JP2852712B2 - Catalyst for synthesizing acrolein and acrylic acid and method for producing the same - Google Patents

Catalyst for synthesizing acrolein and acrylic acid and method for producing the same

Info

Publication number
JP2852712B2
JP2852712B2 JP3234047A JP23404791A JP2852712B2 JP 2852712 B2 JP2852712 B2 JP 2852712B2 JP 3234047 A JP3234047 A JP 3234047A JP 23404791 A JP23404791 A JP 23404791A JP 2852712 B2 JP2852712 B2 JP 2852712B2
Authority
JP
Japan
Prior art keywords
catalyst
acrylic acid
polymer compound
molded
acrolein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3234047A
Other languages
Japanese (ja)
Other versions
JPH0549938A (en
Inventor
聖午 渡辺
求 大北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP3234047A priority Critical patent/JP2852712B2/en
Publication of JPH0549938A publication Critical patent/JPH0549938A/en
Application granted granted Critical
Publication of JP2852712B2 publication Critical patent/JP2852712B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、機械的強度に優れたア
クロレイン及びアクリル酸合成用成型触媒又は担持触媒
及びその製造法並びにそれを用いたアクロレイン及びア
クリル酸の製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molded catalyst or a supported catalyst having excellent mechanical strength for synthesizing acrolein and acrylic acid, a process for producing the same, and a process for producing acrolein and acrylic acid using the same.

【0002】[0002]

【従来の技術】一般に、工業的に用いられる成型触媒又
は担持触媒は、移動させたり、反応器に充填する際に粉
化・崩壊することがないよう、ある程度以上の機械的強
度を有する必要がある。触媒の機械的強度は成型圧力を
調節したり、成型又は担持の操作を工夫することで、あ
る程度は改善される。
2. Description of the Related Art Generally, a molded catalyst or a supported catalyst used industrially needs to have a certain level of mechanical strength so as not to be powdered or collapsed when being moved or filled in a reactor. is there. The mechanical strength of the catalyst can be improved to some extent by adjusting the molding pressure or devising the molding or loading operation.

【0003】しかし、このような方法で機械的強度を高
くした触媒は、概して、触媒の持つ比表面積が小さくな
ったり、反応に有効な細孔分布が制御できない等の理由
で、目的生成物の収率が低くなる欠点を有している。
However, catalysts whose mechanical strength has been increased by such a method generally have a low specific surface area of the catalyst or cannot control the distribution of pores effective for the reaction because of the inability to control the pore distribution effective for the reaction. It has the disadvantage that the yield is low.

【0004】従来、本目的のためにいくつかの方法が提
案されている。例えば、特開昭57−119837号公
報には、オレフィンの酸化用触媒を成型する際に、セル
ロース、ポリビニルアルコール、ポリエチレングリコー
ル等を添加することにより、ある程度の機械的強度を有
し、かつ、高収率で目的生成物を製造することができる
触媒が得られることが報告されている。また、特開昭5
9−173140号公報には、担持触媒を調製する際に
助剤としてウィスカを用いることにより機械的強度を高
めることができると報告されている。
Conventionally, several methods have been proposed for this purpose. For example, JP-A-57-119837 discloses that when a catalyst for olefin oxidation is molded, cellulose, polyvinyl alcohol, polyethylene glycol and the like are added to have a certain mechanical strength and a high mechanical strength. It is reported that a catalyst is obtained which can produce the desired product in yield. In addition, Japanese Unexamined Patent Publication No.
JP-A-9-173140 reports that the mechanical strength can be increased by using whiskers as an auxiliary agent when preparing a supported catalyst.

【0005】[0005]

【発明が解決しようとする課題】本発明は、触媒充填又
は移送時等に粉化・崩壊の少ない機械的強度に優れたア
クロレイン及びアクリル酸合成用成型触媒又は担持触媒
及びその製造法の提供を目的としている。
SUMMARY OF THE INVENTION The present invention provides a molded catalyst or a supported catalyst for synthesizing acrolein and acrylic acid which is excellent in mechanical strength with less powdering and disintegration at the time of charging or transferring the catalyst, and a process for producing the same. The purpose is.

【0006】[0006]

【課題を解決するための手段】本発明は、プロピレンを
分子状酸素により気相接触酸化してアクロレイン及びア
クリル酸を合成するための触媒物質を含有してなる成型
触媒又は担持触媒の少なくとも一部の表面が高い解重合
性を有する有機高分子化合物でコーティングされている
ことを特徴とするアクロレイン及びアクリル酸合成用触
媒及びその製造法にある。
According to the present invention, there is provided at least a part of a molded catalyst or a supported catalyst containing a catalytic substance for synthesizing acrolein and acrylic acid by gas phase catalytic oxidation of propylene with molecular oxygen. A catalyst for synthesizing acrolein and acrylic acid, characterized in that the surface is coated with an organic polymer compound having high depolymerizability, and a method for producing the same.

【0007】本発明において、成型触媒の場合、その形
状についてはとくに限定はなく、球状、円柱状、円筒
状、星型状等、通常の打錠機、押出成型機、転動造粒機
等で成型されるものが用いられる。また、担持触媒の場
合、担体の種類についてはとくに限定はなく、シリカ、
アルミナ、シリカ・アルミナ、マグネシ、チタニア等
の通常の担体が用いられる。また、その形状についても
とくに限定されるものではなく、球状、円柱状、円筒
状、板状等が挙げられる。
In the present invention, in the case of a molded catalyst, the shape thereof is not particularly limited, and may be an ordinary tableting machine, an extruder, a rolling granulator, etc., such as a sphere, a column, a cylinder, and a star. What is molded by is used. In the case of a supported catalyst, the type of the carrier is not particularly limited, and silica,
Alumina, silica-alumina, magnesia, is usual carriers titania used. Further, the shape is not particularly limited, and examples thereof include a sphere, a column, a cylinder, and a plate.

【0008】本発明では、成型触媒又は担持触媒の少な
くとも一部の表面を有機高分子化合物でコーティングし
ているので、触媒の機械的強度が著しく向上し、触媒の
移送及び反応器への充填時等の通常の作業、操作おける
触媒の粉化及び崩壊を著しく防ぐことができる。
In the present invention, at least a part of the surface of the molded catalyst or the supported catalyst is coated with the organic polymer compound, so that the mechanical strength of the catalyst is remarkably improved, and the catalyst is transferred and charged into the reactor. It is possible to remarkably prevent the catalyst from being powdered and disintegrated during ordinary work and operation.

【0009】コーティングされた高い解重合性を有する
有機高分子化合物は、加熱による分解又は燃焼により容
易に触媒より除去することができる。従って、触媒はコ
ーティングされた高分子化合物を反応開始前に除去する
ことにより、コーティングした高分子化合物の影響を何
ら受けることなく安定した性能を保持することができ
る。
[0009] The coated organic polymer compound having high depolymerizability can be easily removed from the catalyst by decomposition or combustion by heating. Therefore, the catalyst can maintain stable performance without being affected by the coated polymer compound by removing the coated polymer compound before starting the reaction.

【0010】一般に、高分子化合物を熱分解するために
はかなりの高温を要する。また、酸素存在下で燃焼させ
ると大きな発熱を起こし、触媒自体を損傷させる場合も
ある。しかし、高い解重合性を有する高分子化合物は、
比較的低い温度で単量体に分解し気化蒸発する。すなわ
ち、加熱による除去の操作を触媒に対しより安全に行う
ことができる。
Generally, a high temperature is required to thermally decompose a polymer compound. Further, burning in the presence of oxygen generates a large amount of heat, which may damage the catalyst itself. However, polymer compounds having high depolymerization properties
Decomposes into monomers at relatively low temperatures and evaporates. That is, the removal operation by heating can be performed more safely on the catalyst.

【0011】高い解重合性を有する高分子化合物として
は、触媒に対して無害であり、かつ、安価な溶媒に容易
に溶解するものが好ましく、ポリスチレン、ポリ−α−
メチルスチレン及びポリメタクリル酸メチル等が挙げら
れる。これらの化合物は単独で用いても混合して用いて
も良い。
As the polymer compound having a high depolymerization property, those which are harmless to the catalyst and are easily dissolved in an inexpensive solvent are preferable.
Examples include methylstyrene and polymethyl methacrylate. These compounds may be used alone or as a mixture.

【0012】本発明において、コーティングする有機高
分子化合物の使用量は、成型触媒又は担持触媒に対し
0.1〜40重量%が適当である。使用量が量過ぎる
と強度向上の効果が低下する。また、この範囲を越える
多量のコーティングは経済的に不利である。
In the present invention, the amount of the organic polymer compound to be coated is suitably from 0.1 to 40% by weight based on the molding catalyst or the supported catalyst. The amount used is too small an amount the effect of improving the strength is lowered. Also, large amounts of coating beyond this range are economically disadvantageous.

【0013】高い解重合性を有する有機高分子化合物を
成型触媒又は担持触媒にコーティングするには、該高分
子化合物を溶媒に溶解した溶液を霧状にして成型触媒又
は担持触媒に付着させるか、もしくは該溶液に成型触媒
又は担持触媒を浸漬することにより付着させ、その後、
溶媒を気化蒸発させる方法を用いると、容易にかつ均一
にコーティングすることができる。ただし、この際、溶
液中の高分子化合物の濃度が高過ぎると、溶液の粘度が
高くなり成型触媒又は担持触媒どうしが粘着し操作上困
難を招くので、溶液中の高分子化合物の濃度は1〜30
重量%の範囲を用いることが好ましい。
In order to coat an organic polymer compound having a high depolymerization property on a molding catalyst or a supported catalyst, a solution in which the polymer compound is dissolved in a solvent is atomized and attached to the molding catalyst or the supported catalyst. Alternatively, the molded catalyst or the supported catalyst is attached to the solution by immersion, and thereafter,
When a method of evaporating and evaporating the solvent is used, coating can be easily and uniformly performed. However, at this time, if the concentration of the polymer compound in the solution is too high, the viscosity of the solution increases, and the molded catalyst or the supported catalyst sticks to each other, causing operational difficulties. ~ 30
It is preferred to use a weight percent range.

【0014】本発明で用いるアクロレイン及びアクリル
酸合成用の触媒は、一般式 MoaBibFecAdXeYfZgSihOi (式中、Mo、Bi、Fe、Si及びOはそれぞれモリ
ブデン、ビスマス、鉄、ケイ素及び酸素を表し、Aはニ
ッケル及び/又はコバルト、Xはマグネシウム、亜鉛、
マンガン、スズ及び鉛からなる群より選ばれた少なくと
も1種の元素、Yはリン、ホウ素、イオウ、テルル、セ
レン、ゲルマニウム、タングステン及びアンチモンから
なる群より選ばれた少なくとも1種の元素、Zはカリウ
ム、ナトリウム、セシウム、ルビジウム及びタリウムか
らなる群より選ばれた少なくとも1種の元素を示す。た
だし、a、b、c、d、e、f、g、h及びiは各元素
の原子比を表わし、a=12のとき、0.01≦b≦
3、0.01≦c≦5、1≦d≦12、0≦e≦5、0
≦f≦5、0.001≦g≦1、0≦h≦20でありi
は前記各成分の原子価を満足するのに必要な酸素原子数
である。)で示される組成を有することが好ましい。
The catalyst for synthesizing acrolein and acrylic acid used in the present invention has a general formula MoaBibFecAdXeYfZgSihOi (where Mo, Bi, Fe, Si and O represent molybdenum, bismuth, iron, silicon and oxygen, respectively, and A represents nickel And / or cobalt, X is magnesium, zinc,
At least one element selected from the group consisting of manganese, tin and lead, Y is at least one element selected from the group consisting of phosphorus, boron, sulfur, tellurium, selenium, germanium, tungsten and antimony, Z is It represents at least one element selected from the group consisting of potassium, sodium, cesium, rubidium and thallium. However, a, b, c, d, e, f, g, h and i represent the atomic ratio of each element, and when a = 12, 0.01 ≦ b ≦
3, 0.01 ≦ c ≦ 5, 1 ≦ d ≦ 12, 0 ≦ e ≦ 5, 0
≦ f ≦ 5, 0.001 ≦ g ≦ 1, 0 ≦ h ≦ 20 and i
Is the number of oxygen atoms necessary to satisfy the valence of each component. ).

【0015】本発明において、触媒成分である元素の原
料としては特に限定されるものではないが、通常は酸化
物又は強熱することにより酸化物に成り得る塩化物、硫
酸塩、硝酸塩、炭酸塩、アンモニウム塩又はそれらの混
合物が用いられる。
In the present invention, the raw material of the element which is a catalyst component is not particularly limited, but is usually an oxide or a chloride, a sulfate, a nitrate, or a carbonate which can be turned into an oxide when heated. , Ammonium salts or mixtures thereof.

【0016】[0016]

【実施例】本発明を以下実施例により示す。文中の
「部」は重量部を意味する。成型触媒又は担持触媒の充
填時における落下粉化率及び形状変化率は以下のように
定義される。すなわち、触媒体a個、重量b部を水平方
向に対して垂直に設置した内径3cm、長さ5mのステ
ンレス製円筒容器上部より充填し、落下充填後、容器底
部より回収された触媒のうち、14メッシュのふるいを
通過しないものがc個、重量d部であったとする。
The present invention will be illustrated by the following examples. “Parts” in the text means parts by weight. The falling powder ratio and the shape change ratio at the time of filling the molded catalyst or the supported catalyst are defined as follows. That is, a catalyst body a and a weight b part were filled vertically from a horizontal direction with respect to a stainless steel cylindrical container having an inner diameter of 3 cm and a length of 5 m. It is assumed that c pieces and d weight parts do not pass through the 14 mesh sieve.

【0017】[0017]

【数1】 (Equation 1)

【0018】[0018]

【数2】 (Equation 2)

【0019】〔実施例1〕下記の組成の触媒粉末を調製
した。 Mo120.1 Bi0.9 Fe1.2 Co4 Ni0.5 Zn0.1
Mg0.50.2 Sb0.3 0.06Si3 Ox (式中、Mo、W、Bi、Fe、Co、Ni、Zn、M
g、B、Sb、K、Si及びOはそれぞれモリブデン、
タングステン、ビスマス、鉄、コバルト、ニッケル、亜
鉛、マグネシウム、ホウ素、アンチモン、カリウム、ケ
イ素及び酸素を表わす。また、元素記号右下併記の数字
は各元素の原子比であり、xは前記各成分の原子価を満
足するのに必要な酸素原子数である。)この触媒粉末9
7部をグラファイト粉末3部とよく混合した後、外径4
mm、内径2mm、高さ4mmの円筒形に打錠成型し
た。
Example 1 A catalyst powder having the following composition was prepared. Mo 12 W 0.1 Bi 0.9 Fe 1.2 Co 4 Ni 0.5 Zn 0.1
Mg 0.5 B 0.2 Sb 0.3 K 0.06 Si 3 Ox (where Mo, W, Bi, Fe, Co, Ni, Zn, M
g, B, Sb, K, Si and O are molybdenum,
Represents tungsten, bismuth, iron, cobalt, nickel, zinc, magnesium, boron, antimony, potassium, silicon and oxygen. The numbers in the lower right of the element symbols are the atomic ratios of the respective elements, and x is the number of oxygen atoms necessary to satisfy the valence of each component. ) This catalyst powder 9
After 7 parts are mixed well with 3 parts of graphite powder,
It was tableted into a cylinder having a diameter of 2 mm, an inner diameter of 2 mm and a height of 4 mm.

【0020】別に、トルエン160にポリ−α−メチ
ルスチレン40部を溶解し、よく撹拌した(A液)。前
記で得られた成型触媒100部を室温下でA液に1時間
浸漬し、続いてよく液切りした後、135℃で10時間
乾燥し溶媒を完全に蒸発させた。得られたコーティング
触媒の重量は104.7部であった。
Separately, 40 parts of poly-α-methylstyrene was dissolved in 160 parts of toluene and stirred well (Solution A). 100 parts of the shaped catalyst obtained above was immersed in the solution A for 1 hour at room temperature, and then the solution was thoroughly drained, and then dried at 135 ° C. for 10 hours to completely evaporate the solvent. The weight of the obtained coating catalyst was 104.7 parts.

【0021】本コーティング触媒を固定床流通式反応器
に充填し、窒素流通下で380℃、3時間処理した後、
更に空気流通下で380℃、3時間処理した。続いてプ
ロピレン5%、酸素12%、水蒸気10%、窒素73%
(容量%)の混合ガスを反応温度310℃、接触時間
3.6秒で通じた。生成物を捕集し、ガスクロマトグラ
フィーで分析したところ、プロピレンの反応率98.5
%、アクロレインの選択率88.8%、アクリル酸の選
択率6.0%であった。ただし、プロピレンの反応率、
アクロレイン及びアクリル酸の選択率は以下のように定
義される。
The coated catalyst is packed in a fixed bed flow reactor and treated at 380 ° C. for 3 hours under a nitrogen flow.
Furthermore, it processed at 380 degreeC for 3 hours under air circulation. Then 5% propylene, 12% oxygen, 10% steam, 73% nitrogen
(Volume%) of the mixed gas was passed at a reaction temperature of 310 ° C. for a contact time of 3.6 seconds. When the product was collected and analyzed by gas chromatography, the conversion of propylene was 98.5.
%, Acrolein selectivity was 88.8%, and acrylic acid selectivity was 6.0%. However, the conversion of propylene,
The selectivities of acrolein and acrylic acid are defined as follows.

【0022】[0022]

【数3】 (Equation 3)

【0023】[0023]

【数4】 (Equation 4)

【0024】[0024]

【数5】 (Equation 5)

【0025】本発明コーティング触媒50gを用いて落
下粉化率及び形状変化率を測定したところ、夫々0.5
%及び1.9%であった。
When 50 g of the coating catalyst of the present invention was used to measure the falling powdering ratio and the shape change ratio, the ratio was 0.5
% And 1.9%.

【0026】〔比較例1〕実施例1と同様にして得られ
た成型触媒をポリ−α−メチルスチレンでコーティング
することなく、ただし、粉化が生じないように丁寧に扱
って反応器に充填し、実施例1と同様にしてプロピレン
の酸化反応を行ったところ、プロピレンの反応率98.
5%、アクロレインの選択率88.8%、アクリル酸の
選択率6.0%であり、コーティング処理したものと比
べ、反応成績は変わらなかった。また、落下粉化率及び
形状変化率を測定したところ、各々4.5%及び19.
6%であり、コーティング処理したものと比べ、著しく
低強度であった。
Comparative Example 1 A molded catalyst obtained in the same manner as in Example 1 was not coated with poly-α-methylstyrene, but was carefully treated so as not to cause powdering and charged into a reactor. Then, when the oxidation reaction of propylene was carried out in the same manner as in Example 1, the conversion of propylene was 98.
The selectivity of acrolein was 58.8%, the selectivity of acrylic acid was 6.0%, and the selectivity of acrylic acid was 6.0%. Further, when the falling powder ratio and the shape change ratio were measured, they were 4.5% and 19.
6%, which was significantly lower than that of the coating.

【0027】〔実施例2〕下記の組成の触媒粉末を調製
した。Mo120.2 Bi1 Fe1.1 Co4.5 Mn0.1
0.040.15Si10Ox(式中、Mo、W、Bi、F
e、Co、Mn、Tl、P、Si及びOはそれぞれモリ
ブデン、タングステン、ビスマス、鉄、コバルト、マン
ガン、タリウム、リン、ケイ素及び酸素を表わす。ま
た、元素記号右下併記の数字は各元素の原子比であり、
xは前記各成分の原子価を満足するのに必要な酸素原子
数である。)この触媒粉末97部をグラファイト粉末3
部とよく混合した後、直径4mm、高さ4mmの円柱形
に打錠成型した。
Example 2 A catalyst powder having the following composition was prepared. Mo 12 W 0.2 Bi 1 Fe 1.1 Co 4.5 Mn 0.1 T
l 0.04 P 0.15 Si 10 Ox (where Mo, W, Bi, F
e, Co, Mn, Tl, P, Si and O represent molybdenum, tungsten, bismuth, iron, cobalt, manganese, thallium, phosphorus, silicon and oxygen, respectively. Also, the numbers in the lower right of the element symbol indicate the atomic ratio of each element,
x is the number of oxygen atoms necessary to satisfy the valence of each component. ) 97 parts of this catalyst powder were mixed with graphite powder 3
After that, the mixture was thoroughly tableted into a column having a diameter of 4 mm and a height of 4 mm.

【0028】別に、酢酸エチル170部にポリアクリル
酸メチル30部を溶解し、よく撹拌した(A液)。前記
で得られた成型触媒100部を室温下でA液に20分間
浸漬し、続いてよく液切りした後、135℃で10時間
乾燥し溶媒を完全に蒸発させた。得られたコーティング
触媒の重量は103.8部であった。このコーティング
触媒50gを用いて落下粉化率及び形状変化率を測定し
たところ、各々0.3%及び1.4%であった。この触
媒の反応成績はコーティング処理しない触媒と同等であ
り、コーティングによる悪影響はなかった。
Separately, 30 parts of polymethyl acrylate was dissolved in 170 parts of ethyl acetate and stirred well (Solution A). 100 parts of the molded catalyst obtained above was immersed in the solution A for 20 minutes at room temperature, and then the solution was thoroughly drained, and dried at 135 ° C. for 10 hours to completely evaporate the solvent. The weight of the obtained coating catalyst was 103.8 parts. When 50 g of the coating catalyst was used to measure the falling powder ratio and the shape change ratio, they were 0.3% and 1.4%, respectively. The reaction results of this catalyst were equivalent to those of the catalyst without coating treatment, and there was no adverse effect of coating.

【0029】〔比較例2〕実施例2と同様にして得られ
た成型触媒をポリアクリル酸メチルでコーティングする
ことなくそのまま用いて、実施例2と同様にして落下粉
化率及び形状変化率を測定したところ、各々2.8%及
び13.2%であった。
Comparative Example 2 Using the molded catalyst obtained in the same manner as in Example 2 without coating with polymethyl acrylate, the falling powder rate and the shape change rate were determined in the same manner as in Example 2. The measured values were 2.8% and 13.2%, respectively.

【0030】〔実施例3〕下記の組成の触媒粉末を調製
した。 Mo120.2 Bi1 Fe0.9 Ni4 Zn0.2 Pb0.2
0.1 Se0.010.04Na0.02Ox(式中、Mo、W、
Bi、Fe、Ni、Zn、Pb、Te、Se、K、Na
及びOはそれぞれモリブデン、タングステン、ビスマ
ス、鉄、ニッケル、亜鉛、鉛、テルル、セレン、カリウ
ム、ナトリウム及び酸素を表わす。また、元素記号右下
併記の数字は各元素の原子比であり、xは前記各成分の
原子価を満足するのに必要な酸素原子数である。)この
触媒粉末20部を直径3mmの球状シリカ担体80部に
担持した。
Example 3 A catalyst powder having the following composition was prepared. Mo 12 W 0.2 Bi 1 Fe 0.9 Ni 4 Zn 0.2 Pb 0.2 T
e 0.1 Se 0.01 K 0.04 Na 0.02 Ox (where Mo, W,
Bi, Fe, Ni, Zn, Pb, Te, Se, K, Na
And O represent molybdenum, tungsten, bismuth, iron, nickel, zinc, lead, tellurium, selenium, potassium, sodium and oxygen, respectively. The numbers in the lower right of the element symbols are the atomic ratios of the respective elements, and x is the number of oxygen atoms necessary to satisfy the valence of each component. 20) This catalyst powder was supported on 80 parts of a spherical silica carrier having a diameter of 3 mm.

【0031】別に、エチルメチルケトン178部にポリ
スチレン22部を溶解し、よく撹拌した(A液)。前記
で得られた担持触媒100部に室温下でA液20部を霧
状にして付着させ、続いて135℃で10時間乾燥し溶
媒を完全に蒸発させた。得られたコーティング触媒の重
量は103.5部であった。このコーティング触媒50
gを用いて落下粉化率を測定したところ、0.1%であ
った。
Separately, 22 parts of polystyrene was dissolved in 178 parts of ethyl methyl ketone and stirred well (Solution A). At room temperature, 20 parts of solution A was adhered to 100 parts of the supported catalyst obtained above in the form of a mist at room temperature, followed by drying at 135 ° C. for 10 hours to completely evaporate the solvent. The weight of the obtained coating catalyst was 103.5 parts. This coating catalyst 50
The fall pulverization rate was measured using g, and was 0.1%.

【0032】〔比較例3〕実施例3と同様にして得られ
た担持触媒をポリスチレンでコーティングすることなく
そのまま用いて、実施例3と同様にして落下粉化率を測
定したところ、1.8%であった。
Comparative Example 3 Using the supported catalyst obtained in the same manner as in Example 3 without coating it with polystyrene, the drop powdering ratio was measured in the same manner as in Example 3, and was 1.8. %Met.

【0033】〔実施例4〕下記の組成の触媒粉末を調製
した。Mo12Bi1.1 Fe1 Co4 Zn0.5 Sn0.5
0.03Ge0.1 Sb0.1Cs0.02Rb0.02Ox(式中、M
o、Bi、Fe、Co、Zn、Sn、S、Ge、Sb、
Cs、Rb及びOはそれぞれモリブデン、ビスマス、
鉄、コバルト、亜鉛、スズ、イオウ、ゲルマニウム、ア
ンチモン、セシウム、ルビジウム及び酸素を表わす。ま
た、元素記号右下併記の数字は各元素の原子比であり、
xは前記各成分の原子価を満足するのに必要な酸素原子
数である。)この触媒粉末に少量の水を加えよく混合し
た後、押出成型機により、直径4mm、高さ6mmの円
柱形に成型し、続いて110℃で10時間乾燥した。
Example 4 A catalyst powder having the following composition was prepared. Mo 12 Bi 1.1 Fe 1 Co 4 Zn 0.5 Sn 0.5 S
0.03 Ge 0.1 Sb 0.1 Cs 0.02 Rb 0.02 Ox (where M
o, Bi, Fe, Co, Zn, Sn, S, Ge, Sb,
Cs, Rb and O are molybdenum, bismuth,
Represents iron, cobalt, zinc, tin, sulfur, germanium, antimony, cesium, rubidium and oxygen. Also, the numbers in the lower right of the element symbol indicate the atomic ratio of each element,
x is the number of oxygen atoms necessary to satisfy the valence of each component. After adding a small amount of water to the catalyst powder and mixing well, the mixture was molded into a cylindrical shape having a diameter of 4 mm and a height of 6 mm by an extruder, and then dried at 110 ° C. for 10 hours.

【0034】別に、アセトン168部にポリメタクリル
酸メチル32部を溶解し、よく撹拌した(A液)。前記
で得られた成型触媒100部を室温下でA液に20分間
浸漬し、続いてよく液切りした後、120℃で10時間
乾燥し溶媒を完全に蒸発させた。得られたコーティング
触媒の重量は103.7部であった。このコーティング
触媒50gを用いて落下粉化率及び形状変化率を測定し
たところ、各々0.3%及び1.5%であった。
Separately, 32 parts of polymethyl methacrylate was dissolved in 168 parts of acetone and stirred well (Solution A). 100 parts of the shaped catalyst obtained above was immersed in the solution A for 20 minutes at room temperature, and then the solution was thoroughly drained, and then dried at 120 ° C. for 10 hours to completely evaporate the solvent. The weight of the obtained coating catalyst was 103.7 parts. When 50 g of the coating catalyst was used to measure the falling powder ratio and the shape change ratio, they were 0.3% and 1.5%, respectively.

【0035】〔比較例4〕実施例4と同様にして得られ
た成型触媒をポリメタクリル酸メチルでコーティングす
ることなくそのまま用いて、実施例4と同様にして落下
粉化率及び形状変化率を測定したところ、各々1.9%
及び7.1%であった。
Comparative Example 4 Using the molded catalyst obtained in the same manner as in Example 4 without coating it with poly (methyl methacrylate), the dropping powder rate and the shape change rate were determined in the same manner as in Example 4. When measured, each was 1.9%
And 7.1%.

【0036】〔実施例5〕下記の組成の触媒粉末を調製
した。 Mo12Bi1 Fe1 Co4 0.06Ox (式中、Mo、Bi、Fe、Co、K及びOはそれぞれ
モリブデン、ビスマス、鉄、コバルト、カリウム及び酸
素を表わす。また、元素記号右下併記の数字は各元素の
原子比であり、xは前記各成分の原子価を満足するのに
必要な酸素原子数である。)この触媒粉末に少量の水を
加えよく混合した後、押出成型機により、外径5mm、
内径2mm、高さ8mmの円筒形に成型し、続いて11
0℃で10時間乾燥した。
Example 5 A catalyst powder having the following composition was prepared. Mo 12 Bi 1 Fe 1 Co 4 K 0.06 Ox (wherein, Mo, Bi, Fe, Co, K and O represent molybdenum, bismuth, iron, cobalt, potassium and oxygen, respectively. The numbers are the atomic ratios of each element, and x is the number of oxygen atoms required to satisfy the valence of each component.) After adding a small amount of water to this catalyst powder and mixing well, an extruder was used. , Outer diameter 5mm,
It is molded into a cylindrical shape with an inner diameter of 2 mm and a height of 8 mm.
Dry at 0 ° C. for 10 hours.

【0037】別にアセトン172部にポリメタクリル酸
イソブチル28部を溶解し、よく撹拌した(A液)。前
記で得られた成型触媒100部を室温下でA液に20分
間浸漬し、続いてよく液切りした後、120℃で8時間
乾燥し溶媒を完全に蒸発させた。得られたコーティング
触媒の重量は103.1部であった。このコーティング
触媒50gを用いて落下粉化率及び形状変化率を測定し
たところ、各々0.4%及び1.8%であった。
Separately, 28 parts of polybutyl methacrylate was dissolved in 172 parts of acetone and stirred well (Solution A). 100 parts of the molded catalyst obtained above was immersed in the solution A for 20 minutes at room temperature, and then the solution was thoroughly drained, and then dried at 120 ° C. for 8 hours to completely evaporate the solvent. The weight of the obtained coating catalyst was 103.1 parts. When 50 g of the coating catalyst was used to measure the falling powder ratio and the shape change ratio, they were 0.4% and 1.8%, respectively.

【0038】〔比較例5〕実施例5と同様にして得られ
た成型触媒をポリメタクリル酸イソブチルでコーティン
グすることなくそのまま用いて、実施例5と同様にして
落下粉化率及び形状変化率を測定したところ、各々2.
2%及び9.3%であった。
[Comparative Example 5] Using the molded catalyst obtained in the same manner as in Example 5 without coating it with polyisobutyl methacrylate, the falling powder ratio and the shape change ratio were determined in the same manner as in Example 5. As a result of measurement, 2.
2% and 9.3%.

【0039】[0039]

【発明の効果】本発明の触媒は機械的強度に優れ、物理
的衝撃に対する抵抗性が大きく、粉化及び崩壊が著しく
少ない。このため触媒の移送や反応器への充填に際し触
媒の取り扱いが著しく容易になる。また工業触媒として
大型の反応器へ充填した場合、粉化率が小さいために反
応時の圧力損失が小さく、安定した触媒性能が得られ
る。
Industrial Applicability The catalyst of the present invention has excellent mechanical strength, high resistance to physical impact, and extremely low powdering and disintegration. For this reason, handling of the catalyst during transfer of the catalyst and filling in the reactor becomes remarkably easy. When the catalyst is charged into a large reactor as an industrial catalyst, the pressure loss during the reaction is small due to a small powdering rate, and stable catalyst performance can be obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // C07B 61/00 300 C07B 61/00 300 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI // C07B 61/00 300 C07B 61/00 300

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 プロピレンを分子状酸素により気相接触
酸化してアクロレイン及びアクリル酸を合成するための
成型触媒又は担持触媒であって、その少なくとも一部の
表面が高い解重合性を有する有機高分子化合物でコーテ
ィングされていることを特徴とするアクロレイン及びア
クリル酸合成用触媒。
1. A molded catalyst or a supported catalyst for synthesizing acrolein and acrylic acid by subjecting propylene to gas-phase catalytic oxidation with molecular oxygen, wherein at least a part of the surface of the organic catalyst has a high depolymerization property. A catalyst for synthesizing acrolein and acrylic acid, which is coated with a molecular compound.
【請求項2】 高い解重合性を有する有機高分子化合物
がポリスチレン、ポリ−α−メチルスチレン、ポリメタ
クリル酸メチルからなる群から選ばれる少なくとも1種
であることを特徴とする請求項1記載のアクロレイン及
びアクリル酸合成用触媒。
2. The method according to claim 1, wherein the organic polymer compound having a high depolymerization property is at least one selected from the group consisting of polystyrene, poly-α-methylstyrene, and polymethyl methacrylate. Catalyst for synthesis of acrolein and acrylic acid.
【請求項3】 コーティングされている有機高分子化合
物の量が該成型触媒又は該担持触媒に対し0.1〜40
重量%の範囲であることを特徴とする請求項1記載のア
クロレイン及びアクリル酸合成用触媒。
3. The amount of the organic polymer compound coated is 0.1 to 40 with respect to the shaped catalyst or the supported catalyst.
The catalyst for synthesizing acrolein and acrylic acid according to claim 1, wherein the amount is in the range of% by weight.
【請求項4】 プロピレンを分子状酸素により気相接触
酸化してアクロレイン及びアクリル酸を合成するための
成型触媒又は担持触媒の表面を高い解重合性を有する有
機高分子化合物でコーティングするに際し、該高分子化
合物を溶媒に溶解した溶液を霧状にして成型触媒又は担
持触媒に付着させるか、もしくは該溶液に成型触媒又は
担持触媒を浸漬することにより付着させ、その後溶媒を
気化蒸発させることを特徴とする少なくとも一部の表面
が高い解重合性を有する有機高分子化合物でコーティン
グされているアクロレイン及びアクリル酸合成用触媒の
製造方法。
4. When coating the surface of a molded catalyst or a supported catalyst for synthesizing acrolein and acrylic acid by vapor-phase catalytic oxidation of propylene with molecular oxygen, and coating the surface with an organic polymer compound having high depolymerizability, A solution in which a polymer compound is dissolved in a solvent is atomized to adhere to a molded catalyst or a supported catalyst, or is adhered by immersing a molded catalyst or a supported catalyst in the solution, and thereafter, the solvent is vaporized and evaporated. A method for producing a catalyst for synthesizing acrolein and acrylic acid, wherein at least a part of the surface is coated with an organic polymer compound having high depolymerizability.
【請求項5】 成型触媒又は担持触媒が一般式 MoaBibFecAdXeYfZgSihOi (式中、Mo、Bi、Fe、Si及びOはそれぞれモリ
ブデン、ビスマス、鉄、ケイ素及び酸素を表し、Aはニ
ッケル及び/又はコバルト、Xはマグネシウム、亜鉛、
マンガン、スズ及び鉛からなる群より選ばれた少なくと
も1種の元素、Yはリン、ホウ素、イオウ、テルル、セ
レン、ゲルマニウム、タングステン及びアンチモンから
なる群より選ばれた少なくとも1種の元素、Zはカリウ
ム、ナトリウム、セシウム、ルビジウム及びタリウムか
らなる群より選ばれた少なくとも1種の元素を示す。た
だし、a、b、c、d、e、f、g、h及びiは各元素
の原子比を表わし、a=12のとき、0.01≦b≦
3、0.01≦c≦5、1≦d≦12、0≦e≦5、0
≦f≦5、0.001≦g≦1、0≦h≦20でありi
は前記各成分の原子価を満足するのに必要な酸素原子数
である。)で示される組成を有することを特徴とする請
求項1、2又は3に記載の触媒。
5. The molded catalyst or the supported catalyst has a general formula MoaBibFecAdXeYfZgSihOi (where Mo, Bi, Fe, Si and O represent molybdenum, bismuth, iron, silicon and oxygen, respectively, and A represents nickel and / or cobalt, X Is magnesium, zinc,
At least one element selected from the group consisting of manganese, tin and lead, Y is at least one element selected from the group consisting of phosphorus, boron, sulfur, tellurium, selenium, germanium, tungsten and antimony, Z is It represents at least one element selected from the group consisting of potassium, sodium, cesium, rubidium and thallium. However, a, b, c, d, e, f, g, h and i represent the atomic ratio of each element, and when a = 12, 0.01 ≦ b ≦
3, 0.01 ≦ c ≦ 5, 1 ≦ d ≦ 12, 0 ≦ e ≦ 5, 0
≦ f ≦ 5, 0.001 ≦ g ≦ 1, 0 ≦ h ≦ 20 and i
Is the number of oxygen atoms necessary to satisfy the valence of each component. 4. The catalyst according to claim 1, wherein the catalyst has a composition represented by the following formula:
【請求項6】 少なくともモリブデン、ビスマス、鉄を
含有する成型触媒又は担持触媒の少なくとも一部の表面
が該触媒に対し0.1〜40重量%の解重合性の高い有
機高分子化合物でコーティングされた触媒を反応器に充
填し、反応開始前に該有機高分子化合物を解重合によっ
て除去した触媒を用いてプロピレンを分子状酸素により
気相接触酸化してアクロレイン及びアクリル酸を合成す
る方法。
6. The surface of at least a part of a molded catalyst or a supported catalyst containing at least molybdenum, bismuth, or iron is coated with 0.1 to 40% by weight of the high polymerizable organic polymer compound based on the catalyst. A method in which propylene is vapor-phase catalytically oxidized with molecular oxygen using a catalyst from which the organic polymer compound is removed by depolymerization before the reaction is started, to synthesize acrolein and acrylic acid.
JP3234047A 1991-08-21 1991-08-21 Catalyst for synthesizing acrolein and acrylic acid and method for producing the same Expired - Fee Related JP2852712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3234047A JP2852712B2 (en) 1991-08-21 1991-08-21 Catalyst for synthesizing acrolein and acrylic acid and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3234047A JP2852712B2 (en) 1991-08-21 1991-08-21 Catalyst for synthesizing acrolein and acrylic acid and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0549938A JPH0549938A (en) 1993-03-02
JP2852712B2 true JP2852712B2 (en) 1999-02-03

Family

ID=16964742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3234047A Expired - Fee Related JP2852712B2 (en) 1991-08-21 1991-08-21 Catalyst for synthesizing acrolein and acrylic acid and method for producing the same

Country Status (1)

Country Link
JP (1) JP2852712B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1925606A2 (en) 2001-12-28 2008-05-28 Mitsubishi Chemical Corporation Method for vapor phase catalytic oxidation
US7549341B2 (en) 2004-05-31 2009-06-23 Mitsubishi Chemical Corporation Method of maintaining a multitubular reactor
US10857525B2 (en) 2013-05-24 2020-12-08 Lg Chem, Ltd. Catalyst for preparing acrolein and acrylic acid, and preparation method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08182933A (en) * 1994-12-28 1996-07-16 Japan Energy Corp Solid catalyst excellent in mechanical strength and its production
JP4028886B2 (en) 1997-12-03 2007-12-26 株式会社サクラクレパス Ink backflow prevention mechanism of applicator
DE19855913A1 (en) * 1998-12-03 2000-06-08 Basf Ag Multimetal oxide mass for the gas-phase catalytic oxidation of organic compounds
WO2012111468A1 (en) * 2011-02-18 2012-08-23 国立大学法人新潟大学 Palladium catalyst, and method for producing bisaryl compound using same
EP2781262B1 (en) 2013-03-22 2020-05-27 Clariant International Ltd Removable protective coating for the receipt of a dust free catalyst
CN105899480B (en) * 2013-11-11 2018-11-13 巴斯夫欧洲公司 For gas phase oxidation of olefins to obtain the hollow cylindrical molded catalyst body of the mechanical stability of unsaturated aldehyde and/or unsaturated carboxylic acid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1925606A2 (en) 2001-12-28 2008-05-28 Mitsubishi Chemical Corporation Method for vapor phase catalytic oxidation
US7549341B2 (en) 2004-05-31 2009-06-23 Mitsubishi Chemical Corporation Method of maintaining a multitubular reactor
US10857525B2 (en) 2013-05-24 2020-12-08 Lg Chem, Ltd. Catalyst for preparing acrolein and acrylic acid, and preparation method thereof

Also Published As

Publication number Publication date
JPH0549938A (en) 1993-03-02

Similar Documents

Publication Publication Date Title
JP3272745B2 (en) Method for producing methacrolein and methacrylic acid
JPH0570502B2 (en)
US5250485A (en) Process for preparing catalysts used for production of methacrolein and methacrylic acid
JP3276984B2 (en) Supported catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid and method for producing the same
JP3476307B2 (en) Method for filling catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
EP0799642A1 (en) Process for the preparation of supported catalyst for synthesis of methacrolein and methacrylic acid
JP2852712B2 (en) Catalyst for synthesizing acrolein and acrylic acid and method for producing the same
JP4242597B2 (en) Unsaturated aldehyde synthesis catalyst, production method thereof, and production method of unsaturated aldehyde using the catalyst
US6919478B2 (en) Reaction tube, process for producing catalyst and process for producing unsaturated aldehyde and unsaturated carboxylic acid
EP1029591B1 (en) Method for the production of acrylic acid and method for the preparation of the catalyst
JP3200149B2 (en) Method for producing catalyst for methacrylic acid synthesis
JP2814317B2 (en) Preparation of catalyst for methacrylic acid production
JP3710944B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP2004002209A (en) Method for producing unsaturated aldehyde
JPH0810621A (en) Production of catalyst for producing unsaturated carboxylic acid
JPS63315148A (en) Catalyst of synthesis of methacrylic acid and preparation thereof showing excellent reproducibility
JPS63315147A (en) Catalyst for synthesis of methacrolein and preparation thereof showing excellent reproducibility
JP2003146920A (en) Method for producing acrolein and acrylic acid
JPH04358542A (en) Solid catalyst excellent in mechanical strength and preparation thereof
JPH05293389A (en) Preparation of catalyst for production of acrolein and acrylic acid
JPS6048143A (en) Manufacture of catalyst for manufacturing unsaturated acid
JP2003164763A (en) Method for manufacturing composite oxide catalyst for oxidizing propylene
JP3251642B2 (en) Preparation of catalyst for unsaturated carboxylic acid production
JPH1133393A (en) Fixed bed reactor and production of unsaturated carboxylic acid
JPH044048A (en) Production of catalyst for synthesizing unsaturated aldehyde and unsaturated acid

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081120

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081120

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091120

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees