS交互に放電容器3
の壁面に並べ、加速電極側の環状磁石列5の端に磁場の
強さが等しく隣接磁石列と極の向きが逆で磁石幅が半分
程度の環状磁石列9を配置し、天井側の環状磁石列5の
端に磁場の強さが等しく隣接磁石列と極の向きが逆で磁
石幅を放電容器内の磁力線を外部に出さない程度にした
環状磁石列10を配置する。環状磁石列10が放電容器3の
中心軸上にあるときは環状でなくて例えば円柱状でも良
い。このように所定の表面積に形成される磁石を配置し
たときの放電容器3内の磁力線の様子を第3図に示す。
なお、簡単のために、放電容器3の壁面を平坦にして示
している。両端の磁石列9,10の表面積が所定の面積とな
るように磁石列9,10の磁石幅を形成して放電容器3の外
部に磁力線が出ない様にしているため、両端の磁石列9,
10の前面近傍に形成される電子サイクロトロン共鳴層11
は残りの磁石列5の前面近傍に形成される電子サイクロ
トロン共鳴層11の半分程度の幅しかない。よって、電子
サイクロトロン共鳴層11は全てミラー磁場閉じ込めを行
っていることになり(第3図斜視図)、ミラー磁場内の
電子は両端の電子サイクロトロン共鳴層11を少し出た所
で反射されて往復運動をすることになる。往復運動をし
ている電子は1往復で4回電子サイクロトロン共鳴層11
を通過し、そこでマイクロ波を共鳴吸収して回転エネル
ギを増加させる。増加したエネルギがxeのイオン化エネ
ルギを越えるとxeガスに衝突して電離プラズマを生成す
ることになる。ミラー磁場内(第3図斜線部)で生成さ
れた電離プラズマは磁力線が凸になっている中央部から
フルート不安定性で放出される。放出されたプラズマ電
子の内、xeのイオン化エネルギ以上のエネルギを持つ電
子はカスプ磁場内に閉じ込められているうちにxeガスに
衝突して電離プラズマを放電容器中央部に生成させる。
プラズマの一様性はこの放電容器中央部で生成されるプ
ラズマに強く影響されるから、加速電極表面近傍で無磁
場領域の広い環状カスプ磁場配位の方が線状カスプ磁場
配位より一様なプラズマの領域が広くなる(第5図破線
13)。一様なプラズマ領域からxe +イオンを引き出すこ
とができるから、環状カスプ磁場配位の本特許例による
方が従来の線状カスプ磁場配位の場合より加速電極径を
大きく取れることになる。また、環状カスプ磁場配位に
したことによる高速エネルギ電子の放電容器3への衝突
の問題はなくなる。
FIG. 1 is a schematic diagram of an ECR ion thruster using an annular cusp magnetic field according to one embodiment of the present invention. An annular magnet array 5 having the same magnetic field strength and magnet width as the NS is alternately arranged in the discharge vessel 3.
Are arranged at the end of the ring-shaped magnet row 5 on the accelerating electrode side, and a ring-shaped magnet row 9 having the same magnetic field strength and the opposite pole direction and the magnet width of about half is arranged at the end of the ring-shaped magnet row 5 on the acceleration electrode side. At the end of the magnet array 5, there is arranged an annular magnet array 10 having the same magnetic field strength, opposite pole directions to the adjacent magnet array, and having a magnet width such that the lines of magnetic force in the discharge vessel are not exposed to the outside. When the annular magnet array 10 is located on the central axis of the discharge vessel 3, the array may be, for example, cylindrical without being annular. FIG. 3 shows the state of the lines of magnetic force in the discharge vessel 3 when the magnets having a predetermined surface area are arranged as described above.
For simplicity, the wall surface of the discharge vessel 3 is shown as being flat. Since the magnet rows 9 and 10 are formed with a magnet width such that the surface area of the magnet rows 9 and 10 at both ends is a predetermined area so that the lines of magnetic force do not appear outside the discharge vessel 3, the magnet rows 9 and 10 at both ends are formed. ,
Electron cyclotron resonance layer 11 formed near the front of 10
Is only about half the width of the electron cyclotron resonance layer 11 formed near the front surface of the remaining magnet row 5. Therefore, the electron cyclotron resonance layer 11 is all confined to the mirror magnetic field (FIG. 3 perspective view), and electrons in the mirror magnetic field are reflected and reciprocated a little after exiting the electron cyclotron resonance layer 11 at both ends. You will exercise. The electron reciprocating is four times in one round trip.
Through which the microwaves are resonantly absorbed to increase rotational energy. Increased energy will produce a exceeds the ionization energy collide with x e gas ionized plasma of x e. The ionized plasma generated in the mirror magnetic field (the hatched portion in FIG. 3) is released from the central portion where the magnetic field lines are convex due to flute instability. Among the emitted plasma electrons, electrons having energy more than the ionizing energy of x e is to be generated by the discharge vessel central portion of ionized plasma collide with x e gas while being confined within the cusp magnetic field.
Since the uniformity of the plasma is strongly affected by the plasma generated in the central part of the discharge vessel, the annular cusp magnetic field configuration with a wide non-magnetic field near the accelerating electrode surface is more uniform than the linear cusp magnetic field configuration. The plasma area becomes wider (see the broken line in FIG. 5).
13). Since x e + ions can be extracted from a uniform plasma region, the accelerating electrode diameter can be larger in the annular cusp magnetic field configuration according to this patent example than in the conventional linear cusp magnetic field configuration. Further, the problem of collision of high-speed energy electrons with the discharge vessel 3 due to the annular cusp magnetic field configuration is eliminated.

本特許例では、電子サイクロトロン共鳴層11の内、ミ
ラー磁場閉じ込めを構成しない領域の除去法として、両
端の環状磁石列9,10の幅で実施したが、要は電子サイク
ロトロン共鳴層11が全てミラー磁場閉じ込めを構成して
いれば何でも良い。導入ガスとしてxeを用いたが、xe
限定するものではない。また、加速電極6として3枚の
ものを使用しているが、3枚に限定するものでもない。
マイクロ波として2.450GHz、電子サイクロトロン共鳴磁
束密度0.0875Tで説明したが、この値に限定するもので
はない。
In the present patent example, as a method of removing a region of the electron cyclotron resonance layer 11 which does not constitute the confinement of the mirror magnetic field, the method was performed with the width of the annular magnet arrays 9 and 10 at both ends. Anything can be used as long as it configures magnetic field confinement. With x e as an introduction gas, but not limited to x e. In addition, although three electrodes are used as the accelerating electrodes 6, it is not limited to three.
The microwave has been described at 2.450 GHz and the electron cyclotron resonance magnetic flux density of 0.0875 T, but the present invention is not limited to this value.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明によれば、高効率で大口径
の加速電極を持つ小型のECR型イオンスラスタを構成す
ることができる。
As described above, according to the present invention, a small-sized ECR ion thruster having a high-efficiency and large-diameter accelerating electrode can be configured.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例のECR型イオンスラスタの概
要を示す一部切欠斜視図、第2図は磁力線の端末処理を
していない場合の放電容器内の環状カスプ磁場配位の概
要図、第3図は本特許の磁力線の端末処理をした環状カ
スプ磁場配位の概要図、第4図は従来のECR型イオンス
ラスタの概要を示す一部切欠斜視図、第5図は本特許と
従来例とのプラズマ密度の一様性の比較図である。 1……ガス導入系、2……マイクロ波導入系 3……放電容器、4……ガス拡散板 5,9,10……磁石、6……加速電極(3枚) 7……スラスタケース、8……中和器 11……電子サイクロトロン共鳴層 12……従来のプラズマの一様性 13……本特許のプラズマの一様性
FIG. 1 is a partially cutaway perspective view showing an outline of an ECR type ion thruster according to an embodiment of the present invention, and FIG. 2 is an outline of an annular cusp magnetic field configuration in a discharge vessel in a case where a magnetic field line termination is not performed. Fig. 3 is a schematic view of the configuration of an annular cusp magnetic field in which the lines of magnetic force are terminated according to the present invention, Fig. 4 is a partially cutaway perspective view showing an outline of a conventional ECR type ion thruster, and Fig. 5 is the present invention. FIG. 7 is a comparison diagram of the uniformity of the plasma density between the conventional example and the conventional example. DESCRIPTION OF SYMBOLS 1 ... Gas introduction system, 2 ... Microwave introduction system 3 ... Discharge vessel, 4 ... Gas diffusion plate 5, 9, 10 ... Magnet, 6 ... Acceleration electrodes (three) 7 ... Thruster case, 8 Neutralizer 11 Electron cyclotron resonance layer 12 Conventional plasma uniformity 13 Plasma uniformity of the present patent

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】周囲に配置される磁石の、N極近傍に形成
される電子サイクロトロン共鳴層と、S極近傍に形成さ
れる電子サイクロトロン共鳴層との面積が同程度である
放電容器と、 前記放電容器にガスを導入するガス導入系と、 前記放電容器に設けられ、前記放電容器中の電子を、電
子サイクロトロン共鳴によって加速するべくマイクロ波
を供給するマイクロ波導入系と、 マイクロ波を吸収して加速された電子が、ガスに衝突す
ることによって生成されるイオンを加速し、前記放電容
器から放出する加速電極と を有し、 前記磁石から発生する磁力線の前記放電容器外部への漏
れを、前記磁石の表面積を所定の面積に形成することに
よって抑制することを特徴とするECR型イオンスラス
タ。
1. A discharge vessel in which an electron cyclotron resonance layer formed in the vicinity of an N pole and an electron cyclotron resonance layer formed in the vicinity of an S pole of a magnet arranged around the discharge magnet have substantially the same area. A gas introduction system for introducing a gas into the discharge vessel, a microwave introduction system provided in the discharge vessel and supplying a microwave to accelerate electrons in the discharge vessel by electron cyclotron resonance, and a microwave absorption system. The accelerated electrons accelerate ions generated by colliding with the gas, and have an accelerating electrode that emits from the discharge vessel.Leakage of magnetic lines of force generated from the magnet to the outside of the discharge vessel, An ECR type ion thruster, wherein the surface area of the magnet is suppressed to a predetermined area.
JP63140421A 1988-06-09 1988-06-09 ECR type ion thruster Expired - Lifetime JP2856740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63140421A JP2856740B2 (en) 1988-06-09 1988-06-09 ECR type ion thruster

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63140421A JP2856740B2 (en) 1988-06-09 1988-06-09 ECR type ion thruster

Publications (2)

Publication Number Publication Date
JPH01310179A JPH01310179A (en) 1989-12-14
JP2856740B2 true JP2856740B2 (en) 1999-02-10

Family

ID=15268316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63140421A Expired - Lifetime JP2856740B2 (en) 1988-06-09 1988-06-09 ECR type ion thruster

Country Status (1)

Country Link
JP (1) JP2856740B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004107824A3 (en) * 2003-05-30 2005-04-07 Valery Viktorovich Koshkin Koshkin ion engine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011103194A2 (en) * 2010-02-16 2011-08-25 University Of Florida Research Foundation, Inc. Method and apparatus for small satellite propulsion
FR2985292B1 (en) 2011-12-29 2014-01-24 Onera (Off Nat Aerospatiale) PLASMIC PROPELLER AND METHOD FOR GENERATING PLASMIC PROPULSIVE THRUST
US9820369B2 (en) 2013-02-25 2017-11-14 University Of Florida Research Foundation, Incorporated Method and apparatus for providing high control authority atmospheric plasma
CN109681398B (en) * 2018-12-12 2020-08-28 上海航天控制技术研究所 Novel microwave ECR ion thruster discharge chamber
CN111140454B (en) * 2020-02-13 2021-05-04 哈尔滨工业大学 Ignition device of miniature electron cyclotron resonance ion thruster

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610465B2 (en) * 1987-04-02 1994-02-09 航空宇宙技術研究所長 Cusp magnetic field type ion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004107824A3 (en) * 2003-05-30 2005-04-07 Valery Viktorovich Koshkin Koshkin ion engine

Also Published As

Publication number Publication date
JPH01310179A (en) 1989-12-14

Similar Documents

Publication Publication Date Title
US5475354A (en) Plasma accelerator of short length with closed electron drift
US7294969B2 (en) Two-stage hall effect plasma accelerator including plasma source driven by high-frequency discharge
US3969646A (en) Electron-bombardment ion source including segmented anode of electrically conductive, magnetic material
EP0286132B1 (en) Plasma generating apparatus
US9494143B1 (en) Ion propulsion thruster including a plurality of ion optic electrode pairs
US6449941B1 (en) Hall effect electric propulsion system
US9897079B2 (en) External discharge hall thruster
JPH11273614A (en) Ion injector
US20030184205A1 (en) Hall effect ion source at high current density
US4541890A (en) Hall ion generator for working surfaces with a low energy high intensity ion beam
JPS6280950A (en) Ion source
US3613370A (en) Ion thruster
US6960888B1 (en) Method of producing and accelerating an ion beam
JP2856740B2 (en) ECR type ion thruster
US5646488A (en) Differential pumping stage with line of sight pumping mechanism
US7030576B2 (en) Multichannel hall effect thruster
US4931698A (en) Ion source
US5432342A (en) Method of and apparatus for generating low-energy neutral particle beam
RU2614906C1 (en) Direct flow electric propulsion engine
JPS62180942A (en) High-speed atomic beam source
TWI826053B (en) Alternating magnetic field linear hall thruster and alternating magnetic field linear hall propulsion method
JP3045619B2 (en) Plasma generator
EP0095879B1 (en) Apparatus and method for working surfaces with a low energy high intensity ion beam
JPH08236030A (en) Negative ion source
JPH02173361A (en) Rf type ion thruster