JP2848003B2 - Method for recovering lead and zinc from copper converter dust leach residue - Google Patents

Method for recovering lead and zinc from copper converter dust leach residue

Info

Publication number
JP2848003B2
JP2848003B2 JP7207991A JP7207991A JP2848003B2 JP 2848003 B2 JP2848003 B2 JP 2848003B2 JP 7207991 A JP7207991 A JP 7207991A JP 7207991 A JP7207991 A JP 7207991A JP 2848003 B2 JP2848003 B2 JP 2848003B2
Authority
JP
Japan
Prior art keywords
lead
zinc
dust
residue
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7207991A
Other languages
Japanese (ja)
Other versions
JPH04285136A (en
Inventor
芳秋 森
浩二 続木
泰裕 次田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP7207991A priority Critical patent/JP2848003B2/en
Publication of JPH04285136A publication Critical patent/JPH04285136A/en
Application granted granted Critical
Publication of JP2848003B2 publication Critical patent/JP2848003B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、銅転炉工程において発
生するダストを浸出処理した後の残渣から鉛、亜鉛を回
収する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering lead and zinc from residues after leaching dust generated in a copper converter process.

【0002】[0002]

【従来の技術】銅製錬の転炉工程で発生するダストには
銅、鉛、亜鉛、カドミウムなどの有価金属が含まれてお
り、集塵機で回収されている。このダストを銅製錬の系
内で繰り返し処理すると、含有する成分のうち鉛、亜
鉛、ヒ素、ビスマス等が不純物として系内に濃縮し問題
を起こすことから、これを系外で処理し有価金属の回収
を行なうことが望ましい。その方法として、銅転炉ダス
トを水または硫酸で浸出し、銅、亜鉛、カドミウム、ヒ
素などの可溶性塩類を溶出せしめ、浸出残渣中に硫酸鉛
として濃縮される鉛を乾式処理によって回収する方法が
ある。しかしながら、この浸出残渣中には上記の浸出処
理をしてもなお銅及び亜鉛の一部、ビスマスのほとんど
が溶出せずに残留しているため、これらの金属と鉛の分
離は困難で複雑な工程を要していた。このため、この浸
出残渣からの鉛の回収には効率の良い経済的な方法がな
く、新たな製錬法の開発が望まれていた。
2. Description of the Related Art Dust generated in a converter process of copper smelting contains valuable metals such as copper, lead, zinc, and cadmium, and is collected by a dust collector. If this dust is repeatedly treated in a copper smelting system, lead, zinc, arsenic, bismuth, etc. of the contained components are concentrated in the system as impurities and cause problems. It is desirable to perform recovery. As a method, a method of leaching copper converter dust with water or sulfuric acid, eluting soluble salts such as copper, zinc, cadmium and arsenic, and recovering lead concentrated in the leaching residue as lead sulfate by a dry process. is there. However, even in the leaching residue, even after the leaching treatment described above, part of copper and zinc, and most of bismuth remain without being eluted, so that separation of these metals and lead is difficult and complicated. A process was required. Therefore, there is no efficient and economical method for recovering lead from the leach residue, and development of a new smelting method has been desired.

【0003】従来、この浸出残渣の処理方法としては、
電気炉や回転炉を用いた鉄置換法、および硫化鉛精鉱を
対象とする焼結−鉛溶鉱炉法にある程度調合して処理す
る方法の二法が広く用いられてきた。しかし、前者の方
法は多量の金属鉄を必要とし、浸出残渣にはヒ素も若干
残っているため、大量のマットやスパイスが生成し、こ
のマットやスパイスの処理が問題となるばかりでなくマ
ットやスパイスへの鉛のロスも大きく、経済的な製錬方
法ではない。また、後者の場合には、焼結工程での熱収
支や脱硫性の点から浸出残渣の調合比率を無制限に上げ
ることができず、更にこの方法は数十年を経たプロセス
とはいえ、焼結工程での非能率性や公害対策のためのコ
スト負担、着色硫酸の発生、溶鉱炉での高価なコークス
の使用等のために、このプロセス自体の見直しの気運が
高まってきている状況であり、多量の浸出残渣を今後と
もこの方法で処理することは合理的でない。
[0003] Conventionally, as a method of treating the leaching residue,
Two methods have been widely used, namely, an iron replacement method using an electric furnace or a rotary furnace, and a method in which a sintering-lead smelting furnace method for lead sulfide concentrate is prepared to some extent and treated. However, the former method requires a large amount of metallic iron, and some arsenic remains in the leaching residue, so that a large amount of mats and spices are generated. The loss of lead to spices is also high and is not an economical smelting method. In the latter case, the blending ratio of the leaching residue cannot be increased without limit due to the heat balance and desulfurization in the sintering process. Due to inefficiencies in the sintering process, cost burden for pollution control, generation of colored sulfuric acid, use of expensive coke in blast furnaces, etc., the trend of reviewing this process itself is increasing, It is not reasonable to treat large amounts of leach residue in this way in the future.

【0004】以上のように、この浸出残渣から直接粗鉛
を得るための効率的なプロセスはないので、浸出残渣を
還元焙焼し、一旦鉛、亜鉛のみを揮発させて回収し鉛、
亜鉛製錬炉であるISP炉の原料とすることが考えられ
る。(銅転炉ダストあるいはその浸出残渣は随伴する
銅、ビスマス等の不純物のためにそのままではISP炉
の原料とはできない。)しかし、浸出残渣の融点が90
0℃以下と低いため、鉛、亜鉛が揮発するに十分な温度
で焙焼すると浸出残渣は溶融し、これを還元しても鉄置
換法同様にマットやスパイスを生成し、これらの処理が
問題となるばかりか、鉛の揮発も不十分となる。
As described above, since there is no efficient process for directly obtaining crude lead from the leach residue, the leach residue is reduced and roasted, and only the lead and zinc are volatilized and recovered, and the lead and the zinc are recovered.
It can be considered as a raw material for an ISP furnace, which is a zinc smelting furnace. (The copper converter dust or the leach residue cannot be used as a raw material for the ISP furnace as it is due to accompanying impurities such as copper and bismuth.) However, the melting point of the leach residue is 90%.
Since it is low at 0 ° C or lower, leach residue melts when roasted at a temperature sufficient to volatilize lead and zinc, and even if this is reduced, mats and spices are generated similarly to the iron replacement method, and these treatments are problematic. In addition, lead volatilization becomes insufficient.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記のよう
な従来の問題点を解消することを目的としてなされたも
のであり、銅転炉ダストを水または硫酸で浸出し可溶性
塩類を溶出せしめた浸出残渣から、鉛及び亜鉛を効率良
く経済的に回収する方法を提供することを課題とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and is intended to elute copper converter dust with water or sulfuric acid to elute soluble salts. It is an object of the present invention to provide a method for efficiently and economically recovering lead and zinc from leached residue.

【0006】[0006]

【課題を解決するための手段】本発明は上記の課題を解
決するために、銅転炉ダストを水または硫酸で浸出し
銅、カドミウム、ヒ素の可溶性塩類を溶出せしめた浸出
残渣から鉛、亜鉛を回収する方法であって、鉄鋼ダスト
に内割で5重量%以下の前記浸出残渣を混合し、ロータ
リーキルンに装入して1050〜1150℃の温度で還
元焙焼することを特徴とする銅転炉ダスト浸出残渣から
の鉛、亜鉛の回収方法にある。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention solves the above-mentioned problem by leaching copper converter dust with water or sulfuric acid and extracting lead, zinc from leaching residue in which soluble salts of copper, cadmium and arsenic are eluted. Characterized in that iron dust is mixed with the leaching residue of not more than 5% by weight, charged into a rotary kiln, and reduced and roasted at a temperature of 1050 to 1150 ° C. The method for recovering lead and zinc from furnace dust leach residue.

【0007】[0007]

【作用】本発明において、鉄鋼ダストとは、製鉄所の高
炉、平電炉から発生し、鉛を2〜10重量%、亜鉛を5
〜30重量%含み、主成分が酸化鉄であるダストをい
う。この鉄鋼ダストに銅転炉ダストの浸出残渣を混合し
て還元焙焼することにより、浸出残渣中の鉛、亜鉛は鉄
鋼ダスト中の鉛、亜鉛とともに揮発回収される。
In the present invention, steel dust is generated from a blast furnace and a flat electric furnace of an ironworks, and contains 2 to 10% by weight of lead and 5% by weight of zinc.
Dust containing up to 30% by weight and whose main component is iron oxide. The leaching residue of the copper converter dust is mixed with the steel dust and reduced and roasted, whereby the lead and zinc in the leaching residue are volatilized and recovered together with the lead and zinc in the steel dust.

【0008】浸出残渣の混合率を内割で5重量%以下と
するのは、浸出残渣の融点が低く浸出残渣は焙焼温度に
おいて溶融するため、混合率が5重量%を越えるとロー
タリーキルン内壁ヘの付着物を増加させ操業の妨げにな
る危険があるからである。焙焼温度を1050〜115
0℃とするのは、1050℃未満の温度では鉛の揮発が
十分でなく、また1150℃を越える温度では、浸出残
渣の混合率を5重量%以下としてもなおロータリーキル
ン内壁付着物の生成が促進される懸念があり、また焙焼
温度を1150℃以上としても鉛、亜鉛の揮発率の向上
は望めず、且つISP炉の原料として好ましくないビス
マスの揮発が増加するからである。
The reason why the mixing ratio of the leaching residue is set to 5% by weight or less is that the melting point of the leaching residue is low and the leaching residue is melted at the roasting temperature. This is because there is a risk of increasing the amount of deposits and hindering the operation. Roasting temperature from 1050 to 115
The reason why the temperature is set to 0 ° C. is that at a temperature lower than 1050 ° C., volatilization of lead is insufficient, and at a temperature higher than 1150 ° C., the formation of deposits on the inner wall of the rotary kiln is promoted even if the mixing ratio of leaching residue is 5% by weight or less. Also, even if the roasting temperature is set to 1150 ° C. or more, it is not possible to expect an improvement in the volatility of lead and zinc, and the volatilization of bismuth which is not preferable as a raw material of the ISP furnace increases.

【0009】本発明の方法によると、浸出残渣中の鉛は
主としてPbCl2,PbSとして揮発する。図1に鉛
の化合物の蒸気圧と温度との関係を示す。1000℃程
度の低温ではPbCl2 としての揮発が主であり、高温
になるとPbSとしての揮発も増える。浸出残渣中の鉛
は硫酸鉛(PbSO4 )の形態で存在するが、まずCO
ガスにより硫化鉛(PbS)に還元される。鉛の揮発は
硫化鉛の形態でも起りうるが、ここにNaClなどの塩
素源が存在すると鉛は塩化され、さらに高い蒸気圧を示
す塩化鉛となって揮発が進む。鉄鋼ダスト中には元来数
%の塩素が含まれており、近年この塩素品位は高くなる
傾向にある。鉄鋼ダスト中の塩素は塩化鉛としても存在
しているが、PbCl2 当量の数倍の塩素が含まれてお
り、残部の塩素は主としてNaCl,KClとして存在
すると考えられる。浸出残渣を鉄鋼ダストに混入して還
元処理するとこのNaCl,KClが浸出残渣中の鉛の
揮発促進剤として働くので、本発明の方法はこの点から
も合理的な方法と言える。
According to the method of the present invention, the lead in the leach residue volatilizes mainly as PbCl 2 and PbS. FIG. 1 shows the relationship between the vapor pressure of the lead compound and the temperature. At a low temperature of about 1000 ° C., volatilization as PbCl 2 is mainly performed, and at a high temperature, volatilization as PbS increases. Lead in the leaching residue is present in the form of lead sulfate (PbSO 4 ).
It is reduced to lead sulfide (PbS) by the gas. Although the volatilization of lead can occur in the form of lead sulfide, if a chlorine source such as NaCl is present, lead is salified, and volatilization proceeds as lead chloride having a higher vapor pressure. Steel dust originally contains several percent of chlorine, and in recent years, the chlorine grade tends to be high. Although chlorine in iron and steel dust also exists as lead chloride, it contains chlorine several times as large as PbCl 2 equivalent, and the remaining chlorine is considered to exist mainly as NaCl and KCl. When the leaching residue is mixed with steel dust and subjected to a reduction treatment, the NaCl and KCl function as a volatilization promoter for lead in the leaching residue. Therefore, the method of the present invention can be said to be a reasonable method from this point as well.

【0010】上記のようにして鉛、亜鉛を揮発させ、
鉄、銅、およびビスマスの大部分は、焼成されてロータ
リーキルンから排出される還元ペレット中に残留させ
る。揮発した鉛、亜鉛は集塵機で粗酸化亜鉛として補集
され、湿式処理によってハロゲン元素等を除去した後、
乾燥、粒状化されてISP炉の原料として使用できる。
[0010] Lead and zinc are volatilized as described above,
Most of the iron, copper, and bismuth remain in the reduced pellets that are calcined and discharged from the rotary kiln. Volatilized lead and zinc are collected as coarse zinc oxide by a dust collector, and after removing halogen elements etc. by wet processing,
It can be dried and granulated and used as a raw material for an ISP furnace.

【0011】[0011]

【実施例】実施例1 鉄鋼ダストと浸出残渣(銅転炉ダストを水、硫酸、硫酸
第二鉄溶液で3段階で浸出処理した残渣)を3重量%、
5重量%、10重量%の比率で混合して粒径約8mm径
のペレットとし、乾燥後のペレット約100gをCO8
3%、CO217%のガス流中で温度を1000〜12
00℃の範囲で水準を変えて、4時間保持した。鉄鋼ダ
ストおよび浸出残渣の組成を表1に、また試験結果を表
2に示す。
EXAMPLE 1 3% by weight of steel dust and leaching residue (residue of leaching copper converter dust in three stages with water, sulfuric acid and ferric sulfate solution)
5% by weight and 10% by weight are mixed to form pellets having a particle diameter of about 8 mm, and about 100 g of the dried pellets is CO8
Temperature of 1000 to 12 in a gas stream of 3%, CO 2 17%
The temperature was changed in the range of 00 ° C. and maintained for 4 hours. Table 1 shows the composition of steel dust and leach residue, and Table 2 shows the test results.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】表2より以下のことが分かる。Table 2 shows the following.

【0015】(1)十分な鉛の揮発率を得るためには、
浸出残渣混合率5%では、1050℃以上が必要であ
る。(2)1150℃以上ではペレットの溶解が起る。
(3)浸出残渣の混合率を10%とすると、1100℃
でもペレットの溶解が顕著となる。
(1) In order to obtain a sufficient lead volatility,
At a leaching residue mixing ratio of 5%, 1050 ° C. or higher is required. (2) Above 1150 ° C., the pellets dissolve.
(3) Assuming that the mixing ratio of the leaching residue is 10%, 1100 ° C.
However, the dissolution of the pellet becomes remarkable.

【0016】したがって、浸出残渣の混合率5重量%以
下、焙焼温度1050℃〜1150℃が適正な処理条件
であることが分かる。
Therefore, it can be seen that the mixing conditions of the leaching residue are 5% by weight or less and the roasting temperature is 1050 ° C. to 1150 ° C., which are suitable processing conditions.

【0017】実施例2 レンガ内径3m、長さ50m、傾斜3/100、回転数
0.8rpmのロータリーキルンを用い、表3の組成の
鉄鋼ダスト及び銅転炉ダストの浸出残渣を表4に示す操
業条件で処理した。
Example 2 Using a rotary kiln having a brick inner diameter of 3 m, a length of 50 m, an inclination of 3/100, and a rotation speed of 0.8 rpm, leaching residues of steel dust and copper converter dust having the compositions shown in Table 3 are shown in Table 4. Processed under conditions.

【0018】[0018]

【表3】 [Table 3]

【0019】[0019]

【表4】 [Table 4]

【0020】操業は同一条件で3日間続けられ、表4に
示す操業結果を得た。この時の炉内原料層の温度分布を
図2に示す。すなわち、浸出残渣の混合率3.9重量
%、加熱温度1100℃で還元焙焼を行ない、Pb、Z
nの高い揮発率を得、Biの揮発は抑制されている。な
お、この間、キルンのシェル温度の低下はみられず、炉
内付着物は生成していなかった。
The operation was continued for 3 days under the same conditions, and the operation results shown in Table 4 were obtained. FIG. 2 shows the temperature distribution of the raw material layer in the furnace at this time. That is, reduction roasting was performed at a mixing ratio of leaching residue of 3.9% by weight and a heating temperature of 1100 ° C., and Pb, Z
A high volatility of n is obtained, and the volatilization of Bi is suppressed. During this period, no decrease in the shell temperature of the kiln was observed, and no in-furnace deposits were generated.

【0021】[0021]

【発明の効果】以上に詳細に説明したように、本発明の
銅転炉ダスト浸出残渣からの鉛、亜鉛の回収方法によれ
ば、銅転炉ダストを水または硫酸で浸出した浸出残渣か
ら、鉛、亜鉛を効率的に揮発回収することができる。ま
た、揮発回収された鉛、亜鉛の酸化物はビスマスをあま
り含まないので、鉛・亜鉛製錬炉(ISP炉)の原料と
して適している。
As described above in detail, according to the method for recovering lead and zinc from the copper converter dust leaching residue of the present invention, the copper converter dust is leached from water or sulfuric acid leaching residue. Lead and zinc can be efficiently volatilized and recovered. Further, since the volatile and recovered oxides of lead and zinc do not contain much bismuth, they are suitable as raw materials for a lead-zinc smelting furnace (ISP furnace).

【図面の簡単な説明】[Brief description of the drawings]

【図1】鉛の化合物の蒸気圧と温度との関係を示す図で
ある。
FIG. 1 is a diagram showing the relationship between the vapor pressure of a lead compound and temperature.

【図2】本発明の実施例のロータリーキルン炉内原料層
の温度分布を示す図である。
FIG. 2 is a diagram showing a temperature distribution of a raw material layer in a rotary kiln furnace according to an example of the present invention.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 銅転炉ダストを水または硫酸で浸出し、
銅、カドミウム、ヒ素の可溶性塩類を溶出せしめた浸出
残渣から鉛、亜鉛を回収する方法であって、鉄鋼ダスト
に内割で5重量%以下の前記浸出残渣を混合し、ロータ
リーキルンに装入して1050〜1150℃の温度で還
元焙焼することを特徴とする銅転炉ダスト浸出残渣から
の鉛、亜鉛の回収方法。
1. Leaching copper converter dust with water or sulfuric acid,
This is a method of recovering lead and zinc from a leaching residue in which soluble salts of copper, cadmium and arsenic are eluted, wherein 5% by weight or less of the leaching residue is mixed with steel dust and charged into a rotary kiln. A method for recovering lead and zinc from a copper converter dust leaching residue, comprising reducing and roasting at a temperature of 1,050 to 1,150 ° C.
JP7207991A 1991-03-13 1991-03-13 Method for recovering lead and zinc from copper converter dust leach residue Expired - Lifetime JP2848003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7207991A JP2848003B2 (en) 1991-03-13 1991-03-13 Method for recovering lead and zinc from copper converter dust leach residue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7207991A JP2848003B2 (en) 1991-03-13 1991-03-13 Method for recovering lead and zinc from copper converter dust leach residue

Publications (2)

Publication Number Publication Date
JPH04285136A JPH04285136A (en) 1992-10-09
JP2848003B2 true JP2848003B2 (en) 1999-01-20

Family

ID=13479046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7207991A Expired - Lifetime JP2848003B2 (en) 1991-03-13 1991-03-13 Method for recovering lead and zinc from copper converter dust leach residue

Country Status (1)

Country Link
JP (1) JP2848003B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100368339B1 (en) * 2001-01-16 2003-01-24 최익원 Method for treating metal dust obtained in condenser-preparing process
JP5862305B2 (en) * 2012-01-06 2016-02-16 住友金属鉱山株式会社 Smoke ash treatment method
CN115232973B (en) * 2022-07-27 2024-05-07 修水县德瑞科技有限公司 Device for improving leaching rate of copper-zinc ash and improving method thereof

Also Published As

Publication number Publication date
JPH04285136A (en) 1992-10-09

Similar Documents

Publication Publication Date Title
JP5336472B2 (en) Recycling method for high zinc and sulfate content residues
JP2022507413A (en) Process for Lithium Recovery
EP1641948B1 (en) Recovery of non-ferrous metals from zinc residues
JPH11310832A (en) Treatement of metal oxide of steel making waste
CN101341265A (en) Separation of metal values in zinc leaching residues
USRE29598E (en) Method for recovering vanadium-values from vanadium-bearing iron ores and iron ore concentrates
JP2848003B2 (en) Method for recovering lead and zinc from copper converter dust leach residue
JP2006307268A (en) Method for collecting dust formed in slag fuming
JP7151404B2 (en) Method for producing zinc oxide ore
CN106119546A (en) A kind of method by rotary kiln baking Second-rate zinc oxide powder concentration of valuable metals
JP2012021176A (en) Method for producing metallic lead
JPS6148999B2 (en)
CN206986256U (en) A kind of system for handling utilising zinc containing waste residue
JPS5929659B2 (en) Indium separation method
US1238279A (en) Process of treating substances carrying sulfur and metals.
US4891061A (en) Process for treating speiss
JP2003147450A (en) Method of producing rude zinc oxide powder
JPS63117911A (en) Method and device for producing zinc white from steel making flue dust
CN1012647B (en) Method for recovering valuable metal content of contaminated copper raw material
US3689249A (en) Method of pelletizing using copper-containing siliceous waste materials
CN107326189A (en) A kind of system and method for handling utilising zinc containing waste residue
JP2008261005A (en) Method for reduction-burning steel dust
JP2003342649A (en) Process for operating rotary kiln used for reducing iron and steel dust
JP2003003217A (en) Method for treating steel dust containing chlorine and fluorine
CN107099668B (en) A kind of alkalescence antimony-containing solution deep removal copper, the method for lead