JP2850255B2 - Optical scanning optical device - Google Patents

Optical scanning optical device

Info

Publication number
JP2850255B2
JP2850255B2 JP26420189A JP26420189A JP2850255B2 JP 2850255 B2 JP2850255 B2 JP 2850255B2 JP 26420189 A JP26420189 A JP 26420189A JP 26420189 A JP26420189 A JP 26420189A JP 2850255 B2 JP2850255 B2 JP 2850255B2
Authority
JP
Japan
Prior art keywords
lens
optical
scanning
light beam
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26420189A
Other languages
Japanese (ja)
Other versions
JPH03125113A (en
Inventor
博 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17399892&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2850255(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP26420189A priority Critical patent/JP2850255B2/en
Publication of JPH03125113A publication Critical patent/JPH03125113A/en
Application granted granted Critical
Publication of JP2850255B2 publication Critical patent/JP2850255B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光ビームを被走査面に照射して画像情報信
号に応じた画像を記録するレーザービームプリンタ、複
写機等の画像記録装置などに用いられる光走査光学装
置。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an image recording apparatus such as a laser beam printer and a copying machine for recording an image corresponding to an image information signal by irradiating a scanned surface with a light beam. Optical scanning optical device used for.

[従来の技術] 従来、電子計算機や画像読取り装置からの画像情報に
基づいて光ビームを変調し、この変調された光ビームを
光偏向器やレンズ等の光学素子により記録媒体上に結像
走査させて画像情報の記録を行なう装置が広く知られて
いる。この光ビームを偏向走査させる装置においては、
回転多面鏡やガルバノ鏡などのミラー面の光ビームに対
する角度を周期的に変化させることによって光ビームを
偏向走査させている。
[Prior art] Conventionally, a light beam is modulated based on image information from an electronic computer or an image reading device, and the modulated light beam is image-formed and scanned on a recording medium by an optical element such as an optical deflector or a lens. 2. Description of the Related Art An apparatus for recording image information in such a manner is widely known. In the device for deflecting and scanning this light beam,
The light beam is deflected and scanned by periodically changing the angle of the mirror surface such as a rotary polygon mirror or a galvanometer mirror with respect to the light beam.

こうした装置において、回転多面鏡などのミラー面
の、走査面(走査ビームが経時的に形成する面)に垂直
な方向の角度精度誤差が記録画像に悪影響を与える為
に、この角度精度誤差を緩和する目的で、結像光学系を
トーリックレンズと球面レンズを組み合わせた所謂倒れ
補正光学系として構成することが知られている(特公昭
62−36210号公報参照)。
In such an apparatus, since an angular accuracy error of a mirror surface such as a rotary polygon mirror in a direction perpendicular to a scanning surface (a surface formed by a scanning beam with time) adversely affects a recorded image, the angular accuracy error is reduced. It is known that the imaging optical system is configured as a so-called tilt correction optical system that combines a toric lens and a spherical lens for the purpose of
62-36210).

また、記録媒体近傍にシリンドリカルレンズを配置す
ることで上記と同様な倒れ補正効果を得ることや(米国
特許第4,639,072号公報参照)、複雑な形状の非球面レ
ンズを用いることで単レンズを用いることで単レンズで
も倒れ補正光学系を構成することも知られている(特開
昭62−139524号公報参照)。
Further, the same tilt correction effect as described above can be obtained by disposing a cylindrical lens near the recording medium (see U.S. Pat. No. 4,639,072), or a single lens can be used by using an aspheric lens having a complicated shape. It is also known that a single lens constitutes a tilt correction optical system (see JP-A-62-139524).

[発明が解決しようとする課題] しかし乍ら、上記従来例は次の様な問題点を有してい
る。
[Problems to be Solved by the Invention] However, the above-mentioned conventional example has the following problems.

例えば、特公昭62−36210の例の場合、良好な光学性
能を得る為にはトーリックレンズと球面レンズの2個の
結像レンズを必要とし、且つトーリックレンズはトーリ
ック面とシリンドリカル面の2面を有する為に加工的に
難度が高く高価なものとなっていた。
For example, in the case of Japanese Patent Publication No. 62-36210, two imaging lenses, a toric lens and a spherical lens, are required to obtain good optical performance, and the toric lens has two surfaces, a toric surface and a cylindrical surface. In order to have it, it was difficult to process and was expensive.

また、米国特許第4,639,072号の場合、結像レンズの
他にシリンドリカルレンズを必要とするので光学素子の
数が多くなり、更にシリンドリカルレンズが被走査面近
傍に配置される為に、例えばレーザービームプリンタの
場合、現像器、クリーナ等の配置上スペース的に制約を
受けたりトナー等で汚れたりして好ましくない。
Also, in the case of U.S. Pat.No. 4,639,072, a cylindrical lens is required in addition to the imaging lens, so that the number of optical elements increases, and further, since the cylindrical lens is arranged near the surface to be scanned, for example, a laser beam printer is used. In the case of (1), the arrangement of the developing device, the cleaner and the like is not preferable because the space is limited and the toner and the like are stained.

更に、特開昭62−139524の例の場合、単レンズにして
いるので構成上はシンプルであるが、ガラスのレンズな
どではトーリック面を更に非球面化させる加工の難度は
極めて高く、出来ても非常に高価になる。こうした単レ
ンズをプラスチックのモールドで作成する方法もある
が、プラスチック材料は温度変化による屈折率変化が非
常に大きくまたその吸湿性や複屈折特性によっても光学
結像性能が悪影響を受ける為に、高性能光学系(例えば
結像スポット径が小さい系)にはこうしたプラスチック
レンズは使用できなかった。
Furthermore, in the case of the example of Japanese Patent Application Laid-Open No. 62-139524, the configuration is simple because a single lens is used.However, in the case of a glass lens or the like, the processing of making the toric surface more aspherical is extremely difficult. Very expensive. Although there is a method of making such a single lens with a plastic mold, the plastic material has a very large refractive index change due to a temperature change, and the optical imaging performance is adversely affected by its hygroscopicity and birefringence characteristics. Such a plastic lens could not be used for a performance optical system (for example, a system having a small image spot diameter).

従って、本発明の目的は、上記の課題に鑑み、簡単な
構成で比較的安価でありながら環境変動に強く高性能な
光走査光学装置を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a high-performance optical scanning optical device that has a simple configuration, is relatively inexpensive, is resistant to environmental fluctuations, and is relatively inexpensive.

[課題を解決するための手段] 上記目的を達成する為の本発明では、半導体レーザー
などの光源からの光ビームを結像光学系を介して被走査
媒体上に結像走査する光走査光学装置において、上記結
像光学系は異種(例えばプラスチック材料とガラス材
料)の貼り合わせレンズを含んでいる。
[Means for Solving the Problems] According to the present invention for achieving the above object, an optical scanning optical apparatus that forms an image on a medium to be scanned with a light beam from a light source such as a semiconductor laser via an image forming optical system. In the above, the imaging optical system includes a laminated lens of different kinds (for example, a plastic material and a glass material).

よって、例えばプラスチックレンズを非球面化するこ
とで光学性能を向上させ、同時にこのプラスチックレン
ズとガラスレンズを貼り合わせることでプラスチックレ
ンズの環境変動に対する弱さなどを補強でき、シンプル
な構成ながら高性能な走査光学装置が実現できる。
Therefore, for example, the plastic lens is made aspherical to improve the optical performance, and at the same time, the plastic lens and the glass lens are bonded together to reinforce the weakness of the plastic lens against environmental fluctuations. A scanning optical device can be realized.

[実施例] 以下、図面に沿って本発明の実施例を説明する。Embodiment An embodiment of the present invention will be described below with reference to the drawings.

第1図及び第2図は第1の実施例を示し、第1図は走
査断面(光ビームが走査されるとき経時的に形成する
面)の様子を示し、第2図は走査断面に垂直な副走査方
向断面の様子を示す。
1 and 2 show a first embodiment. FIG. 1 shows a state of a scanning section (a surface formed with time when a light beam is scanned), and FIG. 2 shows a state perpendicular to the scanning section. FIG.

同図において、光源であり画像信号に応じて変調駆動
される半導体レーザー1から射出された光ビームは、コ
リメーターレンズ2を透過することで略平行な光ビーム
となり、開口絞り3によってビーム断面の大きさが決め
られる。開口絞り3を通った光ビームはシリンドリカル
レンズ4によって副走査方向にのみ集光作用を受け、回
転多面鏡5上の反射点Pの位置に焦線として結像され
る。回転多面鏡5は図の矢印の向きに高速で回転してい
て、回転に伴って反射点Pで反射された光ビームを高速
に偏向走査する。偏向走査された光ビームは集光レンズ
6、7によって走査直線性を補正されると共に集束作用
を受けて、感光体ドラム8上にスポット状に結像されて
走査線に沿って等速走査される。
In FIG. 1, a light beam emitted from a semiconductor laser 1 which is a light source and is modulated and driven in accordance with an image signal is transmitted through a collimator lens 2 to become a substantially parallel light beam. The size is determined. The light beam that has passed through the aperture stop 3 is condensed by the cylindrical lens 4 only in the sub-scanning direction, and is imaged as a focal line at the position of the reflection point P on the rotary polygon mirror 5. The rotating polygon mirror 5 rotates at a high speed in the direction of the arrow in the figure, and deflects and scans the light beam reflected at the reflection point P at a high speed with the rotation. The light beam that has been deflected and scanned has its scanning linearity corrected by the condensing lenses 6 and 7 and undergoes a focusing action to form an image on the photosensitive drum 8 in the form of a spot and scan at a constant speed along the scanning line. You.

第2図はこの断面に関してシリンドリカルレンズ4が
パワーを持っている様子を示し、光ビームがシリンドリ
カルレンズ4によってほぼ反射点Pの位置に結像される
ことが分かる。また、第2図の断面に関して集光レンズ
6、7により多面鏡5のP点と感光体ドラム8のQ点が
光学的に共役な関係に置かれているので、P点で反射さ
れた光ビームは発散光となるが集光レンズ6、7により
感光体ドラム8上に結像される。更に、上記共役関係が
成立しているので、回転多面鏡5の反射面が副走査方向
断面において傾いてもQ点のビームの位置は変動しな
く、いわゆる面倒れ補正光学系が構成されている。
FIG. 2 shows that the cylindrical lens 4 has power with respect to this cross section, and it can be seen that the light beam is imaged almost at the position of the reflection point P by the cylindrical lens 4. 2, the point P of the polygon mirror 5 and the point Q of the photosensitive drum 8 are optically conjugated by the condenser lenses 6 and 7, so that the light reflected at the point P Although the beam becomes divergent light, an image is formed on the photosensitive drum 8 by the condenser lenses 6 and 7. Further, since the above conjugate relationship is established, the position of the beam at point Q does not change even if the reflection surface of the rotary polygon mirror 5 is inclined in the cross section in the sub-scanning direction, and a so-called surface tilt correction optical system is configured. .

第1図と第2図から分かる様に、P点よりQ点まで
で、走査断面と副走査方向断面の2断面において結像関
係が異なっているので、集光レンズ6、7はアナモフィ
ック光学系(回転非対称光学系)となっている。
As can be seen from FIG. 1 and FIG. 2, since the imaging relationship is different between the point P and the point Q in the two sections, the scanning section and the section in the sub-scanning direction, the condenser lenses 6 and 7 are provided with the anamorphic optical system. (Rotationally asymmetric optical system).

ここで第1実施例における集光レンズ6、7の各ディ
メンションを下記に示す。記号は、第1図に示す如くP
点より距離及び間隔を夫々l、D1、D2、D3、レンズ6、
7の屈折率を夫々N1、N2、走査断面での曲率半径をR1
R2、R3、そして第2図に示す如く副走査方向断面での曲
率半径をP1′、R2′、R2′とする。
Here, the dimensions of the condenser lenses 6 and 7 in the first embodiment are shown below. The symbol is P as shown in FIG.
Husband than the distance and the interval point s l, D 1, D 2, D 3, lens 6,
7, the refractive indices N 1 and N 2 , the radius of curvature in the scanning section is R 1 ,
R 2 , R 3 , and the radii of curvature in the section in the sub-scanning direction as shown in FIG. 2 are P 1 ′, R 2 ′, and R 2 ′.

焦点距離 f=200 走査角ω/2=30゜ l=80.1 R1=∞ D1=2 N1=1.51072 R1′=−73.29 R2=∞ D2=15 N2=1.78569 R2′=∞ R3=−157.14 D3=199.3 R3′=−36.83 但しR1面は非球面形状で、その形状は下記に示すもの
である。
Focal length f = 200 Scan angle ω / 2 = 30 ゜ l = 80.1 R 1 = ∞ D 1 = 2 N 1 = 1.51072 R 1 ′ = −73.29 R 2 = ∞ D 2 = 15 N 2 = 1.78569 R 2 ′ = ∞ R 3 = -157.14 D 3 = 199.3 R 3 '= -36.83 proviso R 1 surface is aspherical, the shape is as shown in the following.

X=(Y2/R1)/{1+(1−Y2/R1 21/2}+BY4+CY6 X:R1面の頂点を原点としてR1面上各点の光軸方向の距
離 Y:同じく光軸と直角な方向の距離 B=−2.49041×10-8 C=3.68498×10-13 第1実施例では、集光レンズ6はプラスチックから形
成され、集光レンズ7は光学ガラスからできている。そ
して集光レンズ6、7はR2面の平面において貼り合わせ
てある。ここで、レンズ6はプラスチックでできている
ので温度、湿度等の環境変動の影響を受け易く、従って
パワーはガラスのレンズ7に比べて小さく設定するのが
好適である。
X = (Y 2 / R 1 ) / {1+ (1-Y 2 / R 1 2) 1/2} + BY 4 + CY 6 X: an optical axis direction of the R 1 side each on R 1 surface as the origin vertex points distance Y: likewise the distance B = -2.49041 × 10 -8 C = 3.68498 × 10 -13 first embodiment of an optical axis and a direction perpendicular, the condenser lens 6 is formed of plastic, the condenser lens 7 is optically Made of glass. The condenser lens 6 and 7 are laminated in the plane of the R 2 side. Here, since the lens 6 is made of plastic, it is easily affected by environmental fluctuations such as temperature and humidity. Therefore, it is preferable to set the power to be smaller than that of the glass lens 7.

走査断面におけるプラスチックレンズ6とガラスレン
ズ7の焦点距離をf1、f2、副走査方向断面におけるレン
ズ6、7の焦点距離をf1′、f2′とした場合、 0≦|f2/f1|≦0.25、 0≦|f2′/f1′|≦0.4 の関係を満たすのが、環境変動に対して強い光学系を構
成する上で好適である。断面によってパワーの比の許容
範囲が異なるのは、一般的に、走査断面に対して副走査
方向断面の方が被走査媒体上の光ビームのスポット径を
大きく設定するのが、焦点深度が副走査方向断面の方が
深い為である。
When the focal lengths of the plastic lens 6 and the glass lens 7 in the scanning section are f 1 and f 2 , and the focal lengths of the lenses 6 and 7 in the sub-scanning direction section are f 1 ′ and f 2 ′, 0 ≦ | f 2 / It is preferable to satisfy the relations of f 1 | ≦ 0.25 and 0 ≦ | f 2 ′ / f 1 ′ | ≦ 0.4 in order to construct an optical system that is strong against environmental fluctuations. The reason that the allowable range of the power ratio differs depending on the cross-section is that, in general, setting the spot diameter of the light beam on the medium to be scanned larger in the sub-scanning cross-section than in the scanning cross-section results in a smaller depth of focus. This is because the cross section in the scanning direction is deeper.

貼り合わせ面は平面である方が製作上都合が良く、ま
た貼り合わせることでプラスチックレンズ6の形状の反
りも補正できる。
A flat bonding surface is more convenient for manufacturing, and the bonding can correct the warpage of the shape of the plastic lens 6.

この様に、非球面を含むレンズ6をモールド成形が容
易なプラスチックで形成し、このレンズ6を比較的大き
なパワーを持つガラスレンズ7に貼り合わせているの
で、光学性能を向上させつつ環境変動による影響を少な
くしている。
As described above, since the lens 6 including the aspherical surface is formed of plastic that is easy to mold and the lens 6 is bonded to the glass lens 7 having a relatively large power, the optical performance is improved while the optical performance is improved. The effect is reduced.

次に、第1実施例と基本構成は同じであるが、集光レ
ンズ6、7のディメンションが若干異なる第2実施例の
その各ディメンションを下記に示す。各記号の意味は第
1実施例と同じである。
Next, each dimension of the second embodiment, which has the same basic configuration as that of the first embodiment but slightly differs in the dimensions of the condenser lenses 6 and 7, is shown below. The meaning of each symbol is the same as in the first embodiment.

焦点距離 f=200 走査角ω/2=30゜ l=76.2 R1=883.44 D1=2 N1=1.51072 R1′=−73.34 R2=∞ D2=15 N2=1.78569 R2′=∞ R3=−176.68 D3=199.1 R3′=−36.08 但しR1面は非球面形状でその形状を下記に示す X=(Y2/R1)/{1+(1−Y2/R1 21/2}+BY4+CY6 B=−4.8355×10-8 C=3.3885×10-12 第2実施例でも第1実施例と同様な効果が奏せられ
る。
Focal length f = 200 Scan angle ω / 2 = 30 ゜ l = 76.2 R 1 = 883.44 D 1 = 2 N 1 = 1.51072 R 1 ′ = −73.34 R 2 = ∞ D 2 = 15 N 2 = 1.78569 R 2 ′ = ∞ R 3 = −176.68 D 3 = 199.1 R 3 ′ = −36.08 However, the R 1 surface is an aspherical surface and the shape is shown below. X = (Y 2 / R 1 ) / {1+ (1−Y 2 / R 1 2 ) 1/2 } + BY 4 + CY 6 B = −4.8355 × 10 −8 C = 3.3885 × 10 −12 The same effect as in the first embodiment can be obtained in the second embodiment.

次に、同じく第3実施例の集光レンズ6、7の各ディ
メンションを下記に示す。
Next, the dimensions of the condenser lenses 6 and 7 of the third embodiment are shown below.

焦点距離 f=136 走査角ω/2=45゜ l=42.5 R1=−282.89 D1=2 N1=1.51072 R1′=−39.10 R2=∞ D2=15 N2=1.78569 R2′=∞ R3=−87.262 D3=134.3 R3′=−23.21 但しR1面は非球面形状でその形状を下記に示す。Focal length f = 136 Scan angle ω / 2 = 45 ° l = 42.5 R 1 = −282.89 D 1 = 2 N 1 = 1.51072 R 1 ′ = −39.10 R 2 = ∞ D 2 = 15 N 2 = 1.78569 R 2 ′ = ∞ R 3 = -87.262 D 3 = 134.3 R 3 '= -23.21 However, the R 1 surface is an aspherical shape and the shape is shown below.

X=(Y2/R1)/{1+(1−Y2/R1 21/2}+BY4+CY6 B=−3.54908×10-8 C=−7.55265×10-12 第3図と第4図は結像光学系が複数の光学素子より構
成される第4実施例の構成を示す。第3図は走査断面の
様子を示し、第4図は副走査方向断面の様子を示す。
X = (Y 2 / R 1 ) / {1+ (1-Y 2 / R 1 2) 1/2} + BY 4 + CY 6 B = -3.54908 × 10 -8 C = -7.55265 × 10 -12 Figure 3 and FIG. 4 shows the configuration of a fourth embodiment in which the imaging optical system is composed of a plurality of optical elements. FIG. 3 shows a state of a scanning section, and FIG. 4 shows a state of a section in the sub-scanning direction.

この実施例では、半導体レーザー11から射出されコリ
メーターレンズ12、開口絞り13を通過した光ビームが回
転多面鏡15に平行光のままで入射し、平行光で反射して
結像レンズ16、17、18により集光されて被走査面19上に
結像される。
In this embodiment, a light beam emitted from a semiconductor laser 11 and passed through a collimator lens 12 and an aperture stop 13 enters a rotary polygon mirror 15 as parallel light, and is reflected by the parallel light to form imaging lenses 16 and 17. , 18 to form an image on the surface to be scanned 19.

レンズ16は球面レンズであり、レンズ17はプラスチッ
ク材料のトーリックレンズでありそしてレンズ18はガラ
スの球面レンズである。
Lens 16 is a spherical lens, lens 17 is a toric lens of plastic material and lens 18 is a glass spherical lens.

下に第4実施例の集光レンズ16、17、18の各ディメン
ションを示す。各記号の意味は、前述の実施例と同様
に、第3図と第4図に示す如く、偏向器15側より各面の
曲率半径をR1、R2、R3、R4、R5、面間隔をD1、D2、D3
D4、D5、レンズ16、17、18の屈折率をN1、N2、N3とし、
偏向器15の偏向反射点と第1面までの距離をlとする。
The dimensions of the condenser lenses 16, 17, and 18 of the fourth embodiment are shown below. The meaning of each symbol is as shown in FIGS. 3 and 4, as shown in FIGS. 3 and 4, where the radii of curvature of the respective surfaces are R 1 , R 2 , R 3 , R 4 , R 5 from the deflector 15 side. , The surface spacing is D 1 , D 2 , D 3 ,
The refractive indices of D 4 , D 5 and lenses 16, 17, 18 are N 1 , N 2 , N 3 ,
The distance between the deflecting reflection point of the deflector 15 and the first surface is represented by l.

焦点距離 f=115.0 走査角ω/2=52゜ l=9 R1=−29.786 D1=11.4 N1=1.51072 R2=−39.149 D2=1 R3=−379.186 D3=1 N2=1.48595 R3′=−353.88 R4=∞ D4=9 N3=1.63552 R5=−58.479 D5=131.437 ここでR3′は副走査方向断面の曲率半径であり、この
面はトーリック面であることを示す。R1、R2、R4、R5
面は回転対称な面である。
Focal length f = 115.0 Scan angle ω / 2 = 52 ゜ l = 9 R 1 = -29.786 D 1 = 11.4 N 1 = 1.51072 R 2 = -39.149 D 2 = 1 R 3 = -379.186 D 3 = 1 N 2 = 1.48595 R 3 '= -353.88 R 4 = ∞ D 4 = 9 N 3 = 1.63552 R 5 = -58.479 D 5 = 131.437 where R 3 ' is the radius of curvature of the section in the sub-scanning direction, and this surface is a toric surface. Indicates that there is. The planes of R 1 , R 2 , R 4 , and R 5 are rotationally symmetric.

[発明の効果] 以上説明した様に、本発明によれば、走査用光学系
に、非球面のモールド成形が容易な材質であるプラスチ
ックなどでできたレンズとガラスのレンズを貼り合わせ
たものを用い、プラスチックなどのレンズの非球面化に
よって光学性能が向上させられている。また、プラスチ
ック材などのレンズの弱点である環境変動によるピント
移動などを、ガラスレンズに大きなパワーを持たせるこ
とで影響を少なく出来る構成となっている。更に、貼り
合わせることにより、プラスチックなどのレンズの形状
の変形も同時に少なく出来る。
[Effects of the Invention] As described above, according to the present invention, a scanning optical system in which a lens made of plastic or the like, which is a material that can be easily molded with an aspheric surface, and a glass lens are bonded. The optical performance is improved by using an aspherical lens such as a plastic lens. In addition, the configuration is such that the influence of the focus shift due to environmental fluctuation, which is a weak point of a lens such as a plastic material, can be reduced by giving a large power to the glass lens. Further, by bonding, deformation of the shape of a lens such as plastic can be reduced at the same time.

こうして、光走査光学装置に上記光学素子を用いるこ
とにより、高性能でありつつ環境変動に比較的強く、更
に部品点数が少なくコンパクトで安価な装置を構成する
ことが可能になる。
In this way, by using the optical element in the optical scanning optical device, it is possible to configure a compact, inexpensive device that has high performance, is relatively resistant to environmental changes, and has a small number of components.

【図面の簡単な説明】 第1図は本発明の第1実施例の走査断面における構成を
示す図、第2図は同じく副走査方向断面における構成を
示す図、第3図は第4実施例の走査断面における構成を
示す図、第4図は第4実施例の副走査方向断面における
構成を示す図である。 1、11……半導体レーザー、2、12……コリメーターレ
ンズ、3、13……開口絞り、4……シリンドリカルレン
ズ、5、15……回転多面鏡、6、17……プラスチックレ
ンズ、7、18……ガラスレンズ、8、19……感光体
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a configuration in a scanning section of a first embodiment of the present invention, FIG. 2 is a diagram showing a configuration in a sub-scanning direction section, and FIG. 3 is a fourth embodiment. FIG. 4 is a diagram showing a configuration in a sub scanning direction of the fourth embodiment. 1, 11, a semiconductor laser, 2, 12, a collimator lens, 3, 13, an aperture stop, 4, a cylindrical lens, 5, 15, a rotating polygon mirror, 6, 17, a plastic lens, 7, 18 ... Glass lens, 8, 19 ... Photoconductor

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光源からの光ビームを結像光学系を介して
被走査媒体上に結像走査する光走査光学装置において、
前記結像光学系は異種の貼り合わせレンズを含むことを
特徴とする光走査光学装置。
1. An optical scanning optical apparatus which forms an image on a medium to be scanned with a light beam from a light source via an image forming optical system.
An optical scanning optical device, wherein the imaging optical system includes a different kind of bonded lens.
【請求項2】前記結像光学系は、光ビームを周期的に偏
向する偏向器により偏向走査された光ビームを被走査媒
体上に結像する請求項1記載の光走査光学装置
2. An optical scanning optical apparatus according to claim 1, wherein said imaging optical system forms an image on a medium to be scanned of a light beam deflected by a deflector for periodically deflecting the light beam.
【請求項3】前記異種の貼り合わせレンズはガラス材料
のレンズとプラスチック材料のレンズから成る請求項1
記載の光走査光学装置。
3. A lens according to claim 1, wherein said different kinds of bonded lenses comprise a lens made of a glass material and a lens made of a plastic material.
An optical scanning optical device according to claim 1.
【請求項4】前記ガラス材料のレンズのパワーがプラス
チック材料のレンズのパワーより大きい請求項3記載の
光走査光学装置。
4. The optical scanning optical device according to claim 3, wherein the power of the glass material lens is larger than the power of the plastic material lens.
【請求項5】前記プラスチック材料のレンズは非球面を
有する請求項3記載の光走査光学装置。
5. The optical scanning optical device according to claim 3, wherein the lens made of a plastic material has an aspherical surface.
JP26420189A 1989-10-09 1989-10-09 Optical scanning optical device Expired - Fee Related JP2850255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26420189A JP2850255B2 (en) 1989-10-09 1989-10-09 Optical scanning optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26420189A JP2850255B2 (en) 1989-10-09 1989-10-09 Optical scanning optical device

Publications (2)

Publication Number Publication Date
JPH03125113A JPH03125113A (en) 1991-05-28
JP2850255B2 true JP2850255B2 (en) 1999-01-27

Family

ID=17399892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26420189A Expired - Fee Related JP2850255B2 (en) 1989-10-09 1989-10-09 Optical scanning optical device

Country Status (1)

Country Link
JP (1) JP2850255B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4689805B2 (en) * 2000-09-28 2011-05-25 富士フイルム株式会社 Optical scanning device

Also Published As

Publication number Publication date
JPH03125113A (en) 1991-05-28

Similar Documents

Publication Publication Date Title
JPS5934512A (en) Optical scanning system with temperature compensation effect
KR100393874B1 (en) Photo Scanner and Image Reading Apparatus and Image Forming Apparatus using the Photo Scanner
KR100335624B1 (en) Laser beam scanning apparatus
JP2623147B2 (en) Optical system for light beam scanning
EP0813087B1 (en) Beam scanning apparatus
JP2850255B2 (en) Optical scanning optical device
JP2003107382A (en) Scanning optical system
JP3323354B2 (en) Optical scanning device
JPH07174998A (en) Scanning lens and optical scanner
JP2956169B2 (en) Scanning optical device
JPH11231235A (en) Optical scanner
JP3420439B2 (en) Optical scanning optical system and laser beam printer including the same
JP3320239B2 (en) Scanning optical device
JP3472205B2 (en) Optical scanning optical device and image forming apparatus using the same
KR100558328B1 (en) Gwangju Yarn Equipment
JP3452294B2 (en) Optical scanning lens, scanning imaging lens, and optical scanning device
JP3558837B2 (en) Scanning optical system and optical scanning device
JP3404204B2 (en) Optical scanning lens, scanning imaging lens, and optical scanning device
JP2602716B2 (en) Optical system for light beam scanning
JP3594274B2 (en) Optical scanning optical system and apparatus using this optical system
JPH07146437A (en) Light beam scanning optical system
JP3571808B2 (en) Optical scanning optical system and laser beam printer including the same
JP2730443B2 (en) Light beam scanning device
JP3507285B2 (en) Optical scanning device
JPH08327926A (en) Scanning optical device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees