JP2840533B2 - Low pressure vapor phase growth equipment - Google Patents

Low pressure vapor phase growth equipment

Info

Publication number
JP2840533B2
JP2840533B2 JP5263251A JP26325193A JP2840533B2 JP 2840533 B2 JP2840533 B2 JP 2840533B2 JP 5263251 A JP5263251 A JP 5263251A JP 26325193 A JP26325193 A JP 26325193A JP 2840533 B2 JP2840533 B2 JP 2840533B2
Authority
JP
Japan
Prior art keywords
gas
reaction chamber
flow rate
reaction
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5263251A
Other languages
Japanese (ja)
Other versions
JPH07122490A (en
Inventor
光太郎 清水
浩 新屋敷
法幸 岩岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP5263251A priority Critical patent/JP2840533B2/en
Publication of JPH07122490A publication Critical patent/JPH07122490A/en
Application granted granted Critical
Publication of JP2840533B2 publication Critical patent/JP2840533B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、減圧気相成長装置など
の半導体製造装置に関し、特に反応室内での反応生成物
が真空排気の際にウェーハに付着するのを防止する減圧
気相成長装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor manufacturing apparatus such as a reduced pressure vapor phase growth apparatus and, more particularly, to a reduced pressure vapor phase growth apparatus for preventing a reaction product in a reaction chamber from adhering to a wafer during evacuation. About.

【0002】[0002]

【従来の技術】シリコン基板上へのエピタキシャル成長
方法としては気相成長法、なかでも化学気相成長法(C
VD法)が広く利用されている。シリコンのCVD法
は、約1000℃に加熱したシリコン基板上にSiを含
んだ化合物、例えば四塩化シリコン、トリクロロシラ
ン、ジクロロシラン、モノシランなどを送り、基板上に
還元あるいは熱分解によってSiを析出させる方法であ
り、エピタキシャル層の厚さや抵抗率を均一化するため
に減圧下で反応が実施される。
2. Description of the Related Art As a method of epitaxial growth on a silicon substrate, a vapor phase growth method, in particular, a chemical vapor deposition method (C
VD method) is widely used. In the CVD method of silicon, a compound containing Si, for example, silicon tetrachloride, trichlorosilane, dichlorosilane, monosilane, or the like is sent onto a silicon substrate heated to about 1000 ° C., and Si is deposited on the substrate by reduction or thermal decomposition. In this method, the reaction is performed under reduced pressure in order to make the thickness and resistivity of the epitaxial layer uniform.

【0003】この種の減圧CVD法は、反応室内にウェ
ーハをセットして当該反応室を閉塞したのち、室内の空
気を置換するために不活性ガス(N2 ガス等)を送り込
みながら減圧を行い、所定の圧力にまで減圧されたら反
応ガスを送り込んで気相成長させる。
In this kind of reduced pressure CVD method, after a wafer is set in a reaction chamber and the reaction chamber is closed, the pressure is reduced while sending an inert gas (such as N 2 gas) to replace the air in the chamber. When the pressure is reduced to a predetermined pressure, a reaction gas is fed to perform vapor phase growth.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
減圧気相成長装置では、真空減圧を行う際に不活性ガス
や水素ガスの供給と真空排気とを同時に行っていたの
で、反応室の内圧が急激に変動し、これにより反応室内
には瞬間的に乱流が生じ、反応室の排気管などに付着あ
るいは堆積している反応生成物が剥離して舞い上がり、
これが乱流に乗ってウェーハに付着するという問題があ
った。
However, in the conventional decompression vapor phase epitaxy apparatus, the supply of the inert gas or the hydrogen gas and the evacuation are performed simultaneously when performing the vacuum decompression, so that the internal pressure of the reaction chamber is reduced. Abruptly fluctuates, which causes instantaneous turbulence in the reaction chamber, and the reaction products adhering or accumulating on the exhaust pipe of the reaction chamber peel off and fly up,
There is a problem that this adheres to the wafer by turbulence.

【0005】本発明は、このような従来技術の問題点に
鑑みてなされたものであり、反応室内を不活性ガスや還
元用ガス等により置換しながら減圧するにあたり、ガス
の供給量と減圧排気量とのバランスを考慮しながら反応
室内に生じる乱流を抑制し、もってウェーハへの反応生
成物の付着を防止することを目的とする。
The present invention has been made in view of the problems of the prior art described above. In reducing the pressure while replacing the reaction chamber with an inert gas, a reducing gas, or the like, the gas supply amount and the reduced pressure exhaust It is an object of the present invention to suppress a turbulent flow generated in a reaction chamber while considering a balance with the amount, and thereby prevent a reaction product from adhering to a wafer.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の減圧気相成長装置は、反応室内を不活性ガ
スや反応ガスなどの各種ガスにより置換しながら減圧し
た状態で、高温に加熱した半導体ウェーハに反応ガスを
接触させ、化学反応を利用して所望の物質を前記半導体
ウェーハ上に成長させる減圧気相成長装置において、前
記ガスの供給量を制御する第1のバルブを有するガス供
給系と、前記反応室からの排気量を制御する第2のバル
ブを有する排気系と、前記ガス供給系のガス流量を検出
する第1のセンサと、前記排気系のガス流量を検出する
第2のセンサと、前記第1のセンサおよび第2のセンサ
からの検出値を取り込んで前記排気系のガス流量が前記
ガス供給系のガス流量よりも所定の値だけ大きくなるよ
うに前記第1のバルブおよび第2のバルブの開度を制御
する制御手段とを備えたことを特徴としている。
In order to achieve the above object, a reduced-pressure vapor phase growth apparatus according to the present invention provides a high-temperature low-pressure vapor deposition apparatus in which a reaction chamber is depressurized while being replaced with various gases such as an inert gas and a reaction gas. A first valve for controlling a supply amount of the gas in a reduced-pressure vapor deposition apparatus for causing a reaction gas to come into contact with a semiconductor wafer heated to a predetermined temperature and growing a desired substance on the semiconductor wafer by utilizing a chemical reaction; A gas supply system, an exhaust system having a second valve for controlling an exhaust amount from the reaction chamber, a first sensor for detecting a gas flow rate of the gas supply system, and detecting a gas flow rate of the exhaust system The first sensor and the second sensor take in the detection values from the first sensor and the second sensor so that the gas flow rate in the exhaust system becomes larger than the gas flow rate in the gas supply system by a predetermined value. No ba It is characterized in that a control means for controlling the opening of the probe and a second valve.

【0007】[0007]

【作用】反応室内の圧力が急激に変動すると瞬間的に乱
流が生じ、反応室の排気管などに付着あるいは堆積して
いた反応生成物が剥離して舞い上がり、これが乱流に乗
ってウェーハに付着する。そのため、本発明では反応室
からの排気量のみの制御ではなく、反応室へのガスの供
給量と反応室からの排気量とのバランス、すなわち反応
室内のガス流量状態を監視しながら各種ガスによる置換
と減圧を同時に実施する。
[Action] When the pressure in the reaction chamber fluctuates rapidly, turbulence is instantaneously generated, and the reaction products adhering or accumulating on the exhaust pipe of the reaction chamber are separated and fly up, and the turbulence flows on the wafer. Adhere to. Therefore, in the present invention, instead of controlling only the amount of exhaust gas from the reaction chamber, the balance between the amount of gas supplied to the reaction chamber and the amount of exhaust gas from the reaction chamber, i.e. The replacement and the reduced pressure are performed simultaneously.

【0008】まず、ガスの供給量を制御する第1のバル
ブを有するガス供給系に当該ガス供給系のガス流量を検
出する第1のセンサを設けると共に、反応室からの排気
量を制御する第2のバルブを有する排気系に当該排気系
のガス流量を検出する第2のセンサを設ける。そして、
これら第1のセンサおよび第2のセンサからの検出値を
制御手段に取り込んで、排気系のガス流量がガス供給系
のガス流量よりも常に所定の値だけ大きくなるように、
第1のバルブおよび第2のバルブの開度を制御しながら
ガスの供給と減圧とを行う。このようにすれば、反応室
内の急激な圧力変動を抑止しながら減圧することができ
るので、反応室内の反応生成物の舞い上がりを防止で
き、ウェーハの歩留り向上が達成できる。
First, a gas supply system having a first valve for controlling a gas supply amount is provided with a first sensor for detecting a gas flow rate of the gas supply system and a gas supply system for controlling an exhaust amount from a reaction chamber. An exhaust system having two valves is provided with a second sensor for detecting a gas flow rate in the exhaust system. And
The detection values from the first sensor and the second sensor are taken into the control means so that the gas flow rate in the exhaust system is always larger than the gas flow rate in the gas supply system by a predetermined value.
The gas supply and the pressure reduction are performed while controlling the opening degrees of the first valve and the second valve. In this way, the pressure can be reduced while suppressing a rapid pressure fluctuation in the reaction chamber, so that the reaction products in the reaction chamber can be prevented from rising and the yield of the wafer can be improved.

【0009】[0009]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図1は本発明の一実施例を示す構成図、図2は
同実施例の減圧気相成長装置を用いた気相成長工程を示
すグラフである。本実施例では減圧気相成長装置とし
て、いわゆるシリンダ型成長装置を挙げて説明するが、
本発明はシリンダ型以外の縦型や横型の気相成長装置に
も応用できる。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a graph showing a vapor phase growth process using the reduced pressure vapor phase growth apparatus of the embodiment. In this embodiment, a so-called cylinder type growth apparatus will be described as an example of a reduced pressure vapor phase growth apparatus.
The present invention can be applied to a vertical or horizontal vapor phase growth apparatus other than the cylinder type.

【0010】本実施例の気相成長装置は、密閉空間とな
る石英製の反応室1(以下、ベルジャーともいう)を備
えており、上面に開閉自在に設けられた蓋体とともに上
昇および下降するサセプタ2がベルジャー1内に挿入さ
れる。サセプタ2には複数の半導体ウェーハWが装着さ
れ、図示しない駆動源によって回転するようになってい
る。ベルジャー1の周囲にはヒータ3(例えばハロゲン
ランプ)が設けられており、半導体ウェーハWを所定の
反応温度まで昇温する。
The vapor phase growth apparatus of this embodiment includes a reaction chamber 1 (hereinafter, also referred to as a bell jar) made of quartz as an enclosed space, and moves up and down together with a lid provided on the upper surface so as to be freely opened and closed. The susceptor 2 is inserted into the bell jar 1. A plurality of semiconductor wafers W are mounted on the susceptor 2 and are rotated by a driving source (not shown). A heater 3 (for example, a halogen lamp) is provided around the bell jar 1, and heats the semiconductor wafer W to a predetermined reaction temperature.

【0011】ベルジャー1の下部には反応室内を減圧す
るための排気管4が接続されており、制御バルブ(第2
のバルブ)5を介して真空ポンプ6に接続されている。
この制御バルブ5は開度が連続的かつ開閉速度が可変に
構成され、制御手段7からの指令信号にしたがって開閉
制御が行われる。「8」は排気管4内のガス流量を検出
するためのガス流量センサであり、このガス流量センサ
8により所定間隔で検出されたガス流量は電気信号とし
て制御手段7に出力される。
An exhaust pipe 4 for reducing the pressure in the reaction chamber is connected to a lower portion of the bell jar 1 and a control valve (second valve).
(Valve 5) is connected to a vacuum pump 6.
The control valve 5 has a continuous opening degree and a variable opening / closing speed, and performs opening / closing control according to a command signal from the control means 7. “8” is a gas flow rate sensor for detecting the gas flow rate in the exhaust pipe 4. The gas flow rate detected by the gas flow rate sensor 8 at predetermined intervals is output to the control means 7 as an electric signal.

【0012】一方、ベルジャー1の上部には反応室1内
を減圧する際に、反応室内の空気を窒素ガスなどの不活
性ガスに置換したり、その後に反応ガスを反応室内に送
り込んだりするためのガス供給用配管9が接続されてい
る。このガス供給用配管9は、制御バルブ(第1のバル
ブ)10を介し、さらに三方弁11などの切替え弁を介
して不活性ガスの供給源12と反応ガスの供給源14と
に接続されている。制御バルブ10は、排気管4に設け
られた制御バルブ5と同じように開度が連続的かつ開閉
速度が可変に構成され、制御手段7からの指令信号にし
たがって開閉制御が行われる。「13」はガス供給用配
管9内のガス流量を検出するためのガス流量センサであ
り、このガス流量センサ13により所定間隔で検出され
たガス流量は電気信号として制御手段7に出力される。
On the other hand, the upper part of the bell jar 1 is used to replace the air in the reaction chamber with an inert gas such as nitrogen gas or to send the reaction gas into the reaction chamber when the pressure inside the reaction chamber 1 is reduced. Gas supply pipe 9 is connected. The gas supply pipe 9 is connected to an inert gas supply source 12 and a reaction gas supply source 14 via a control valve (first valve) 10 and further via a switching valve such as a three-way valve 11. I have. The control valve 10 has a continuous opening degree and a variable opening / closing speed similarly to the control valve 5 provided in the exhaust pipe 4, and performs opening / closing control in accordance with a command signal from the control means 7. “13” is a gas flow rate sensor for detecting the gas flow rate in the gas supply pipe 9, and the gas flow rate detected at predetermined intervals by the gas flow rate sensor 13 is output to the control means 7 as an electric signal.

【0013】ちなみに、本実施例におけるガス供給用配
管9は、不活性ガスの供給用配管と反応ガスの供給用配
管に共用されており、反応室1内を所定の真空度に減圧
したのち三方弁11を切り替えることにより反応ガス供
給源14から反応ガスが反応室1内に送り込まれる。な
お、反応ガスとしては、必要に応じて四塩化シリコン、
トリクロロシラン、ジクロロシラン、モノシランなどを
用いることができ、還元ガスとして水素ガスが供給され
る。
Incidentally, the gas supply pipe 9 in the present embodiment is shared by the inert gas supply pipe and the reaction gas supply pipe, and after the pressure inside the reaction chamber 1 is reduced to a predetermined degree of vacuum, the three-way pipe is used. By switching the valve 11, a reaction gas is sent from the reaction gas supply source 14 into the reaction chamber 1. In addition, as the reaction gas, silicon tetrachloride, if necessary,
Trichlorosilane, dichlorosilane, monosilane, or the like can be used, and hydrogen gas is supplied as a reducing gas.

【0014】本実施例の制御手段7は、2つのガス流量
センサ8,13からの検出値を所定の時間間隔で取り込
み、これらの値を逐次比較して、排気管4のガス流量が
ガス供給用配管9のガス流量よりも所定の値だけ大きく
なるように2つの制御バルブ5,10の開度を調節す
る。具体的には、2つのガス流量センサ8,13からの
データを入力して記憶しながら順次書き替えて行くメモ
リと、このメモリに記憶された最新のデータを所定時間
間隔で読み出し、2つのデータを比較する比較部と、こ
の比較部における比較結果に応じて2つの制御バルブ
5,10のそれぞれに制御信号を出力する出力部とを有
している。2つの制御バルブ5,10への制御信号は、
2つのガス流量センサ8,13の比較結果に応じた制御
バルブ5,10の調節値が予めメモリに入力されてい
る。
The control means 7 of this embodiment takes in the detection values from the two gas flow sensors 8 and 13 at predetermined time intervals, compares these values successively, and determines whether the gas flow rate of the exhaust pipe 4 is equal to the gas supply. The opening of the two control valves 5 and 10 is adjusted so that the gas flow rate of the control pipe 9 becomes larger than the gas flow rate by a predetermined value. More specifically, a memory in which data from the two gas flow sensors 8 and 13 are input and stored and sequentially rewritten, and the latest data stored in the memory are read out at predetermined time intervals and the two data are read out. And an output unit that outputs a control signal to each of the two control valves 5 and 10 in accordance with the comparison result of the comparison unit. The control signals to the two control valves 5, 10 are:
The adjustment values of the control valves 5 and 10 according to the comparison result of the two gas flow sensors 8 and 13 are input in the memory in advance.

【0015】次に作用を説明する。従来の減圧気相成長
装置では、反応室内への不活性ガスや反応ガスの供給と
排気とを同時に行っていたので、減圧開始時における反
応室内の圧力は図2に点線で示すように急激に降下して
いた。そのため、反応室内のいたる所に付着、堆積した
反応生成物が舞い上がり、ウェーハに付着するという問
題があった。
Next, the operation will be described. In the conventional decompression vapor phase growth apparatus, the supply of the inert gas or the reaction gas into the reaction chamber and the exhaust were simultaneously performed, so that the pressure in the reaction chamber at the start of the decompression suddenly increased as shown by a dotted line in FIG. Was descending. For this reason, there is a problem that the reaction product attached and deposited everywhere in the reaction chamber soars and adheres to the wafer.

【0016】しかしながら、本実施例では、反応室1へ
の不活性ガスの供給量と反応室1からの排気量とのバラ
ンス、すなわち反応室内のガス流量状態を監視しながら
不活性ガスによる置換と減圧を同時に実施するように構
成している。同様にして、大気圧に対して−10Tor
r程度まで減圧したのち、さらに水素ガスを導入しなが
ら60〜100Torrまで減圧する場合にも、同様な
反応生成物の舞上がりが生じるので、水素ガスの供給量
と反応室1からの排気量とのバランス、すなわち反応室
内のガス流量状態を監視しながら水素ガスによる置換と
減圧を同時に実施するように構成している。
In the present embodiment, however, the balance between the supply amount of the inert gas to the reaction chamber 1 and the exhaust amount from the reaction chamber 1, that is, the replacement with the inert gas while monitoring the gas flow state in the reaction chamber 1 The decompression is configured to be performed simultaneously. Similarly, -10 Torr relative to atmospheric pressure
When the pressure is reduced to about r and the pressure is further reduced to 60 to 100 Torr while introducing hydrogen gas, a similar reaction product is produced. Therefore, the amount of supply of hydrogen gas and the amount of exhaust from the reaction chamber 1 are reduced. The system is configured to simultaneously perform the replacement with hydrogen gas and the pressure reduction while monitoring the balance, that is, the gas flow state in the reaction chamber.

【0017】すなわち、図2に示されるように、反応室
内を大気圧に対して−10Torrまで減圧する場合に
は、三方弁11を不活性ガスの供給源12側に切り替え
たのち、2つの制御バルブ5,10を徐々に低速で開き
始める。そして、2つのガス流量センサ8,13からの
検出値を制御手段7に取り込み、両者を比較する。も
し、排気管4のガス流量がガス供給用配管9のガス流量
より小さい場合には、排気管4に設けられた制御バルブ
5の開き速度を速くするよう制御手段7から制御バルブ
5に指令する。
That is, as shown in FIG. 2, when the pressure in the reaction chamber is reduced to -10 Torr with respect to the atmospheric pressure, the three-way valve 11 is switched to the inert gas supply source 12 side, and then two control operations are performed. The valves 5 and 10 are gradually opened at a low speed. Then, the detection values from the two gas flow sensors 8 and 13 are taken into the control means 7, and the two are compared. If the gas flow rate in the exhaust pipe 4 is smaller than the gas flow rate in the gas supply pipe 9, the control means 7 commands the control valve 5 to increase the opening speed of the control valve 5 provided in the exhaust pipe 4. .

【0018】また、排気管4のガス流量がガス供給用配
管9のガス流量に比べて大きすぎる場合には排気管4に
設けられた制御バルブ5の開き速度を遅くするか、ある
いはガス供給用配管9に設けられた制御バルブ10の開
き速度を速くして、両ガス流量の差が所定の範囲内に入
るようにする。後者のように制御すれば反応室1の内圧
の急激な変動を抑制できると同時に、減圧時間の短縮も
達成できる。
If the gas flow rate in the exhaust pipe 4 is too large compared to the gas flow rate in the gas supply pipe 9, the opening speed of the control valve 5 provided in the exhaust pipe 4 is reduced, or The opening speed of the control valve 10 provided in the pipe 9 is increased so that the difference between the two gas flow rates falls within a predetermined range. By controlling as the latter, it is possible to suppress a rapid change in the internal pressure of the reaction chamber 1 and at the same time to shorten the decompression time.

【0019】このように2つの制御バルブ5,10の開
度を調節しながらバルブを開いていくと、反応室1内の
減圧を開始した瞬間における内圧は徐々に低下すること
になり、予め決められた真空度(大気圧−10Tor
r)に漸近する。したがって、反応室内の急激な圧力変
動を抑止することができ、反応室内の反応生成物の舞い
上がりを防止できるので、ウェーハの歩留り向上が達成
できる。
When the two control valves 5 and 10 are opened while adjusting their opening degrees, the internal pressure at the moment when the pressure in the reaction chamber 1 starts to be reduced gradually decreases. Degree of vacuum (atmospheric pressure -10 Torr)
r). Therefore, rapid pressure fluctuations in the reaction chamber can be suppressed and reaction products in the reaction chamber can be prevented from rising, so that the yield of wafers can be improved.

【0020】また、不活性ガスの供給量と反応室内から
の排気量との差異を所定の範囲内に制御することによ
り、最短時間で不活性ガスの置換と減圧を行うことがで
き、ウェーハの品質向上だけでなく生産性の向上にも寄
与できる。
Further, by controlling the difference between the supply amount of the inert gas and the exhaust amount from the reaction chamber within a predetermined range, the replacement and the decompression of the inert gas can be performed in the shortest time, and the wafer It can contribute to not only quality improvement but also productivity improvement.

【0021】不活性ガスによる置換および減圧を終了す
ると、続いて水素ガスを反応室内に供給しながらさらに
減圧(60〜100Torr)を実施する。この水素ガ
スによる置換および減圧時においても上述した流量バラ
ンスの制御が実施される。
After the replacement with the inert gas and the pressure reduction are completed, the pressure is further reduced (60 to 100 Torr) while supplying hydrogen gas into the reaction chamber. The control of the flow rate balance described above is also performed during the replacement with the hydrogen gas and the pressure reduction.

【0022】ちなみに、水素ガスによる置換および減圧
に並行して反応室内の温度を1150〜1200℃まで
昇温し、半導体ウェーハのクリーニングを実施したの
ち、反応室内を1000〜1160℃に保ちながら、水
素ガスに加えて四塩化シリコン、トリクロロシラン、ジ
クロロシラン、モノシランなどの各種反応ガスを供給し
て気相成長を行う。
Incidentally, the temperature inside the reaction chamber is raised to 1150 to 1200 ° C. in parallel with the replacement with the hydrogen gas and the pressure reduction, and after the semiconductor wafer is cleaned, the hydrogen inside the reaction chamber is kept at 1000 to 1160 ° C. Vapor phase growth is performed by supplying various reaction gases such as silicon tetrachloride, trichlorosilane, dichlorosilane, and monosilane in addition to the gas.

【0023】なお、以上説明した実施例は、本発明の理
解を容易にするために記載されたものであって、本発明
を限定するために記載されたものではない。したがっ
て、上記の実施例に開示された各要素は、本発明の技術
的範囲に属する全ての設計変更や均等物をも含む趣旨で
ある。
The embodiments described above are described for the purpose of facilitating the understanding of the present invention, and are not described for limiting the present invention. Therefore, each element disclosed in the above embodiments is intended to include all design changes and equivalents belonging to the technical scope of the present invention.

【0024】[0024]

【発明の効果】以上述べたように本発明によれば、最も
効率的な時間で、反応室内の急激な圧力変動を抑止する
ことができ、反応室内の反応生成物の舞い上がりを防止
できるので、ウェーハの歩留り向上と生産性の向上が達
成できる。
As described above, according to the present invention, rapid pressure fluctuation in the reaction chamber can be suppressed in the most efficient time, and the reaction products in the reaction chamber can be prevented from rising. Improvements in wafer yield and productivity can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例を示す構成図である。FIG. 1 is a configuration diagram showing one embodiment of the present invention.

【図2】 同実施例の減圧気相成長装置を用いた気相成
長工程を示すグラフである。
FIG. 2 is a graph showing a vapor phase growth step using the reduced pressure vapor phase epitaxy apparatus of the embodiment.

【符号の説明】[Explanation of symbols]

1…反応室(ベルジャー) 2…サセプタ 4…排気管 5…制御バルブ(第2のバルブ) 6…真空ポンプ 7…制御手段 8…ガス流量センサ(第2のセンサ) 9…ガス供給用配管 10…制御バルブ(第1のバルブ) 11…三方弁 12…不活性ガス供給源 13…ガス流量センサ(第1のセンサ) 14…反応ガス供給源 DESCRIPTION OF SYMBOLS 1 ... Reaction chamber (bell jar) 2 ... Susceptor 4 ... Exhaust pipe 5 ... Control valve (2nd valve) 6 ... Vacuum pump 7 ... Control means 8 ... Gas flow sensor (2nd sensor) 9 ... Gas supply piping 10 ... control valve (first valve) 11 ... three-way valve 12 ... inert gas supply source 13 ... gas flow rate sensor (first sensor) 14 ... reaction gas supply source

フロントページの続き (72)発明者 岩岡 法幸 埼玉県大宮市北袋町1丁目297番地 三 菱マテリアル株式会社中央研究所内 (56)参考文献 特開 平3−137094(JP,A) 特開 平4−100216(JP,A) 特開 昭61−196538(JP,A) 特開 平5−60068(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 21/205 C23C 16/44 C30B 25/16Continuation of the front page (72) Inventor Noriyuki Iwaoka 1-297 Kitabukuro-cho, Omiya-shi, Saitama Mitsui Materials Corporation Central Research Laboratory (56) References JP-A-3-1377094 (JP, A) JP-A-4 -100216 (JP, A) JP-A-61-196538 (JP, A) JP-A-5-60068 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 21/205 C23C 16/44 C30B 25/16

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】反応室内を不活性ガスや反応ガスなどの各
種ガスにより置換しながら減圧した状態で、高温に加熱
した半導体ウェーハに反応ガスを接触させ、化学反応を
利用して所望の物質を前記半導体ウェーハ上に成長させ
る減圧気相成長装置において、 前記ガスの供給量を制御する第1のバルブを有するガス
供給系と、前記反応室からの排気量を制御する第2のバ
ルブを有する排気系と、前記ガス供給系のガス流量を検
出する第1のセンサと、前記排気系のガス流量を検出す
る第2のセンサと、前記第1のセンサおよび第2のセン
サからの検出値を取り込んで前記排気系のガス流量が前
記ガス供給系のガス流量よりも所定の値だけ大きくなる
ように前記第1のバルブおよび第2のバルブの開度を制
御する制御手段とを備えたことを特徴とする減圧気相成
長装置。
1. A reaction gas is brought into contact with a semiconductor wafer heated to a high temperature under a reduced pressure while replacing the inside of the reaction chamber with various gases such as an inert gas and a reaction gas, and a desired substance is formed by utilizing a chemical reaction. In the reduced pressure vapor phase epitaxy apparatus for growing on the semiconductor wafer, a gas supply system having a first valve for controlling a supply amount of the gas, and an exhaust gas having a second valve for controlling an exhaust amount from the reaction chamber System, a first sensor that detects a gas flow rate of the gas supply system, a second sensor that detects a gas flow rate of the exhaust system, and captures detection values from the first sensor and the second sensor. Control means for controlling the opening of the first valve and the second valve so that the gas flow rate of the exhaust system becomes larger than the gas flow rate of the gas supply system by a predetermined value. Toss Reduced pressure vapor phase growth equipment.
JP5263251A 1993-10-21 1993-10-21 Low pressure vapor phase growth equipment Expired - Fee Related JP2840533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5263251A JP2840533B2 (en) 1993-10-21 1993-10-21 Low pressure vapor phase growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5263251A JP2840533B2 (en) 1993-10-21 1993-10-21 Low pressure vapor phase growth equipment

Publications (2)

Publication Number Publication Date
JPH07122490A JPH07122490A (en) 1995-05-12
JP2840533B2 true JP2840533B2 (en) 1998-12-24

Family

ID=17386877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5263251A Expired - Fee Related JP2840533B2 (en) 1993-10-21 1993-10-21 Low pressure vapor phase growth equipment

Country Status (1)

Country Link
JP (1) JP2840533B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7111062B2 (en) * 2019-05-29 2022-08-02 信越半導体株式会社 Semiconductor silicon wafer manufacturing method
CN112530777A (en) * 2019-09-18 2021-03-19 夏泰鑫半导体(青岛)有限公司 Air extraction device and air extraction method thereof
CN110923675B (en) * 2019-12-27 2022-05-24 清华大学无锡应用技术研究院 Digital twinning control method for silicon carbide coating deposition furnace fluid field

Also Published As

Publication number Publication date
JPH07122490A (en) 1995-05-12

Similar Documents

Publication Publication Date Title
US4834831A (en) Method for growing single crystal thin films of element semiconductor
US5246536A (en) Method for growing single crystal thin films of element semiconductor
US6402850B1 (en) Depositing polysilicon films having improved uniformity and apparatus therefor
US6192898B1 (en) Method and apparatus for cleaning a chamber
US4817558A (en) Thin-film depositing apparatus
JPH0897159A (en) Method and system for epitaxial growth
JPH06302528A (en) Vapor deposition of silicon nitride thin film
JP3204866B2 (en) Vacuum processing device and vacuum processing method
JP2840533B2 (en) Low pressure vapor phase growth equipment
KR100499211B1 (en) Method for fabricating a semiconductor device and a substrate processing apparatus
JP3611780B2 (en) Semiconductor manufacturing equipment
JPS6228569B2 (en)
JPS63164424A (en) Vapor growth method
US5242666A (en) Apparatus for forming a semiconductor crystal
JP2006186015A (en) Substrate processor
JPS6010621A (en) Depressurized epitaxial growing equipment
US20220319846A1 (en) Method of crystallizing amorphous silicon film and deposition apparatus
JP3070130B2 (en) Vertical vacuum deposition equipment
JP2814436B2 (en) Vapor phase growth method and apparatus
JPH08274033A (en) Vapor growth method and device
JPS6272131A (en) Vapor reaction method and vapor reaction device directly used therefor
JPS63270471A (en) Plasma cvd device
JPH11214377A (en) Vertical vacuum vapor phase growing device and method therefor
JP2003183837A (en) Semiconductor device manufacturing process and substrate treating device
JPH09162129A (en) Semiconductor wafer processor, method for processing semiconductor wafer and semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980929

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081016

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081016

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091016

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091016

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101016

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101016

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111016

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111016

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees