JP2837787B2 - Thermal storage type low NOx burner - Google Patents

Thermal storage type low NOx burner

Info

Publication number
JP2837787B2
JP2837787B2 JP5081195A JP8119593A JP2837787B2 JP 2837787 B2 JP2837787 B2 JP 2837787B2 JP 5081195 A JP5081195 A JP 5081195A JP 8119593 A JP8119593 A JP 8119593A JP 2837787 B2 JP2837787 B2 JP 2837787B2
Authority
JP
Japan
Prior art keywords
combustion air
furnace
fuel
supply means
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5081195A
Other languages
Japanese (ja)
Other versions
JPH06272851A (en
Inventor
良一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON FUAANESU KOGYO KK
Original Assignee
NIPPON FUAANESU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13739700&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2837787(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NIPPON FUAANESU KOGYO KK filed Critical NIPPON FUAANESU KOGYO KK
Priority to JP5081195A priority Critical patent/JP2837787B2/en
Publication of JPH06272851A publication Critical patent/JPH06272851A/en
Application granted granted Critical
Publication of JP2837787B2 publication Critical patent/JP2837787B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • F23L15/02Arrangements of regenerators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Supply (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、排ガスから廃熱を回収
する蓄熱型バーナに関する。更に詳述すると、本発明は
燃焼用空気の供給と燃焼ガスの排出とに一部同じ流路を
使い、蓄熱体を通して燃焼用空気の導入と燃焼ガスの排
出とを実施する蓄熱型バーナに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a regenerative burner for recovering waste heat from exhaust gas. More specifically, the present invention relates to a regenerative burner that uses a partly the same flow path for supplying combustion air and discharging combustion gas, and performs the introduction of combustion air and the discharge of combustion gas through a regenerator.

【0002】[0002]

【従来の技術】従来の蓄熱型バーナは、例えば図3に示
すように、ウィンドボックス101の中に該ウィンドボ
ックス101を貫通するようにバーナガン(燃料ノズ
ル)102を設置し、蓄熱体103を経て供給される燃
焼用空気と燃料とをバーナ内で混合させてから炉内に噴
射するように設けられている。即ち、従来のバーナ10
4は、燃料ノズル102と燃焼用空気の噴射ノズル(こ
の場合、ウィンドボックス101)とが対になって構成
されている。そして、このバーナ104は2基で一対を
成し、一方のバーナ104を燃焼させている間に他方の
バーナ104から燃焼ガスを排出するようにしている。
燃焼ガスは、他方のバーナのウィンドボックス101を
経て排気される際に蓄熱体103で排熱が回収されるよ
うに設けられている。したがって、従来の蓄熱型バーナ
は、1組のバーナに交互に燃焼用空気と燃料とを供給す
るため、燃焼用空気供給系と排気系とをバーナに選択的
に接続するための手段と、燃料をいずれか一方のバーナ
に供給する手段とを必要としている。そして、このよう
な燃焼ガスと燃焼用空気の流路切替には、電磁弁を組合
せたものや四方弁、三方弁などを用いることが考えられ
ている。尚、図中符号105は四方弁、106は電磁
弁、107は押し込みファン、108は誘引ファンであ
る。
2. Description of the Related Art A conventional heat storage type burner has a burner gun (fuel nozzle) 102 installed in a wind box 101 so as to penetrate the wind box 101 as shown in FIG. It is provided that the supplied combustion air and fuel are mixed in the burner and then injected into the furnace. That is, the conventional burner 10
Reference numeral 4 denotes a pair of a fuel nozzle 102 and a combustion air injection nozzle (in this case, a wind box 101). The two burners 104 form a pair, and the combustion gas is discharged from the other burner 104 while one burner 104 is burning.
When the combustion gas is exhausted through the wind box 101 of the other burner, the exhaust gas is provided to be recovered by the heat storage body 103. Therefore, the conventional regenerative burner is provided with means for selectively connecting the combustion air supply system and the exhaust system to the burner in order to alternately supply combustion air and fuel to one set of burners; Means for supplying to either one of the burners. For switching the flow path between the combustion gas and the combustion air, it is considered to use a combination of electromagnetic valves, a four-way valve, a three-way valve, or the like. In the figure, reference numeral 105 denotes a four-way valve, 106 denotes an electromagnetic valve, 107 denotes a push-in fan, and 108 denotes an induction fan.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、空気ノ
ズルと燃料ノズルとを対にした従来のバーナ構造では、
休止中のバーナから高温の燃焼ガスを排気する際に、燃
料ノズルが焼損したり残留燃料のコーキングを招いたり
する問題がある。また、この燃料ノズルの焼損を回避す
るためには燃料ノズルの配置や構造を特開平2−100
02号のバーナのように複雑なものとしなければなら
ず、バーナの大型化を招く問題がある。また、高温雰囲
気で使用可能な電磁弁は高価であり設備コストを著しく
引き上げるし、かつ気体配管用電磁弁などはかなり大型
であるためその数が増えると場所を取ることから使用数
の低減が望ましい。更に、バーナを交互に燃焼させる蓄
熱型バーナでは一般に燃焼用空気より僅かに遅れて燃料
が噴射されること、即ちリードタイムをとることが着火
の上で好ましい。このリードタイムをとるには燃焼用空
気の流れが切替えられてから一定時間が経過した後に燃
料が供給されるような制御装置を用いる等の工夫が更に
必要とされる。
However, in the conventional burner structure in which the air nozzle and the fuel nozzle are paired,
When exhausting the high-temperature combustion gas from the burner that is at rest, there is a problem that the fuel nozzle is burned or coking of residual fuel is caused. Further, in order to avoid the burning of the fuel nozzle, the arrangement and structure of the fuel nozzle are disclosed in Japanese Patent Laid-Open No. 2-100 / 1990.
The burner must be complicated like the burner of No. 02, and there is a problem that the burner becomes large. In addition, solenoid valves that can be used in a high-temperature atmosphere are expensive, which significantly increases equipment costs. In addition, since solenoid valves for gas pipes and the like are quite large, if the number thereof increases, it is desirable to reduce the number of used solenoid valves. . Further, in a regenerative burner in which burners are alternately burned, it is generally preferable from the viewpoint of ignition that the fuel be injected slightly later than the combustion air, that is, to take a lead time. In order to take this lead time, it is necessary to use a control device that supplies fuel after a certain period of time has elapsed since the flow of the combustion air was switched.

【0004】このことから、燃料ノズルを燃焼ガスの排
気系路から完全に退避させ、かつ燃料の切替を必要とし
ない蓄熱型低NOxバーナが望まれる。
[0004] Therefore, a regenerative low NOx burner that completely retracts the fuel nozzle from the exhaust gas passage of the combustion gas and does not require switching of the fuel is desired.

【0005】本発明は、燃焼用空気の切替えだけで燃料
の切替を必要としない蓄熱型低NOxバーナを提供する
ことを目的とする。
An object of the present invention is to provide a regenerative low NOx burner which does not require switching of fuel only by switching of combustion air.

【0006】[0006]

【課題を解決するための手段】かかる目的を達成するた
め、本発明の蓄熱型低NOxバーナは、蓄熱体を備え該
蓄熱体を通して燃焼用空気の供給と燃焼ガスの排出を交
互に行なう少なくとも2系統の燃焼用空気供給手段を炉
内に向けて直接開口させて設置し燃焼ガスの熱で加熱さ
れた蓄熱体を通して高温の燃焼用空気を噴射させる一
方、燃焼用空気供給手段とほぼ平行に炉内に燃料を連続
的に噴射し、尚かつこれら燃焼用空気噴流と燃料噴流と
が噴射直後に混合することなく別々に炉内へ広がる燃料
噴流が形成される間隔を燃焼用空気供給手段に対してと
って燃料ノズルを少なくとも2系統の燃焼用空気供給手
段に対して1本設置し、炉内に燃料を連続的に噴射する
と共にこの燃料とほぼ平行して高温の燃焼用空気を燃焼
用空気供給手段から交互に炉内に噴射するようにしてい
る。また、本発明の蓄熱型低NOxバーナは、高温の燃
焼用空気の供給を切り替える際に、瞬間的に燃料の供給
量を減じて連続的に噴射するようにしている。
In order to achieve the above object, a regenerative low NOx burner according to the present invention comprises at least a regenerator and alternately supplies combustion air and discharges combustion gas through the regenerator. The combustion air supply means of the system is installed with a direct opening toward the inside of the furnace, and high-temperature combustion air is injected through the heat storage material heated by the heat of the combustion gas, while the furnace is almost parallel to the combustion air supply means. Continuous fuel in
Injection and combustion air jet and fuel jet
Spread separately into the furnace without mixing immediately after injection
The interval at which the jet is formed is set with respect to the combustion air supply means.
The fuel nozzle is connected to at least two systems of combustion air supply
One fuel tank is provided for each stage so that fuel is continuously injected into the furnace and high-temperature combustion air is alternately injected into the furnace from the combustion air supply means substantially in parallel with the fuel. . Further, the regenerative low NOx burner of the present invention is configured to instantaneously reduce the fuel supply amount and continuously inject fuel when switching the supply of high-temperature combustion air.

【0007】[0007]

【作用】したがって、燃焼用空気は2系統の燃焼用空気
供給手段の一方から高温の熱風とされて炉内に噴出さ
れ、炉内の燃焼ガスは他方の燃焼用空気供給系の蓄熱体
を経て排気され、その廃熱を以て蓄熱体を加熱する。そ
こで、空気の供給を2系統の燃焼用空気供給手段の間で
切り替えれば、加熱された蓄熱体の熱を奪って排ガス温
度に近い高温となって炉内に噴射される。しかも、ほぼ
全量の燃焼用空気とそれとほぼ平行に噴射される燃料と
は別々に炉内に噴射され直ちに混合されずに炉内で広が
り、炉内のいずこかで緩慢に混合する。しかし、燃焼用
空気は極めて高温(例えば1000℃近いあるいはそれ
以上)であることから、炉内で緩慢燃焼を起こす。ま
た、蓄熱体の熱が低下すると、燃料は切り替えずに燃焼
用空気の切替によって今まで燃焼ガスを排気していた燃
焼用空気供給手段の蓄熱体を利用して燃焼用空気を供給
する。依って、燃焼用空気の供給を切替えるだけで交互
燃焼と同じ結果を得る。
Accordingly, the combustion air is converted into high-temperature hot air from one of the two systems of combustion air supply means and jetted into the furnace, and the combustion gas in the furnace passes through the heat storage element of the other combustion air supply system. It is exhausted and heats the regenerator with its waste heat. Therefore, if the supply of air is switched between the two systems of combustion air supply means, the heat of the heated regenerator is taken away and the temperature becomes high near the exhaust gas temperature and is injected into the furnace. Moreover, almost all of the combustion air and the fuel injected substantially parallel thereto are separately injected into the furnace, are not immediately mixed, but spread in the furnace, and slowly mix anywhere in the furnace. However, since the combustion air is extremely hot (for example, close to 1000 ° C. or higher), slow combustion occurs in the furnace. Further, when the heat of the regenerator decreases, the combustion air is supplied by using the regenerator of the combustion air supply means that has exhausted the combustion gas by switching the combustion air without switching the fuel. Therefore, the same result as the alternating combustion is obtained only by switching the supply of the combustion air.

【0008】また、高温空気の供給手段の切り替え時に
瞬間的に燃料供給量を減じる場合、高温空気切り替えの
瞬間に空気ガス炉内に噴射されずとも、燃料供給量が減
るためO2 不足にならずCOの発生を抑制できる。した
がって、空気過剰率を必要最低限に設定できる。
Further, when the fuel supply amount is momentarily reduced at the time of switching of the high-temperature air supply means, even if the fuel supply amount is reduced at the moment of the switching of the high-temperature air, the fuel supply amount is reduced, so that O 2 shortage occurs. CO generation can be suppressed. Therefore, the excess air ratio can be set to the minimum necessary.

【0009】[0009]

【実施例】以下、本発明の構成を図面に示す実施例に基
づいて詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The construction of the present invention will be described below in detail with reference to the embodiments shown in the drawings.

【0010】図1に本発明の蓄熱型低NOxバーナの原
理図を示す。この蓄熱型低NOxバーナは、従来の拡散
燃焼で用いられる300℃〜400℃程度の燃焼用空気
よりもはるかに高温(例えば1000℃程度の熱風)の
燃焼用空気Aと燃料Fとを別々に炉内15に噴射させ、
2系統の燃焼用空気供給手段2,3から交互に噴射され
る高温の燃焼用空気Aと単一の燃料ノズル1から連続し
て噴射される燃料Fとを炉内15で混合して燃焼させた
後、燃焼ガスを他の燃焼用空気供給手段の蓄熱体5を経
て排気するようにしたものである。ここで、燃焼用空気
供給手段2,3から炉内に噴射される燃焼用空気量をほ
ぼ全量と表現したのは、燃焼用空気の一部(通常数%程
度)が常温のまま燃料ノズル1の冷却用空気として、燃
料用ノズル1の周りから炉内に噴射される場合があるか
らである。しかし、実質的にはほぼ全量となる燃焼用空
気Aが高温にされてから炉内に噴射されていると言え
る。
FIG. 1 shows a principle diagram of a regenerative low NOx burner according to the present invention. This regenerative low NOx burner separates the combustion air A and the fuel F, which have a much higher temperature (for example, hot air of about 1000 ° C.) than the combustion air of about 300 to 400 ° C. used in the conventional diffusion combustion, separately. Inject into the furnace 15
The high-temperature combustion air A alternately injected from the two systems of combustion air supply means 2 and 3 and the fuel F continuously injected from the single fuel nozzle 1 are mixed and burned in the furnace 15. After that, the combustion gas is exhausted through the heat storage body 5 of another combustion air supply means. Here, the expression of the amount of combustion air injected into the furnace from the combustion air supply means 2 and 3 as substantially the whole amount is that a part of the combustion air (usually about several percent) is kept at normal temperature while the fuel nozzle 1 This is because the cooling air may be injected into the furnace from around the fuel nozzle 1. However, it can be said that substantially the entire amount of the combustion air A is injected into the furnace after being heated to a high temperature.

【0011】更に具体的には、本実施例の蓄熱型低NO
xバーナは、燃料Fを炉内15に噴射する燃料ノズル1
と、蓄熱体5を備え該蓄熱体5を通して燃焼用空気Aの
供給と炉内の燃焼ガスの排気とを交互に行う少なくとも
2系統の燃焼用空気供給手段2,3とを有する。ここ
で、2系統の燃焼用空気供給手段2,3は同時に燃焼用
空気Aを噴射することはなく、いずれか一方から燃焼用
空気Aを噴射しているときには他方から炉内の燃焼ガス
Gを排気するための排気系路の一部として使用される。
この2系統の燃焼用空気供給手段2,3の切り替えは例
えば四方弁7などを用いて行われ燃焼ガス及び燃焼用空
気が交互に流される。本実施例において、燃焼用空気供
給手段2,3は、炉壁16に連結された断熱材から成る
ウィンドボックス4とこれに連結される蓄熱体5とから
構成されている。蓄熱体5は例えばケーシング6に収容
されウィンドボックス4に連結されてウィンドボックス
4と一体化されている。ここで、排気系8と給気系9と
は四方弁7と配管10,10によって、選択的に燃焼用
空気供給手段2,3のいずれか一方の蓄熱体5に接続さ
れ、例えば給気系9の押し込みファン11によって供給
される燃焼用空気が加熱された蓄熱体5を経て炉内15
に噴射されると同時に例えば排気系8の誘引ファン12
によって炉内15の燃焼ガスが冷えた蓄熱体5を経て大
気中に吸引排気される。また、この燃焼用空気供給手段
2,3の少なくともいずれか一方には、立ち上げ用のバ
ーナ13が設置されている。立ち上げ用バーナ13は、
例えばウィンドボックス4の周壁からウィンドボックス
4内に向けて燃料ノズル14を設置することによって構
成されている。燃料ノズル14は、燃焼用空気の流れと
交差するように燃料を噴射し得るように設置されてい
る。この立ち上げ用バーナ13は拡散燃焼バーナであ
る。尚、蓄熱体5としては比較的圧力損失が低い割りに
熱容量が大きく耐久性の高い材料例えばファインセラミ
ックスで成形されたハニカム状のセル孔を多数有する筒
体の使用が好ましいが、特にこれに限定されるものでは
なく他の材料あるいは構造から成る蓄熱体を使用しても
良い。尚、図示していないが、立ち上げ用のバーナ13
にはその点火用トランスなどの必要な付帯設備が装備さ
れる。
More specifically, the heat storage type low NO
The x burner is a fuel nozzle 1 that injects fuel F into the furnace 15.
And at least two systems of combustion air supply means 2 and 3 having a heat storage element 5 and alternately supplying combustion air A and exhausting combustion gas in the furnace through the heat storage element 5. Here, the two systems of combustion air supply means 2 and 3 do not inject the combustion air A at the same time, and when the combustion air A is being injected from either one, the combustion gas G in the furnace is discharged from the other. Used as part of an exhaust system for exhaust.
The switching between the two systems of combustion air supply means 2 and 3 is performed using, for example, a four-way valve 7 and the like, and the combustion gas and the combustion air are alternately flown. In the present embodiment, the combustion air supply means 2, 3 comprises a wind box 4 made of a heat insulating material connected to a furnace wall 16 and a heat storage body 5 connected to the wind box 4. The heat storage body 5 is housed in, for example, a casing 6 and connected to the wind box 4 to be integrated with the wind box 4. Here, the exhaust system 8 and the air supply system 9 are selectively connected to either one of the heat storage bodies 5 of the combustion air supply means 2 or 3 by a four-way valve 7 and pipes 10 and 10, for example. The combustion air supplied by the push-in fan 9 of the furnace 9 passes through the regenerator 5 which has been heated.
At the same time as, for example, the induction fan 12 of the exhaust system 8.
As a result, the combustion gas in the furnace 15 is sucked and exhausted into the atmosphere via the cooled regenerator 5. A start-up burner 13 is provided in at least one of the combustion air supply means 2 and 3. The start-up burner 13
For example, a fuel nozzle 14 is provided from the peripheral wall of the wind box 4 toward the inside of the wind box 4. The fuel nozzle 14 is installed so as to inject fuel so as to intersect with the flow of combustion air. The start-up burner 13 is a diffusion combustion burner. It is preferable to use a cylindrical body having a large number of honeycomb-shaped cell holes formed of a material having a large heat capacity and a high durability, such as fine ceramics, in spite of a relatively low pressure loss, but is particularly limited to this. Alternatively, a heat storage body made of another material or structure may be used. Although not shown, the burner 13 for startup is provided.
Is equipped with necessary auxiliary equipment such as an ignition transformer.

【0012】燃料ノズル1は、炉壁16を貫通して炉内
15に直接露出するように少なくとも1本が配置されて
いる。例えば本実施例の場合、1本の燃料ノズル1に対
し2系統の燃焼用空気供給手段2,3が等間隔で配置さ
れている。この燃料ノズル1は、燃焼用空気とほぼ平行
に炉内15に燃料を噴射するように開口されている。
尚、図2に示すように、燃料ノズル1と炉壁16との間
には、わずかな隙間の冷却空気噴射孔17を設け、燃焼
用空気の一部(例えば数%相当)を蓄熱体5を通さずに
常温のまま流すことによって燃料ノズル1を冷却するこ
ともある。この冷却用の空気は、例えば給気系9から分
岐された冷却空気供給管18を介して供給される。
At least one fuel nozzle 1 is arranged so as to penetrate the furnace wall 16 and be directly exposed to the inside of the furnace 15. For example, in the case of this embodiment, two systems of combustion air supply means 2 and 3 are arranged at equal intervals for one fuel nozzle 1. The fuel nozzle 1 is opened so as to inject fuel into the furnace 15 substantially in parallel with the combustion air.
As shown in FIG. 2, a cooling air injection hole 17 having a slight gap is provided between the fuel nozzle 1 and the furnace wall 16 so that a part of the combustion air (e.g. The fuel nozzle 1 may be cooled by flowing at room temperature without passing through. The cooling air is supplied, for example, via a cooling air supply pipe 18 branched from the air supply system 9.

【0013】以上のように構成されたバーナによれば次
のようにして低NOx燃焼を実現できる。
According to the burner constructed as described above, low NOx combustion can be realized as follows.

【0014】まず、燃焼用空気供給手段3に装備されて
いる立ち上げ用バーナ13を焚く。そして、炉内15が
所定温度に達したとき、燃料ノズル1から燃料噴射を開
始すると共に今まで燃焼ガスを排気させていた燃焼用空
気供給手段2から燃焼用空気を供給するように四方弁7
を切り替える。燃焼用空気Aは加熱された蓄熱体5を通
って炉内15に供給される。したがって、排ガス温度に
近い高温の燃焼用空気例えば1000℃程度の熱風とな
って供給される。ほぼ全量の燃焼用空気に相当する高温
燃焼用空気Aと燃料ノズル1から噴射される燃料Fとは
別々に炉内15に噴射されるため噴射直後に混合するこ
となく炉内15に広がり、炉内15のいずこかで緩慢に
混合される。このとき、燃焼用空気Aと燃料Fはその流
速を急速に低下させかつ混合領域を広範囲に拡大してい
ることから、燃焼し難い条件である。しかし、燃焼用空
気Aそのものが1000℃程度の高温であるため、この
ような条件でも容易に燃焼する。即ち、緩慢燃焼する。
この緩慢燃焼はNOxの発生が少ない。
First, a start-up burner 13 provided in the combustion air supply means 3 is fired. When the inside of the furnace 15 reaches a predetermined temperature, the four-way valve 7 starts fuel injection from the fuel nozzle 1 and supplies combustion air from the combustion air supply means 2 which has been exhausting the combustion gas.
Switch. The combustion air A is supplied to the furnace interior 15 through the heated regenerator 5. Therefore, high-temperature combustion air close to the exhaust gas temperature, for example, hot air of about 1000 ° C. is supplied. The high-temperature combustion air A, which corresponds to substantially the entire amount of combustion air, and the fuel F injected from the fuel nozzle 1 are separately injected into the furnace 15, so that they spread into the furnace 15 without being mixed immediately after the injection. Slowly mixed anywhere in 15 of them. At this time, the combustion air A and the fuel F are hardly combusted because their flow speeds are rapidly reduced and the mixing region is widened over a wide range. However, since the combustion air A itself is at a high temperature of about 1000 ° C., it easily burns even under such conditions. That is, the fuel burns slowly.
This slow combustion produces less NOx.

【0015】この緩慢燃焼によって発生する燃焼ガスは
炉内15での熱利用の後、他方の燃焼用空気供給手段3
から炉外に排出される。このとき、蓄熱体5で燃焼ガス
の廃熱を回収する。そして、排気側となっている燃焼用
空気供給手段3の蓄熱体5がある程度の温度に達する
と、燃焼用空気を切り替え、今まで燃焼ガスを排気して
いた燃焼用空気供給手段3から燃焼用空気Aを供給し、
反対側の燃焼用空気供給手段2から燃焼ガスを排気す
る。ここで、燃焼と排気の切替は例えば20秒〜2分間
隔、好ましくは約1分以内の間隔で行うか、あるいは排
出される燃焼ガスが所定の温度例えば200℃程度とな
ったときに行う。また、高温空気切り替えの瞬間に空気
が炉内に噴射されないこととなるが、空気過剰率をある
程度高めに設定しておけばO2 不足によるCO発生を招
くことがない。
After the combustion gas generated by the slow combustion is utilized in the furnace 15, the other combustion air supply means 3 is used.
From the furnace. At this time, the heat storage 5 recovers the waste heat of the combustion gas. When the temperature of the regenerator 5 of the combustion air supply means 3 on the exhaust side reaches a certain temperature, the combustion air is switched, and the combustion air supply means 3 which has been exhausting the combustion gas is used for the combustion. Supply air A,
The combustion gas is exhausted from the combustion air supply means 2 on the opposite side. Here, the switching between the combustion and the exhaust is performed, for example, at intervals of 20 seconds to 2 minutes, preferably at intervals of about 1 minute, or when the discharged combustion gas reaches a predetermined temperature, for example, about 200 ° C. In addition, air is not injected into the furnace at the moment of high-temperature air switching, but if the excess air ratio is set to a somewhat high level, CO generation due to lack of O 2 does not occur.

【0016】尚、上述の実施例は本発明の好適な実施の
一例ではあるがこれに限定されるものではなく本発明の
要旨を逸脱しない範囲において種々変形実施可能であ
る。例えば、本実施例では、2系統の燃焼用空気供給系
2,3を交互に切り替える際にも燃料ノズル14から噴
射される燃料は一定量であるがこれに特に限定されるも
のではなく、空気の切り替えの瞬間に燃料を減らすこと
もある。この場合、空気過剰率を必要最低限に設定した
としても、燃料の供給が瞬間的に減らされるため、高温
空気切り替えの瞬間に空気が炉内に噴射されない状況が
起きたとしてO2不足となることがない。このため、C
Oの発生を抑制できる。また、本実施例では、1つの燃
料ノズル1の周りに2系統の燃焼用用空気供給手段2,
3を配置しているが、3系統以上の燃焼用空気供給手段
を配置して順番に燃焼用空気を噴射させるようにしても
良い。また、複数本の燃料ノズル1,…,1と複数対の
燃焼用空気供給手段2,3とを組み合わせて配置しても
良い。
The above embodiment is a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the gist of the present invention. For example, in the present embodiment, the fuel injected from the fuel nozzle 14 is a constant amount even when the two systems of the combustion air supply systems 2 and 3 are alternately switched, but is not particularly limited thereto. The fuel may be reduced at the moment of switching. In this case, even if the excess air ratio is set to the necessary minimum, the supply of fuel is instantaneously reduced, so that the situation occurs in which air is not injected into the furnace at the moment of high-temperature air switching, resulting in O 2 shortage. Nothing. Therefore, C
O generation can be suppressed. In the present embodiment, two systems of combustion air supply means 2 around one fuel nozzle 1 are provided.
Although three are arranged, three or more systems of combustion air supply means may be arranged to inject combustion air in order. Further, a plurality of fuel nozzles 1, ..., 1 and a plurality of pairs of combustion air supply means 2, 3 may be arranged in combination.

【0017】[0017]

【発明の効果】以上の説明より明らかなように、本発明
の蓄熱型低NOxバーナシステムは、蓄熱体を備え該蓄
熱体を通して燃焼用空気の供給と燃焼ガスの排出を交互
に行なう少なくとも2系統の燃焼用空気供給手段を炉内
に向けて直接開口させて設置し燃焼ガスの熱で加熱され
た蓄熱体を通して高温の燃焼用空気を噴射させる一方、
燃焼用空気供給手段とほぼ平行に炉内に燃料を連続的に
噴射し、尚かつこれら燃焼用空気噴流と燃料噴流とが噴
射直後に混合することなく別々に炉内へ広がる燃料噴流
が形成される間隔を燃焼用空気供給手段に対してとって
燃料ノズルを少なくとも2系統の燃焼用空気供給手段に
対して1本設置し、炉内に燃料を連続的に噴射すると共
にこの燃料と平行して高温の燃焼用空気を燃焼用空気供
給手段から交互に炉内に噴射するようにしているので、
炉内に別々に噴射される高温の燃焼用空気と燃料とが炉
内のいずこかで緩慢燃焼を起こす。したがって、燃料の
切り替えを行わずに燃焼用空気の切り替えを行うだけで
実質的に交互燃焼と同様に燃焼を維持できる。しかも、
燃焼は高温の燃焼用空気によって安定した緩慢燃焼を実
現できるため、蓄熱型バーナとしての特性を失うことな
くNOxの発生を従来の蓄熱型バーナよりも大幅に低減
できる。
As is evident from the above description, the heat storage type low NOx burner system of the present invention has at least two systems which include a heat storage body and alternately supply combustion air and discharge combustion gas through the heat storage body. While the combustion air supply means is directly opened into the furnace and installed to inject high-temperature combustion air through a heat storage body heated by the heat of combustion gas,
Fuel is continuously fed into the furnace almost parallel to the combustion air supply means.
And the combustion air jet and the fuel jet are jetted.
Fuel jets that spread separately into the furnace without mixing immediately after firing
The interval at which air is formed with respect to the combustion air supply means
Fuel nozzle as at least two systems of air supply for combustion
The fuel is continuously injected into the furnace, and high-temperature combustion air is alternately injected from the combustion air supply means into the furnace in parallel with the fuel.
High-temperature combustion air and fuel separately injected into the furnace cause slow combustion anywhere in the furnace. Therefore, the combustion can be maintained substantially in the same manner as the alternate combustion only by switching the combustion air without switching the fuel. Moreover,
In combustion, stable slow combustion can be realized by high-temperature combustion air, so that generation of NOx can be significantly reduced as compared with a conventional regenerative burner without losing the characteristics of a regenerative burner.

【0018】更に、燃焼用空気を交互に供給するだけで
交番燃焼と同様の効果が得られるにも拘らず燃料を切り
替えるための設備や噴射タイミングを取るための制御装
置などを必要としない。しかも、燃料ノズルは炉壁内に
埋め込むことができ、燃焼ガスの排気系路から完全に退
避できるため、焼損や燃料コーキングの虞がない上に配
置位置や構造等が複雑とならずに済む。
Further, although the same effect as that of the alternating combustion can be obtained only by alternately supplying the combustion air, equipment for switching the fuel and a control device for setting the injection timing are not required. In addition, since the fuel nozzle can be embedded in the furnace wall and can be completely retracted from the exhaust gas passage of the combustion gas, there is no danger of burning or fuel coking, and the arrangement position and structure are not complicated.

【0019】また、本発明において高温空気を切り替え
る際に燃料供給量を減じるようにして連続的に噴射する
場合、空気過剰率を必要最低限に設定しても、炉内が酸
素不足になることがなく、CO発生量を最少に抑えるこ
とができる。
Further, in the present invention, when the high-temperature air is switched and the fuel is continuously injected so as to reduce the fuel supply amount, even if the excess air ratio is set to the minimum necessary, the furnace becomes short of oxygen. And the amount of generated CO can be minimized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の蓄熱型低NOxバーナシステムの原理
図である。
FIG. 1 is a principle diagram of a heat storage type low NOx burner system of the present invention.

【図2】図1のバーナの正面図である。FIG. 2 is a front view of the burner of FIG. 1;

【図3】従来の蓄熱型バーナの原理図である。FIG. 3 is a principle diagram of a conventional heat storage type burner.

【符号の説明】[Explanation of symbols]

1 燃料ノズル 2,3 燃焼用空気供給手段 5 蓄熱体 7 四方弁 8 排気系 9 給気系 15 炉内 F 燃料 A 高温燃焼用空気 DESCRIPTION OF SYMBOLS 1 Fuel nozzle 2, 3 Combustion air supply means 5 Heat storage element 7 Four-way valve 8 Exhaust system 9 Supply system 15 Furnace F Fuel A High temperature combustion air

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 蓄熱体を備え該蓄熱体を通して燃焼用空
気の供給と燃焼ガスの排出を交互に行なう少なくとも2
系統の燃焼用空気供給手段を炉内に向けて直接開口させ
て設置し燃焼ガスの熱で加熱された蓄熱体を通して高温
の燃焼用空気を噴射させる一方、前記燃焼用空気供給手
段とほぼ平行に前記炉内に燃料を連続的に噴射し、尚か
つこれら燃焼用空気噴流と燃料噴流とが噴射直後に混合
することなく別々に前記炉内へ広がる燃料噴流が形成さ
れる間隔を前記燃焼用空気供給手段に対してとって燃料
ノズルを少なくとも2系統の前記燃焼用空気供給手段に
対して1本設置し、前記炉内に燃料を連続的に噴射する
と共にこの燃料と平行して高温の燃焼用空気を前記燃焼
用空気供給手段から交互に炉内に噴射することを特徴と
する蓄熱型低NOxバーナ。
At least two units each including a heat storage unit for alternately supplying combustion air and discharging combustion gas through the heat storage unit.
The combustion air supply means of the system is directly opened into the furnace and installed to inject high-temperature combustion air through the heat storage heated by the heat of the combustion gas, while being substantially parallel to the combustion air supply means. Inject fuel continuously into the furnace,
These combustion air jets and fuel jets mix immediately after injection.
Fuel jets that spread separately into the furnace without
The interval between the fuel and the combustion air supply means.
The nozzle is connected to at least two systems of the combustion air supply means.
And one fuel is continuously injected into the furnace and high-temperature combustion air is alternately injected into the furnace from the combustion air supply means in parallel with the fuel. Heat storage type low NOx burner.
【請求項2】 蓄熱体を備え該蓄熱体を通して燃焼用空
気の供給と燃焼ガスの排出を交互に行なう少なくとも2
系統の燃焼用空気供給手段を炉内に向けて直接開口させ
て設置し燃焼ガスの熱で加熱された蓄熱体を通して高温
の燃焼用空気を噴射させる一方、前記燃焼用空気供給手
段とほぼ平行に前記炉内に燃料を噴射する少なくとも1
本の燃料ノズルを設置し、前記炉内に高温の燃焼用空気
を前記燃焼用空気供給手段から交互に炉内に噴射すると
共に前記燃料を炉内に前記高温空気の交互切替を行う瞬
間のみ流量を減じて連続的に噴射することを特徴とする
蓄熱型低NOxバーナ。
2. A heat storage device, comprising: a heat storage element for supplying combustion air and discharging combustion gas alternately through the heat storage element.
The combustion air supply means of the system is directly opened into the furnace and installed to inject high-temperature combustion air through the heat storage heated by the heat of the combustion gas, while being substantially parallel to the combustion air supply means. At least one for injecting fuel into the furnace
A fuel nozzle is installed, and high-temperature combustion air is alternately injected into the furnace from the combustion air supply means in the furnace, and the fuel is flown only at the moment of alternately switching the high-temperature air into the furnace. A low regenerative type low NOx burner characterized by continuously injecting while reducing the amount of heat.
JP5081195A 1993-03-17 1993-03-17 Thermal storage type low NOx burner Expired - Fee Related JP2837787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5081195A JP2837787B2 (en) 1993-03-17 1993-03-17 Thermal storage type low NOx burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5081195A JP2837787B2 (en) 1993-03-17 1993-03-17 Thermal storage type low NOx burner

Publications (2)

Publication Number Publication Date
JPH06272851A JPH06272851A (en) 1994-09-27
JP2837787B2 true JP2837787B2 (en) 1998-12-16

Family

ID=13739700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5081195A Expired - Fee Related JP2837787B2 (en) 1993-03-17 1993-03-17 Thermal storage type low NOx burner

Country Status (1)

Country Link
JP (1) JP2837787B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3959773B2 (en) * 1997-02-28 2007-08-15 Jfeスチール株式会社 Thermal storage type atmospheric gas heating method and thermal storage type atmospheric gas heating device
DE60025924D1 (en) * 1999-08-17 2006-04-20 Nippon Furnace Kogyo K K COMBUSTION PROCESS AND BURNERS
US6814568B2 (en) * 2000-07-27 2004-11-09 Foster Wheeler Usa Corporation Superatmospheric combustor for combusting lean concentrations of a burnable gas
JP4691349B2 (en) * 2004-11-05 2011-06-01 千代田化工建設株式会社 Reactor
JP5171065B2 (en) * 2007-03-01 2013-03-27 中外炉工業株式会社 Continuous heating furnace
JP7029277B2 (en) * 2017-11-06 2022-03-03 日本碍子株式会社 Manufacturing method for regenerative burners, industrial furnaces and fired products
PL3722671T3 (en) * 2019-04-11 2022-02-07 Hertwich Engineering Gmbh Method for the continuous firing of combustion chambers with at least three regenerative burners

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0330683Y2 (en) * 1985-06-14 1991-06-28
JPH081287B2 (en) * 1992-06-24 1996-01-10 中外炉工業株式会社 Heat storage type combustion device

Also Published As

Publication number Publication date
JPH06272851A (en) 1994-09-27

Similar Documents

Publication Publication Date Title
JPH01159511A (en) Radiant tube burner
JP2837787B2 (en) Thermal storage type low NOx burner
JPH0726730B2 (en) Combustion method in furnace
JP2003254509A (en) Single end type heat accumulating radiant tube burner and its combustion method
JPH0486335A (en) Gas turbine equipment
JP2788698B2 (en) Low NOx combustion method and its burner
KR100299709B1 (en) Airflow circulating heating system
JP2774751B2 (en) Ultra low calorific value gas combustion device
JPH0611121A (en) Heat accumulation type combustion device
JP3305506B2 (en) Thermal storage combustion device
JP3031908B1 (en) Impact stirring type combustion method
KR101143374B1 (en) Auxiliary burner of heat recovery steam boiler
KR100370577B1 (en) Ladle Heat Regenerative Combustor
JPH1151312A (en) Low nox combustion equipment for liquid fuel
JPH09166317A (en) Adjusting structure of air flow rate in regenerative burner
JPH1130421A (en) Low nox combustor for two-fluid cycle
JP2579474B2 (en) Fire extinguishing method for burner for coal-water slurry
JPH08121712A (en) Method and device for regenerative combustion
JPH0989242A (en) Regenerative burner and heating furnace with regenerative burner
JPH1130422A (en) Low nox combustor for two-fluid cycle
JPH04324028A (en) Gas firing combustion apparatus
JPH10169971A (en) Heat storage regenerative combustor
JPH0849836A (en) Regenerative combustion apparatus
JP3696367B2 (en) Burner equipment
JP3766455B2 (en) Cogeneration system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees