JP2841323B2 - Method for producing methacrolein - Google Patents

Method for producing methacrolein

Info

Publication number
JP2841323B2
JP2841323B2 JP2146296A JP14629690A JP2841323B2 JP 2841323 B2 JP2841323 B2 JP 2841323B2 JP 2146296 A JP2146296 A JP 2146296A JP 14629690 A JP14629690 A JP 14629690A JP 2841323 B2 JP2841323 B2 JP 2841323B2
Authority
JP
Japan
Prior art keywords
catalyst
silica
gas
methacrolein
isobutylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2146296A
Other languages
Japanese (ja)
Other versions
JPH0441453A (en
Inventor
時男 永山
忠敏 本多
伸彦 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15404472&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2841323(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2146296A priority Critical patent/JP2841323B2/en
Priority to KR1019910009285A priority patent/KR940002982B1/en
Priority to DE69109746T priority patent/DE69109746T2/en
Priority to EP91305074A priority patent/EP0460932B1/en
Priority to US07/711,032 priority patent/US5144090A/en
Publication of JPH0441453A publication Critical patent/JPH0441453A/en
Application granted granted Critical
Publication of JP2841323B2 publication Critical patent/JP2841323B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はイソブチレン又は三級ブタノールを分子状酸
素により気相接触酸化してメタクロレインを製造する方
法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing methacrolein by gas phase catalytic oxidation of isobutylene or tertiary butanol with molecular oxygen.

(従来の技術) イソブチレン又は三級ブタノールを分子状酸素により
気相接触酸化してメタクロレインを製造する際に用いら
れる触媒に関して、従来から数多くの提案がなされてい
る。しかし、触媒活性、メタクロレイン選択性、触媒の
安定性、触媒寿命などの触媒性能の点で従来提案の触媒
はまだ十分とはいえず、その改良が望まれていた。
(Prior Art) Many proposals have been made on catalysts used for producing methacrolein by subjecting isobutylene or tertiary butanol to gas phase catalytic oxidation with molecular oxygen. However, conventionally proposed catalysts are not yet satisfactory in terms of catalytic performance such as catalytic activity, methacrolein selectivity, catalyst stability, and catalyst life, and improvement thereof has been desired.

(発明が解決しようとする課題) 本発明の目的は、触媒活性、メタクロレイン選択性、
触媒の安定性に優れた触媒を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a catalyst activity, methacrolein selectivity,
An object of the present invention is to provide a catalyst having excellent catalyst stability.

(課題を解決するための手段) 本発明者らは、イソブチレン又は三級ブタノールを分
子状酸素により気相接触酸化してメタクロレインを製造
する際に用いられる触媒、特にMo、Bi、Feを必須成分と
して含有し、且つNi、Coの中から選ばれる1種以上の元
素、およびK、Rb、Cs、Tlの中から選ばれる1種以上の
元素を必須成分として含有する触媒について、活性、メ
タクロレイン選択性、安定性に優れた触媒を開発すべ
く、触媒成分、組成、調製法について鋭意検討を進めた
結果、これら成分の他にシリカを必須成分として含有
し、且つシリカの含有量がある限られた狭い範囲にあ
り、しかも触媒調製時の焼成温度を特定の範囲とするこ
とで、得られた触媒の活性、メタクロレイン選択性、安
定性が大きく向上することを見出し本発明の方法を完成
させるに至った。
(Means for Solving the Problems) The present inventors require a catalyst used for producing methacrolein by gas-phase catalytic oxidation of isobutylene or tertiary butanol with molecular oxygen, particularly Mo, Bi, and Fe. For the catalyst containing as an essential component and at least one element selected from Ni and Co and one or more element selected from K, Rb, Cs and Tl as active components, As a result of intensive studies on catalyst components, compositions, and preparation methods in order to develop catalysts with excellent rain selectivity and stability, silica is contained as an essential component in addition to these components, and there is a silica content. It is found that the activity, methacrolein selectivity and stability of the obtained catalyst are greatly improved by setting the calcination temperature in the catalyst preparation to a specific range within a limited narrow range. Complete It led to the cell.

即ち本発明の方法は、一般式 Moa Bib Fec Xd Ye Zf Og [式中、XはNi、Coの中から選ばれる1種以上の元素、
YはK、Rb、Cs、Tlの中から選ばれる1種以上の元素、
ZはBe、Mg、S、Ca、Sr、Ba、Te、Se、Ce、Ge、Mn、Z
n、Cr、Ag、Sb、Pb、As、B、P、Nb、Cu、W、Cd、S
n、Al、Zr、Tiの中から選ばれる1種以上の元素を表わ
す。a、b、c、d、e、f、gは各元素の原子比率を
表わし、a=12のとき、b=0.1〜10、c=0.1〜20、d
=2〜20、e=0.01〜2、f=0〜4であり、gは前記
各成分の原子価を満足するに必要な酸素の原子数であ
る。]で示される組成物85〜95重量%と5〜15重量%の
シリカから成り、500℃〜650℃の温度範囲で焼成した触
媒の存在下に、イソブチレン又は三級ブタノールを分子
状酸素を用いて気相接触酸化することを特徴とするメタ
クロレインの製造方法である。
That is, the method of the present invention has a general formula of Moa Bib Fec Xd Ye Zf Og wherein X is at least one element selected from Ni and Co,
Y is one or more elements selected from K, Rb, Cs, and Tl;
Z is Be, Mg, S, Ca, Sr, Ba, Te, Se, Ce, Ge, Mn, Z
n, Cr, Ag, Sb, Pb, As, B, P, Nb, Cu, W, Cd, S
Represents one or more elements selected from n, Al, Zr, and Ti. a, b, c, d, e, f, and g represent the atomic ratio of each element. When a = 12, b = 0.1-10, c = 0.1-20, d
= 2 to 20, e = 0.01 to 2, f = 0 to 4, and g is the number of oxygen atoms necessary to satisfy the valence of each component. Isobutylene or tertiary butanol using molecular oxygen in the presence of a catalyst consisting of 85 to 95% by weight and 5 to 15% by weight of silica and calcined at a temperature in the range of 500 ° C to 650 ° C. And producing a methacrolein by gas phase catalytic oxidation.

本発明の効果を得るには、触媒中のシリカの含有量は
極めて限定的であり、焼成温度も限定される。
In order to obtain the effects of the present invention, the content of silica in the catalyst is extremely limited, and the firing temperature is also limited.

シリカの含有量が5重量%未満の場合、500〜650℃の
温度範囲で焼成した触媒は比較例1から明らかなよう
に、活性、メタクロレイン選択性が大きく低下する。50
0℃以下の焼成した触媒は比較例2から明らかなよう
に、活性、選択性は一定の水準にあるものの、触媒の安
定性に問題がある。
When the content of silica is less than 5% by weight, the catalyst calcined in the temperature range of 500 to 650 ° C. has a significant decrease in activity and methacrolein selectivity, as is apparent from Comparative Example 1. 50
As is apparent from Comparative Example 2, the catalyst calcined at 0 ° C. or lower has a certain level of activity and selectivity, but has a problem in the stability of the catalyst.

シリカの含有量が15重量%を越えた触媒は、比較例3,
4から明らかなように、安定性には問題がないものの、
メタクロレイン選択性の低下がみられ、さらにシリカの
含有量が多くなると、メタクロレイン選択性の低下のみ
ならず、活性の低下も大きくなる傾向が認められる。
The catalyst having a silica content of more than 15% by weight was obtained in Comparative Example 3,
As is clear from 4, although there is no problem with stability,
A decrease in methacrolein selectivity is observed, and when the content of silica is further increased, not only the selectivity for methacrolein but also the activity tends to decrease.

焼成温度が650℃を越えると、いずれの触媒も、活
性、メタクロレイン選択性の低下がみられる。
When the calcination temperature exceeds 650 ° C., the activity and methacrolein selectivity of all the catalysts are reduced.

本発明の方法で使用する触媒は、この分野で通常用い
られる公知の方法、例えば次のような方法で調製するこ
とができる。
The catalyst used in the method of the present invention can be prepared by a known method usually used in this field, for example, the following method.

適当なモリブデン酸塩例えばモリブデン酸アンモンを
純水に加熱溶解し、K、Rb、CsおよびT1から選ばれる少
なくとも一種の塩を加え、シリカゾルを加え、更に水溶
液のFe、Bi、Coおよび/またはNiの化合物を加え、得ら
れる泥状懸濁液を乾燥し、仮焼し、必要に応じて成形
し、500〜650℃の温度範囲で1〜20時間程度焼成する。
本発明の触媒に必要に応じてZ成分としてBe、Mg、S、
Ca、Sr、Ba、Te、Se、Ce、Ge、Mn、Zn、Cr、Ag、Sb、P
b、As、B、P、Nb、Cu、W、Cd、Sn、Al、Zr、Tiの中
から選ばれる1種以上の元素の化合物を加えることがで
きる。MoとZ成分の原子比率は12:0〜12:4である。
A suitable molybdate such as ammonium molybdate is dissolved in pure water by heating, and at least one salt selected from K, Rb, Cs and T1 is added, silica sol is added, and an aqueous solution of Fe, Bi, Co and / or Ni is added. And the resulting muddy suspension is dried, calcined, molded if necessary, and calcined at a temperature in the range of 500 to 650 ° C. for about 1 to 20 hours.
If necessary, the catalyst of the present invention may contain Be, Mg, S,
Ca, Sr, Ba, Te, Se, Ce, Ge, Mn, Zn, Cr, Ag, Sb, P
A compound of at least one element selected from b, As, B, P, Nb, Cu, W, Cd, Sn, Al, Zr, and Ti can be added. The atomic ratio of Mo to Z components is 12: 0 to 12: 4.

本発明の触媒の原料は、触媒調製過程で酸化物の形に
分解されうる化合物が望ましい。そのような化合物とし
ては、例えば硝酸塩、アンモニウム塩、有機酸塩、水酸
化物、酸化物、金属酸、金属酸アンモニウム塩などであ
る。
The starting material for the catalyst of the present invention is preferably a compound that can be decomposed into an oxide during the catalyst preparation process. Such compounds include, for example, nitrates, ammonium salts, organic acid salts, hydroxides, oxides, metal acids, ammonium metal salts and the like.

シリカの原料としては、シリカゾル、シリカゲル、珪
酸エステル、珪酸塩などが用いられる。
As a raw material of silica, silica sol, silica gel, silicate ester, silicate and the like are used.

触媒は粒状または成形体として固定床で使用される
が、移動床または流動床にも使用できる。
The catalyst is used in fixed beds as granules or shaped bodies, but can also be used in moving or fluidized beds.

本発明による接触気相酸化反応は原料ガス組成物とし
て1〜10容量%のイソブチレンまたは三級ブタノール、
3〜20容量%の分子状酸素および70〜90容量%の希釈ガ
スからなる混合ガスを、前記した触媒上に250〜450℃の
温度範囲および常圧〜10気圧の圧力下、空間速度300〜5
000/hrで導入することで実施される。
The catalytic gas-phase oxidation reaction according to the present invention comprises 1 to 10% by volume of isobutylene or tertiary butanol as a raw material gas composition.
A mixed gas consisting of 3 to 20% by volume of molecular oxygen and 70 to 90% by volume of a diluent gas is put on the above-mentioned catalyst in a temperature range of 250 to 450 ° C. and a pressure of normal pressure to 10 atm. Five
It is implemented by introducing at 000 / hr.

分子状酸素としては通常空気が使用されるが、純酸素
を使用してもよい。
Air is usually used as molecular oxygen, but pure oxygen may be used.

希釈ガスとしては窒素、炭酸ガスなどの不活性ガスが
使用される。反応ガスに含まれる非凝縮性ガスの一部を
循環して希釈ガスとして使用してもよい。
An inert gas such as nitrogen or carbon dioxide is used as the diluent gas. A part of the non-condensable gas contained in the reaction gas may be circulated and used as a diluent gas.

希釈ガスとして水蒸気を併せて使用することが活性、
選択性を高める上で好ましい。その場合、原料ガス中の
水蒸気は通常60容量%まで添加される。
It is active to use water vapor as a diluent gas,
It is preferable to increase selectivity. In that case, the water vapor in the source gas is usually added up to 60% by volume.

(実施例) 実施例および比較例によって本発明をさらに詳細に説
明する。= 実施例および比較例中の転化率、選択率は次の通り定
義される。
(Examples) The present invention will be described in more detail with reference to Examples and Comparative Examples. = Conversion and selectivity in Examples and Comparative Examples are defined as follows.

ここで、i−C4′はイソブチレン、TBAは三級ブタノ
ールである。
Here, i-C4 'is isobutylene, and TBA is tertiary butanol.

実施例1 水1200mlを加熱撹拌しつつ、モリブデン酸アンモン12
7.2g、次いで硝酸セシウム4.3gを溶解し、更に20wt%濃
度のシリカゾル111gを加えA液とした。水180mlに硝酸
コバルト139.6g、硝酸第二鉄70.20gを溶解しB液とし
た。60%硝酸15mlと水150mlとからなる硝酸水溶液に硝
酸ビスマス57.14gを溶解しC液とした。
Example 1 While heating and stirring 1200 ml of water, ammonium molybdate 12
7.2 g and then 4.3 g of cesium nitrate were dissolved, and 111 g of silica sol having a concentration of 20 wt% was further added to prepare solution A. A liquid B was prepared by dissolving 139.6 g of cobalt nitrate and 70.20 g of ferric nitrate in 180 ml of water. 57.14 g of bismuth nitrate was dissolved in an aqueous nitric acid solution consisting of 15 ml of 60% nitric acid and 150 ml of water to obtain a liquid C.

A液にB液、C液を順次滴下混合し、得られたスラリ
ー溶液を噴霧乾燥し、仮焼し、直径および高さが共に5m
mの円柱状に成形し、550℃で10時間空気中で焼成して、
Mo/Bi/Fe/Co/Cs原子比が12/2.0/3.0/8.0/0.4なる酸化物
の混合物90重量%と10重量%のシリカとからなる触媒を
得た。
Solution B and Solution C were added dropwise to Solution A in order, and the resulting slurry solution was spray-dried and calcined, and both the diameter and height were 5 m.
m, and fired in air at 550 ° C for 10 hours.
A catalyst comprising 90% by weight of a mixture of oxides having an Mo / Bi / Fe / Co / Cs atomic ratio of 12 / 2.0 / 3.0 / 8.0 / 0.4 and 10% by weight of silica was obtained.

得られた触媒40mlを3/4インチの鋼鉄製反応管に充填
し、イソブチレン6容量%、酸素12容量%、水蒸気15容
量%、残り67容量%が窒素という原料ガス組成、反応器
バス温度350℃、空間速度1000/hrという標準条件で反応
を行い、触媒の初期性能を評価した。
40 ml of the obtained catalyst was charged into a 3/4 inch steel reaction tube, and a raw material gas composition of 6% by volume of isobutylene, 12% by volume of oxygen, 15% by volume of steam, and the remaining 67% by volume of nitrogen, and a reactor bath temperature of 350% were used. The reaction was carried out under standard conditions of 1000C and space velocity of 1000 / hr, and the initial performance of the catalyst was evaluated.

初期性能評価後、イソブチレン10容量%、酸素25容量
%、水蒸気20容量%、残り45容量%が窒素という原料ガ
ス組成、反応器バス温度420℃、空間速度30000/hrとい
う強制劣化条件で2日間反応を行った後、標準条件に戻
して反応を行い、触媒の安定性を評価した。
After initial performance evaluation, 2 days under the forced gas degradation conditions of 10% by volume of isobutylene, 25% by volume of oxygen, 20% by volume of steam, and the remaining 45% by volume of nitrogen as raw material gas, reactor bath temperature 420 ° C, space velocity 30000 / hr After the reaction, the reaction was returned to the standard conditions, and the stability of the catalyst was evaluated.

評価結果を表1に示した。 Table 1 shows the evaluation results.

実施例2〜5および比較例1〜8 表1に示した原子比の酸化物の混合物とシリカからな
る触媒を実施例1と同様の方法で調製した。但し、焼成
温度は表1の温度と同一とした。
Examples 2 to 5 and Comparative Examples 1 to 8 A catalyst comprising silica and a mixture of oxides having the atomic ratios shown in Table 1 was prepared in the same manner as in Example 1. However, the firing temperature was the same as the temperature in Table 1.

得られた触媒の性能を実施例1と同様の方法で評価し
た。結果を表1に示した。
The performance of the obtained catalyst was evaluated in the same manner as in Example 1. The results are shown in Table 1.

(発明の効果) シリカの含有量が5重量%未満の場合、500〜650℃の
温度範囲で焼成した触媒は初期性能においても、活性、
メタクロレイン選択性は低かった(実施例1と比較例
1)。
(Effect of the Invention) When the content of silica is less than 5% by weight, the catalyst calcined in a temperature range of 500 to 650 ° C has an activity,
The methacrolein selectivity was low (Example 1 and Comparative Example 1).

500℃以下で焼成した触媒は初期性能は一定の水準に
あるものの、触媒の安定性に問題があった(比較例
2)。
The catalyst calcined at 500 ° C. or lower had a certain level of initial performance, but had a problem in the stability of the catalyst (Comparative Example 2).

シリカの含有量が15重量%を越えた触媒は、安定性に
は問題がないものの、初期性能においてメタクロレイン
選択性が低かった(比較例3)。
The catalyst having a silica content of more than 15% by weight had no problem in stability, but had low methacrolein selectivity in the initial performance (Comparative Example 3).

さらにシリカの含有量が多くなると、メタクロレイン
選択性の低下のみならず、活性の低下も大きくなった
(比較例4)。
When the silica content was further increased, not only did the selectivity for methacrolein decrease, but also the decrease in activity increased (Comparative Example 4).

焼成温度が650℃を越えると、いずれの触媒も、活
性、メタクロレイン選択性の低下がみられた(比較例5
〜8)。
When the calcination temperature exceeded 650 ° C., the activity and methacrolein selectivity of all the catalysts were reduced (Comparative Example 5).
To 8).

それに対して、シリカの含有量が5〜15重量%の範囲
で、しかも、500〜650℃の温度範囲で焼成した触媒が初
期性能においても、安定性に関しても特異的に選れてい
た(実施例1〜5)。
On the other hand, catalysts calcined at a silica content in the range of 5 to 15% by weight and at a temperature in the range of 500 to 650 ° C. were specifically selected for both initial performance and stability (implementation). Examples 1-5).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C07C 47/22 C07C 47/22 J // C07B 61/00 300 C07B 61/00 300 (58)調査した分野(Int.Cl.6,DB名) C07C 47/22 C07C 45/33 - 45/35 B01J 23/88 B01J 27/30 C07B 61/00 CA(STN)──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI C07C 47/22 C07C 47/22 J // C07B 61/00 300 C07B 61/00 300 (58) Fields surveyed (Int. Cl. 6 , DB name) C07C 47/22 C07C 45/33-45/35 B01J 23/88 B01J 27/30 C07B 61/00 CA (STN)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】イソブチレン又は三級ブタノールを分子状
酸素を用いて気相接触酸化してメタクロレインを製造す
るに際し、一般式 Moa Bib Fec Xd Ye Zf Og [式中、XはNi、Coの中から選ばれる1種以上の元素、
YはK、Rb、Cs、Tlの中から選ばれる1種以上の元素、
ZはBe、Mg、S、Ca、Sr、Ba、Te、Se、Ce、Ge、Mn、Z
n、Cr、Ag、Sb、Pb、As、B、P、Nb、Cu、W、Cd、S
n、Al、Zr、Tiの中から選ばれる1種以上の元素を表わ
す。a、b、c、d、e、f、gは各元素の原子比率を
表わし、a=12のとき、b=0.1〜10、c=0.1〜20、d
=2〜20、e=0.01〜2、f=0〜4であり、gは前記
各成分の原子価を満足するに必要な酸素の原子数であ
る。]で示される組成物85〜95重量%と5〜15重量%の
シリカから成り、500℃〜650℃の温度範囲で焼成した触
媒の存在下に、イソブチレン又は三級ブタノールを分子
状酸素を用いて気相接触酸化することを特徴とするメタ
クロレインの製造方法。
(1) When producing methacrolein by subjecting isobutylene or tertiary butanol to gas-phase catalytic oxidation using molecular oxygen, a general formula Moa Bib Fec Xd Ye Zf Og [where X is Ni or Co At least one element selected from the group consisting of:
Y is one or more elements selected from K, Rb, Cs, and Tl;
Z is Be, Mg, S, Ca, Sr, Ba, Te, Se, Ce, Ge, Mn, Z
n, Cr, Ag, Sb, Pb, As, B, P, Nb, Cu, W, Cd, S
Represents one or more elements selected from n, Al, Zr, and Ti. a, b, c, d, e, f, and g represent the atomic ratio of each element. When a = 12, b = 0.1-10, c = 0.1-20, d
= 2 to 20, e = 0.01 to 2, f = 0 to 4, and g is the number of oxygen atoms necessary to satisfy the valence of each component. Isobutylene or tertiary butanol using molecular oxygen in the presence of a catalyst composed of 85 to 95% by weight of silica and 5 to 15% by weight of silica, and calcined at a temperature of 500 ° C to 650 ° C. A process for producing methacrolein, which comprises subjecting it to gas phase catalytic oxidation.
JP2146296A 1990-06-06 1990-06-06 Method for producing methacrolein Expired - Lifetime JP2841323B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2146296A JP2841323B2 (en) 1990-06-06 1990-06-06 Method for producing methacrolein
KR1019910009285A KR940002982B1 (en) 1990-06-06 1991-06-05 Method for preparing acrolein or methacrolein
DE69109746T DE69109746T2 (en) 1990-06-06 1991-06-05 Process for the production of acrolein or methacrolein.
EP91305074A EP0460932B1 (en) 1990-06-06 1991-06-05 Method for preparing acrolein or methacrolein
US07/711,032 US5144090A (en) 1990-06-06 1991-06-06 Method for preparing acrolein or methacrolein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2146296A JP2841323B2 (en) 1990-06-06 1990-06-06 Method for producing methacrolein

Publications (2)

Publication Number Publication Date
JPH0441453A JPH0441453A (en) 1992-02-12
JP2841323B2 true JP2841323B2 (en) 1998-12-24

Family

ID=15404472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2146296A Expired - Lifetime JP2841323B2 (en) 1990-06-06 1990-06-06 Method for producing methacrolein

Country Status (1)

Country Link
JP (1) JP2841323B2 (en)

Also Published As

Publication number Publication date
JPH0441453A (en) 1992-02-12

Similar Documents

Publication Publication Date Title
KR940002982B1 (en) Method for preparing acrolein or methacrolein
US4051179A (en) Catalytic process for the preparation of unsaturated carboxylic acids
JP2841324B2 (en) Method for producing methacrolein
US5245083A (en) Method for preparing methacrolein and method for preparing a catalyst for use in the preparation of methacrolein
EP0267556B1 (en) Process for production of methacrolein and methacrylic acid
US3998876A (en) Catalytic process for preparation of unsaturated carboxylic acids
US4258217A (en) Process for producing methacrolein
JPH0813332B2 (en) Preparation of catalysts for the production of methacrolein and methacrylic acid
US5550095A (en) Process for producing catalyst used for synthesis of methacrylic acid
EP0350862B1 (en) Process for producing methacrylic acid
JP2558036B2 (en) Method for producing methacrolein and / or methacrylic acid
JP3257818B2 (en) Method for producing methacrolein, catalyst used for producing methacrolein, and method for producing the catalyst
JP2841323B2 (en) Method for producing methacrolein
JP2657693B2 (en) Preparation of catalysts for the production of methacrolein and methacrylic acid
JP3209778B2 (en) Preparation of catalyst for methacrylic acid production
JP2847150B2 (en) Method for producing acrolein or methacrolein
JPH0840969A (en) Production of acrolein and catalyst
JPH029014B2 (en)
JP3251642B2 (en) Preparation of catalyst for unsaturated carboxylic acid production
JP3370589B2 (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid using the same
JP3117265B2 (en) Method for producing α, β-unsaturated nitrile
JPH0459739A (en) Production of methacrolein and methacrylic acid
JP3036948B2 (en) Method for producing α, β-unsaturated compound
DE2351687C2 (en) Process for the production of acrylic acid
JP3251641B2 (en) Process for producing catalyst for producing unsaturated aldehydes and unsaturated carboxylic acids

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040113

A61 First payment of annual fees (during grant procedure)

Effective date: 20040126

Free format text: JAPANESE INTERMEDIATE CODE: A61

LAPS Cancellation because of no payment of annual fees