JP2856540B2 - Electron beam equipment - Google Patents

Electron beam equipment

Info

Publication number
JP2856540B2
JP2856540B2 JP29962690A JP29962690A JP2856540B2 JP 2856540 B2 JP2856540 B2 JP 2856540B2 JP 29962690 A JP29962690 A JP 29962690A JP 29962690 A JP29962690 A JP 29962690A JP 2856540 B2 JP2856540 B2 JP 2856540B2
Authority
JP
Japan
Prior art keywords
electron beam
sample chamber
sample
magnetic field
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29962690A
Other languages
Japanese (ja)
Other versions
JPH04171645A (en
Inventor
節雄 則岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENSHI KK
Original Assignee
NIPPON DENSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENSHI KK filed Critical NIPPON DENSHI KK
Priority to JP29962690A priority Critical patent/JP2856540B2/en
Priority to US07/786,264 priority patent/US5185530A/en
Publication of JPH04171645A publication Critical patent/JPH04171645A/en
Application granted granted Critical
Publication of JP2856540B2 publication Critical patent/JP2856540B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超LSI回路の製造過程の検査に使用して好
適な走査電子顕微鏡などの電子ビーム装置に関する。
Description: TECHNICAL FIELD The present invention relates to an electron beam apparatus such as a scanning electron microscope suitable for use in inspection of a process of manufacturing an VLSI circuit.

(従来の技術) 電子ビーム測長機や走査電子顕微鏡などにおいては、
電子ビームを試料に照射し、そこから得られる2次電子
や反射電子を検出し、この検出信号に基づいて試料表面
の像を得るようにしている。この様な装置では、試料を
無蒸着の状態で観察する必要から、照射ビームによって
試料がチャージアップすることを防がねばならず、その
ため、電子ビームは低加速電圧(0.6〜1.2KV)とされて
いる。一方、検査や観察しようとする対象の線やパター
ンの幅は、1μm以下となってきており、観察倍率は5
万〜10万倍の高倍率が必要となる。
(Prior art) In electron beam length measuring machines, scanning electron microscopes, etc.,
The sample is irradiated with an electron beam, secondary electrons and reflected electrons obtained from the sample are detected, and an image of the sample surface is obtained based on the detection signal. In such an apparatus, it is necessary to observe the sample in a non-deposited state, so that it is necessary to prevent the sample from being charged up by the irradiation beam. Therefore, the electron beam is set to a low acceleration voltage (0.6 to 1.2 KV). ing. On the other hand, the width of a line or pattern to be inspected or observed has become 1 μm or less, and the observation magnification is 5 μm.
A high magnification of 10,000 to 100,000 times is required.

(発明が解決しようとする課題) このような装置で、加速電圧が低くなれば低くなるほ
ど、外部の磁場に対する電子ビームの影響が増してく
る。磁場の影響は、加速電圧を変えた場合、加速電圧の
比の平方根に反比例して大きくなることが知られてい
る。例えば、加速電圧が25KVと1KVとを比較した場合、
磁場の影響は、 となり、1KVの加速電圧の時は、25KVの加速電圧の時に
比べ、5倍磁場の影響を受けることになる。すなわち、
同一条件で、25KVと同じ磁場の影響力とするためには、
1KVの時には、外部磁場を1/5にする必要がある。言い換
えれば、外部要因である外部磁場を変えられない場合に
は、5倍の磁場遮蔽能力を持つ必要がある。
(Problems to be Solved by the Invention) In such an apparatus, the lower the acceleration voltage is, the greater the effect of the electron beam on the external magnetic field is. It is known that the influence of the magnetic field increases in inverse proportion to the square root of the ratio of the acceleration voltage when the acceleration voltage is changed. For example, when the acceleration voltage is compared between 25KV and 1KV,
The effect of the magnetic field is Thus, at an acceleration voltage of 1 KV, the magnetic field is affected by a factor of 5 compared with an acceleration voltage of 25 KV. That is,
Under the same conditions, to have the same magnetic field effect as 25 KV,
At 1KV, the external magnetic field must be reduced to 1/5. In other words, when the external magnetic field, which is an external factor, cannot be changed, it is necessary to have a magnetic field shielding ability five times as high.

ところで、超LSI回路の検査対象であるウエハのサイ
ズは、6インチから8インチへと大径化している。8イ
ンチウエハ全面を水平ないし高角度傾斜して観察するた
めには、約50cm立方の試料室が必要となる。この場合、
試料室の上面,底面,四側面が大気から受ける力は、1c
m2当り1Kgであるから、50cm角では、約250Kgとなる。従
って、試料室の各面の機械的歪(反り)をできるだけ少
なくするために、各面の材質として、機械的強度の大き
いものを選ぶ必要がある。また、この試料室壁の材料と
して、この機械的強度のほかに、磁気シールド効果が大
きいこと、安価であることが要求される。
By the way, the size of the wafer to be inspected by the VLSI circuit has increased from 6 inches to 8 inches. In order to observe the entire surface of an 8-inch wafer at a horizontal or high angle, a sample chamber of about 50 cm 3 is required. in this case,
The force that the top, bottom, and four sides of the sample chamber receive from the atmosphere is 1c
Since a m 2 per 1Kg, the 50cm square, is about 250 Kg. Therefore, in order to minimize the mechanical strain (warpage) of each surface of the sample chamber, it is necessary to select a material having high mechanical strength as the material of each surface. In addition to this mechanical strength, the material of the sample chamber wall is required to have a large magnetic shielding effect and to be inexpensive.

以上の観点から、試料室には、圧延鋼材、あるいは、
鍛造鋼などが選ばれて用いられている。このような鋼材
を用いた場合でも、真空対大気の機械的強度を確保する
ためには、板厚約5cmとしなければならない。すなわ
ち、壁材の大きさは、50cm×50cm×5cmとなる。この大
きさに加工されたままの鋼材は、加工による応力歪みや
電磁チャッキングによる着磁などを伴っているため、磁
気シールド効果が十分でない。不正な着磁を除去した
り、磁気シールド効果を高めるために、鋼材をキューリ
ー点以上の高温に加熱する磁気的熱処理を施すことも考
えられる。しかし、この大きくて厚い鋼材を熱処理する
と、加工寸法が狂ってしまい、カラムの取り付けができ
なくなることもある。更に、鋼材の加熱には、大型の加
熱炉設備が必要となり、このようなことから、壁材の熱
処理を行うことはできない。
From the above viewpoint, the sample chamber contains rolled steel or
Forged steel and the like are selected and used. Even when such a steel material is used, the plate thickness must be about 5 cm in order to secure the mechanical strength between vacuum and atmosphere. That is, the size of the wall material is 50 cm × 50 cm × 5 cm. Since the steel material processed to this size is accompanied by stress distortion due to processing, magnetization by electromagnetic chucking, and the like, the magnetic shielding effect is not sufficient. In order to remove improper magnetization and enhance the magnetic shielding effect, it is conceivable to perform a magnetic heat treatment for heating the steel material to a temperature higher than the Curie point. However, when heat treatment is performed on this large and thick steel material, the processing dimensions may be deviated, and the column may not be able to be mounted. Furthermore, large-sized heating furnace equipment is required for heating the steel material, and thus heat treatment of the wall material cannot be performed.

第2図は、試料室1の断面を示している。この試料室
1に外部磁場Bが加えられると、磁場は、透磁率の高い
試料室1の壁内を通り抜ける。試料室の天井中心付近に
は、カラムC部分が入るための円形の穴Hが開いてい
る。このような状態で各部の磁場を測定すると、図中丸
で囲ったエッジ部分での磁場が多いことが分かった。す
なわち、試料室壁内を通った磁場がエッジの部分から外
部に漏洩している。この漏洩磁場が対物レンズと試料間
の電子ビームに大きな影響を与えることになる。
FIG. 2 shows a cross section of the sample chamber 1. When an external magnetic field B is applied to the sample chamber 1, the magnetic field passes through the inside of the sample chamber 1 having high magnetic permeability. Near the center of the ceiling of the sample chamber, a circular hole H for receiving the column C is formed. When the magnetic field of each part was measured in such a state, it was found that the magnetic field at the edge part circled in the figure was large. That is, the magnetic field that has passed through the inside of the sample chamber wall leaks from the edge portion to the outside. This leakage magnetic field has a great effect on the electron beam between the objective lens and the sample.

本発明は、このような点に鑑みてなされたもので、そ
の目的は、試料室内への磁場の漏洩を防止し、試料に照
射される電子ビームの不正な偏向をなくすことができる
電子ビーム装置を実現するにある。
The present invention has been made in view of such a point, and an object thereof is to provide an electron beam apparatus capable of preventing a magnetic field from leaking into a sample chamber and eliminating an incorrect deflection of an electron beam applied to a sample. It is to realize.

(課題を解決するための手段) 請求項1の発明に基づく電子ビーム装置は、電子ビー
ムカラム中に配置され、電子ビームを試料上に集束する
集束手段と、試料室内の試料上で電子ビームを2次元的
に走査するための走査手段とを備えた電子ビーム装置に
おいて、試料室の上部とカラムとを高透磁率部材で接続
したことを特徴としている。
(Means for Solving the Problems) An electron beam apparatus according to the first aspect of the present invention is arranged in an electron beam column, and a focusing means for focusing the electron beam on a sample; An electron beam apparatus provided with a scanning means for two-dimensionally scanning is characterized in that an upper part of a sample chamber and a column are connected by a high magnetic permeability member.

請求項2の発明に基づく電子ビーム装置は、試料室の
上部とカラムとを高透磁率部材と非磁性部材とで接続し
たことを特徴としている。
An electron beam apparatus according to a second aspect of the present invention is characterized in that the upper part of the sample chamber and the column are connected by a high magnetic permeability member and a non-magnetic member.

(作用) 請求項1,2の発明に基づく電子ビーム装置において
は、試料室の上部とカラムとを高透磁率部材で接続し、
試料室の上壁を通る磁場を高透磁率部材を通過させ、試
料室内への磁場の漏洩を防止する。
(Function) In the electron beam apparatus according to the first and second aspects of the present invention, the upper portion of the sample chamber and the column are connected by a high magnetic permeability member,
The magnetic field passing through the upper wall of the sample chamber is passed through the high permeability member to prevent leakage of the magnetic field into the sample chamber.

(実施例) 以下、図面を参照して本発明の実施例を詳細に説明す
る。第1図は本発明の一実施例を示したもので、2は試
料室1に取り付けられた電子ビームカラムである。該カ
ラム2の上部には、電子銃3が設けられ、該電子銃3か
ら発生した電子ビームは、集束レンズ4,対物レンズ5に
よって試料室1内の試料6上に細く集束される。該試料
6上の電子ビーム照射位置は、偏向コイル(図示せず)
に供給される信号に応じて変化させられる。該偏向コイ
ルには、図示しないの走査信号発生回路から走査信号が
供給される。該試料6への電子ビームの照射によって発
生した2次電子は、2次電子検出器(図示せず)によっ
て検出される。該検出器によって検出された信号は、走
査信号が供給されている陰極線管などに供給される。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings. FIG. 1 shows an embodiment of the present invention. Reference numeral 2 denotes an electron beam column attached to a sample chamber 1. An electron gun 3 is provided above the column 2, and an electron beam generated from the electron gun 3 is narrowly focused on a sample 6 in a sample chamber 1 by a focusing lens 4 and an objective lens 5. The electron beam irradiation position on the sample 6 is determined by a deflection coil (not shown).
Is changed according to the signal supplied to the. A scanning signal is supplied to the deflection coil from a scanning signal generation circuit (not shown). Secondary electrons generated by irradiating the sample 6 with an electron beam are detected by a secondary electron detector (not shown). The signal detected by the detector is supplied to a cathode ray tube to which a scanning signal is supplied.

該試料室1のカラム2との接続部分には、真鍮などの
低透磁率部材(非磁性部材)7が設けられており、カラ
ム2を磁場経路から遮蔽するようにしている。さらに、
この低透磁率部材7の外側には、パーマロイ,μメタル
などの高透磁率部材で形成されたリング状の部材8が取
り付けられている。また、カラム2を覆うように、パー
マロイ,μメタルなどの高透磁率部材で形成されたシー
ルド9が設けられている。このような構成の電子ビーム
装置の動作は次の通りである。
A low magnetic permeability member (non-magnetic member) 7 such as brass is provided at a portion of the sample chamber 1 connected to the column 2 so as to shield the column 2 from the magnetic field path. further,
A ring-shaped member 8 formed of a high magnetic permeability member such as permalloy or μ metal is attached to the outside of the low magnetic permeability member 7. Further, a shield 9 made of a high magnetic permeability member such as permalloy or μ metal is provided so as to cover the column 2. The operation of the electron beam device having such a configuration is as follows.

上記したように、試料6には電子ビームが細く集束し
て照射され、この電子ビームは、偏向コイル7への走査
信号に応じて走査される。この走査に応じて試料6から
発生した、例えば、2次電子は検出され、この検出信号
を走査と同期した陰極線管に供給することにより、試料
の2次電子像が得られる。さて、試料室1に外部磁場が
加えられると、磁場は試料室1の壁内を通り抜ける。試
料室1の上壁1aを通る磁場は、カラム2に近い位置で高
透磁率部材のリング状部材8に導かれてこの部材8内を
通過し、再び上壁1a内に入り、試料室のエッジ部分から
試料室外壁へと漏洩する。従って、試料室の上壁1aのカ
ラムの接続部分で漏洩する磁場は極端に少なくなり、電
子ビームがこの漏洩磁場によって不正に偏向されるのは
防止される。なお、高透磁率部材のリング状部材8とカ
ラム2との間に、真鍮などの低透磁率部材(非磁性部
材)7を設け、カラム2を磁場経路から遮蔽するように
しているので、カラム2への磁場の入り込みをより完全
に防止することができる。更に、カラムの外側には、シ
ールド9が設けられ、このシールドによって外部磁場が
カラム内に入り込むことを防止している。
As described above, the sample 6 is irradiated with a narrowly focused electron beam, and the electron beam is scanned according to a scanning signal to the deflection coil 7. For example, secondary electrons generated from the sample 6 in response to this scanning are detected, and a secondary electron image of the sample is obtained by supplying this detection signal to a cathode ray tube synchronized with the scanning. Now, when an external magnetic field is applied to the sample chamber 1, the magnetic field passes through the inside of the wall of the sample chamber 1. The magnetic field passing through the upper wall 1a of the sample chamber 1 is guided to the ring-shaped member 8 of a high magnetic permeability member at a position close to the column 2, passes through the member 8, enters the upper wall 1a again, and Leakage from the edge to the outer wall of the sample chamber. Accordingly, the magnetic field leaking at the column connecting portion of the upper wall 1a of the sample chamber is extremely reduced, and the electron beam is prevented from being incorrectly deflected by the leaked magnetic field. Note that a low permeability member (non-magnetic member) 7 such as brass is provided between the ring member 8 of the high permeability member and the column 2 to shield the column 2 from the magnetic field path. 2 can be more completely prevented from entering the magnetic field. Further, a shield 9 is provided outside the column, and this shield prevents an external magnetic field from entering the column.

以上本発明の実施例を説明したが、本発明はこの実施
例に限定されない。例えは、シールド板11なくても良
い。また、本発明は、走査電子顕微鏡以外にも電子ビー
ム描画装置などの電子ビーム装置にも適用することがで
きる。
Although the embodiment of the present invention has been described above, the present invention is not limited to this embodiment. For example, the shield plate 11 need not be provided. Further, the present invention can be applied to an electron beam device such as an electron beam drawing device other than the scanning electron microscope.

(発明の効果) 以上説明したように、本発明に基づく電子ビーム装置
においては、試料室の上部とカラムとを高透磁率部材で
接続し、試料室の上壁を通る磁場を高透磁率部材を通過
させ、試料室内への磁場の漏洩を防止するようにしてい
るので、電子ビームが漏洩磁場によって不正に偏向され
るのを防止することができる。
(Effect of the Invention) As described above, in the electron beam apparatus according to the present invention, the upper part of the sample chamber and the column are connected by the high permeability member, and the magnetic field passing through the upper wall of the sample chamber is changed by the high permeability member To prevent the leakage of the magnetic field into the sample chamber, it is possible to prevent the electron beam from being incorrectly deflected by the leakage magnetic field.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明に基づく電子ビーム装置の構成図、 第2図は、試料室からの漏洩磁場の様子を示す図であ
る。 1……試料室、2……カラム 3……電子銃、4……集束レンズ 5……対物レンズ、6……試料 7……低透磁率部材、8……高透磁率部材 9……シールド
FIG. 1 is a configuration diagram of an electron beam device based on the present invention, and FIG. 2 is a diagram showing a state of a leakage magnetic field from a sample chamber. DESCRIPTION OF SYMBOLS 1 ... Sample chamber, 2 ... Column 3 ... Electron gun, 4 ... Focusing lens 5 ... Objective lens, 6 ... Sample 7 ... Low magnetic permeability member, 8 ... High magnetic permeability member 9 ... Shield

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電子ビームカラム中に配置され、電子ビー
ムを試料上に集束する集束手段と、試料室内の試料上で
電子ビームを2次元的に走査するための走査手段とを備
えた電子ビーム装置において、試料室の上部壁とカラム
とを高透磁率部材で接続したことを特徴とする電子ビー
ム装置。
An electron beam provided in an electron beam column, comprising: a focusing means for focusing an electron beam on a sample; and a scanning means for two-dimensionally scanning the electron beam on a sample in a sample chamber. An electron beam apparatus, wherein an upper wall of a sample chamber and a column are connected by a high magnetic permeability member.
【請求項2】電子ビームカラム中に配置され、電子ビー
ムを試料上に集束する集束手段と、試料室内の試料上で
電子ビームを2次元的に走査するための走査手段とを備
えた電子ビーム装置において、試料室の上部壁とカラム
とを高透磁率部材と非磁性部材とで接続したことを特徴
とする電子ビーム装置。
2. An electron beam provided in an electron beam column, comprising: focusing means for focusing an electron beam on a sample; and scanning means for two-dimensionally scanning the electron beam on a sample in a sample chamber. An electron beam apparatus, wherein an upper wall of a sample chamber and a column are connected by a high magnetic permeability member and a non-magnetic member.
JP29962690A 1990-11-05 1990-11-05 Electron beam equipment Expired - Fee Related JP2856540B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP29962690A JP2856540B2 (en) 1990-11-05 1990-11-05 Electron beam equipment
US07/786,264 US5185530A (en) 1990-11-05 1991-11-01 Electron beam instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29962690A JP2856540B2 (en) 1990-11-05 1990-11-05 Electron beam equipment

Publications (2)

Publication Number Publication Date
JPH04171645A JPH04171645A (en) 1992-06-18
JP2856540B2 true JP2856540B2 (en) 1999-02-10

Family

ID=17875039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29962690A Expired - Fee Related JP2856540B2 (en) 1990-11-05 1990-11-05 Electron beam equipment

Country Status (1)

Country Link
JP (1) JP2856540B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5485927B2 (en) 2011-02-28 2014-05-07 株式会社日立ハイテクノロジーズ electronic microscope
JP5426619B2 (en) * 2011-07-21 2014-02-26 株式会社日立ハイテクノロジーズ electronic microscope
JP6118169B2 (en) * 2013-04-25 2017-04-19 株式会社日立ハイテクノロジーズ Charged particle beam equipment

Also Published As

Publication number Publication date
JPH04171645A (en) 1992-06-18

Similar Documents

Publication Publication Date Title
US6943349B2 (en) Multi beam charged particle device
JP4795847B2 (en) Electron lens and charged particle beam apparatus using the same
JP4093662B2 (en) Scanning electron microscope
US6531697B1 (en) Method and apparatus for scanning transmission electron microscopy
KR100499427B1 (en) Objective lens for a charged particle beam device
JP4732917B2 (en) Scanning electron microscope and defect detection apparatus
JPH11238484A (en) Projection type charged particle microscope and substrate inspection system
KR20170101265A (en) Apparatus for inspecting a substrate, method for inspecting a substrate, apparatus for inspecting a large area substrate, and method of operating the same
US6646261B2 (en) SEM provided with a secondary electron detector having a central electrode
JPH02230649A (en) Sample testing method for particle beam apparatus
US11687008B2 (en) Method for automated critical dimension measurement on a substrate for display manufacturing, method of inspecting a large area substrate for display manufacturing, apparatus for inspecting a large area substrate for display manufacturing and method of operating thereof
JP2856540B2 (en) Electron beam equipment
JP2856544B2 (en) Electron beam equipment
JP4431459B2 (en) Focused ion beam apparatus and focused ion beam irradiation method
US4928010A (en) Observing a surface using a charged particle beam
US5185530A (en) Electron beam instrument
US6376839B1 (en) SEM for transmission operation with a location-sensitive detector
US11211224B2 (en) Charged particle beam apparatus
JP2569011B2 (en) Scanning electron microscope
JP2006140162A (en) Method of forming testpiece image
JP3101141B2 (en) Electron beam equipment
JPH04162423A (en) Surface treatment equipment
JP2016051534A (en) Charged particle beam device
JPH06215715A (en) Electron beam device
JP2008267981A (en) Sample observation method using electron beam apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20081127

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20091127

LAPS Cancellation because of no payment of annual fees