JP2837511B2 - Optical switch array - Google Patents

Optical switch array

Info

Publication number
JP2837511B2
JP2837511B2 JP14835990A JP14835990A JP2837511B2 JP 2837511 B2 JP2837511 B2 JP 2837511B2 JP 14835990 A JP14835990 A JP 14835990A JP 14835990 A JP14835990 A JP 14835990A JP 2837511 B2 JP2837511 B2 JP 2837511B2
Authority
JP
Japan
Prior art keywords
electro
optical
reflecting mirror
effect material
transparent thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14835990A
Other languages
Japanese (ja)
Other versions
JPH0440428A (en
Inventor
正良 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP14835990A priority Critical patent/JP2837511B2/en
Publication of JPH0440428A publication Critical patent/JPH0440428A/en
Application granted granted Critical
Publication of JP2837511B2 publication Critical patent/JP2837511B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光通信、光情報処理、光交換等の分野で用
いられる光スイッチアレイに関する。
Description: TECHNICAL FIELD The present invention relates to an optical switch array used in fields such as optical communication, optical information processing, and optical switching.

従来の技術 従来、この種のスイッチとして特開昭58−90619号公
報に示されるものがある。第5図はその構成を示すもの
で、電気光学結晶1の一表面上にその深さ方向に電界を
発生させる電極対2a,2bを設け、電気光学結晶1の前記
一表面に直交する一端面に複数の光ファイバ3a,3b,3cを
結合させ、対向する他端面に集光作用を示す凹面反射鏡
4a,4bを設けてなり、各光ファイバ3a,3b,3cはこれらの
凹面反射鏡4a,4bを介して光学的に結合されている。5
はコリメート用のセルフォックレンズである。
2. Description of the Related Art A conventional switch of this type is disclosed in Japanese Patent Application Laid-Open No. 58-90619. FIG. 5 shows the structure, in which an electrode pair 2a, 2b for generating an electric field in the depth direction is provided on one surface of the electro-optic crystal 1, and one end face of the electro-optic crystal 1 orthogonal to the one surface. A plurality of optical fibers 3a, 3b, 3c are coupled to each other, and a concave reflecting mirror showing a condensing action on the other end face
4a, 4b are provided, and the optical fibers 3a, 3b, 3c are optically coupled via these concave reflecting mirrors 4a, 4b. 5
Is a selfoc lens for collimation.

このような構成において、電極対2a,2b間に電源6に
より電圧印加することにより、電気光学結晶1の深さ方
向に電界分布を発生させ、その電気光学効果により内部
に屈折率分布を形成する。すると、光ファイバ3a〜3cの
何れかから電気光学結晶1中に出射された光は屈折しな
がら内部を伝搬する。よって、電気光学結晶1の屈折率
分布を電気的に制御し、凹面反射鏡4a,4bへの入射を切
換えることで、入出力間の光ファイバ3a〜3cの光学的結
合を切換え得るというものである。
In such a configuration, an electric field distribution is generated in the depth direction of the electro-optic crystal 1 by applying a voltage between the electrode pair 2a and 2b by the power supply 6, and a refractive index distribution is formed inside by the electro-optic effect. . Then, light emitted into the electro-optic crystal 1 from any of the optical fibers 3a to 3c propagates inside while being refracted. Therefore, by electrically controlling the refractive index distribution of the electro-optic crystal 1 and switching the incidence on the concave reflecting mirrors 4a and 4b, the optical coupling between the input and output optical fibers 3a to 3c can be switched. is there.

発明が解決しようとする課題 ところが、電気光学結晶の電気光学効果は一般に小さ
いため、第5図に示すような構成の場合、結合できる光
ファイバに限界がある。また、凹面反射鏡4a,4bについ
ても高精度に製作しなければならず、コスト高となる。
さらには、電極対2a,2bが光の伝搬方向に平行に形成さ
れているため、1次元若しくは2次元アレイ状に集積化
させること、即ち、アレイ化が困難である。また、入出
力光の伝搬方向が反対のため、積層光回路への応用が困
難であるという問題もある。
Problems to be Solved by the Invention However, since the electro-optic effect of the electro-optic crystal is generally small, there is a limit to the optical fiber that can be coupled in the configuration shown in FIG. In addition, the concave reflecting mirrors 4a and 4b must also be manufactured with high precision, which increases the cost.
Furthermore, since the electrode pairs 2a and 2b are formed parallel to the light propagation direction, it is difficult to integrate them in a one-dimensional or two-dimensional array, that is, to form an array. There is also a problem that application to a laminated optical circuit is difficult because the propagation directions of input and output light are opposite.

課題を解決するための手段 透明材料による基板の両面に、第1,第2透明薄膜電極
と、基板の屈折率より高屈折率の第1,2電気光学効果物
質層とを順次積層形成し、さらに、1次元又は2次元ア
レイ状に配列された入・出射側各々の光導波路間に配設
されてこられの第1,2電気光学効果物質層表面に電極機
能を持つ第1,2反射鏡を各々形成し、これらの第1反射
鏡と第1透明薄膜電極又は第2透明薄膜電極と第2反射
鏡とに対して選択的に電圧を印加する電圧印加手段を設
け、これらの選択的な電圧印加により前記第1電気光学
効果物質層又は第2電気光学効果物質層内部の電界分布
を制御しその電気光学効果による偏向と第1,2反射鏡間
の多重反射とにより入・出射光導波路間の結合を切換え
制御するようにした。
Means for Solving the Problems On both sides of a substrate made of a transparent material, first and second transparent thin-film electrodes and first and second electro-optical effect material layers having a refractive index higher than the refractive index of the substrate are sequentially laminated and formed. Further, the first and second reflecting mirrors having electrode functions on the surfaces of the first and second electro-optical effect material layers disposed between the optical waveguides on the input and output sides arranged in a one-dimensional or two-dimensional array. And voltage applying means for selectively applying a voltage to the first reflecting mirror and the first transparent thin film electrode or the second transparent thin film electrode and the second reflecting mirror. An electric field distribution inside the first electro-optical effect material layer or the second electro-optical effect material layer is controlled by applying a voltage, and an input / output optical waveguide is formed by deflection due to the electro-optical effect and multiple reflection between the first and second reflecting mirrors. The connection between them is switched and controlled.

作用 電極機能を持つ反射鏡と透明薄膜電極とを等電位にし
た状態では電気光学物質層が電気光学効果を発揮しない
ため、入射光は基板を直進透過して対応する出射側の光
導波路に結合される。一方、第1反射鏡の内で注目する
ある入射側光導波路に隣接した反射鏡と第1透明薄膜電
極との間に電圧を印加すると、第1電気光学効果物質層
内部に電界分布が生ずる。これにより、この部分の電気
光学効果物質層はその電気光学効果により屈折率が変化
して屈折率分布を持つため、電気光学効果物質層内部で
入力光を屈折させる。屈折された光は第2反射鏡と第2
反射鏡との間で複数回の反射を繰返しながら進路を変え
て伝搬し、隣接する別の出射側光導波路に切換え結合さ
れる。これにより、確実かつ高速の光スイッチングが可
能となる。ここに、基板を挾んで対称構造であり、入出
射側を逆とし、第2反射鏡と第2透明薄膜電極との間の
電圧印加を選択的に行うことにより、逆方向のスイッチ
ングも可能となり、双方向スイッチングができる。ま
た、電気光学効果物質層を挾んで透明薄膜電極と反射鏡
とがあり電圧印加により屈折率変化を生じさせるととも
に、電気光学効果物質層と基板との間の屈折率差による
角度増幅及び反射鏡間の多重反射を利用するため、電気
光学効果が小さくても切換え可能であり、かつ、低電圧
駆動が可能となる。また、全体的な構造も、基板両面に
対して所定の第1,2反射鏡の膜を形成すればよく、面内
一括処理が可能で、小型デバイス化、アレイ化が可能と
なる。さらには、伝搬方向として入射から出射までが同
一方向であるので、積層光回路への応用も容易である。
When the reflecting mirror having the electrode function and the transparent thin-film electrode are at the same potential, the electro-optic material layer does not exhibit the electro-optic effect, so that the incident light is transmitted straight through the substrate and coupled to the corresponding light waveguide on the emission side. Is done. On the other hand, when a voltage is applied between the first transparent thin-film electrode and a reflector adjacent to a certain incident-side optical waveguide of interest in the first reflector, an electric field distribution is generated inside the first electro-optic effect material layer. As a result, the electro-optic effect material layer in this portion changes its refractive index due to the electro-optic effect and has a refractive index distribution, so that the input light is refracted inside the electro-optic effect material layer. The refracted light is transmitted to the second reflecting mirror and the second
The light propagates while changing the course while repeating reflection a plurality of times with the reflecting mirror, and is switched and coupled to another adjacent exit-side optical waveguide. This enables reliable and high-speed optical switching. Here, the symmetrical structure with the substrate interposed therebetween, the input and output sides are reversed, and the voltage can be selectively applied between the second reflecting mirror and the second transparent thin film electrode, whereby switching in the opposite direction is also possible. , Bidirectional switching is possible. There is a transparent thin-film electrode and a reflecting mirror sandwiching the electro-optic effect material layer, which causes a change in the refractive index when a voltage is applied, and an angle amplification and a reflecting mirror due to the difference in the refractive index between the electro-optic effect material layer and the substrate. Since the multiple reflection between them is used, switching is possible even with a small electro-optical effect, and low-voltage driving is possible. Also, the entire structure may be such that predetermined first and second reflecting mirror films are formed on both surfaces of the substrate, so that in-plane batch processing can be performed, and miniaturization of devices and arraying can be realized. Furthermore, since the propagation direction is the same direction from the incident to the outgoing, application to a laminated optical circuit is also easy.

実施例 本発明の第一の実施例を第1図ないし第3図に基づい
て説明する。本実施例の光スイッチアレイは、使用する
波長光に対して透明な材料からなる基板11をベースとし
て構成される。この基板11両面にITO薄膜などによる第
1,2透明薄膜電極12,13を積層形成し、さらに、これらの
第1,2透明薄膜電極12,13の表面に透明な第1,2電気光学
効果物質層14,15を積層形成した基板対称5層構造とさ
れている。ここに、基板11の屈折率をn0、電気光学効果
物質層14,15の屈折率をn1とすると、n0<n1なる関係を
満足するように設定されている。このような関係を満た
すものとして、例えば基板11には石英ガラス等を用い、
電気光学効果物質層14,15にはPLZTや液晶を用いること
ができる(本実施例では、電気光学効果物質層14,15と
してPLZTを用いた)。
Embodiment A first embodiment of the present invention will be described with reference to FIGS. The optical switch array according to the present embodiment is configured based on a substrate 11 made of a material transparent to the wavelength light to be used. This substrate 11 is coated on both sides with an ITO thin film
Substrate in which 1,2 transparent thin-film electrodes 12,13 are laminated and further, transparent first and second electro-optical effect material layers 14,15 are laminated on the surfaces of these first and second transparent thin-film electrodes 12,13. It has a symmetrical five-layer structure. Here, assuming that the refractive index of the substrate 11 is n 0 and the refractive indices of the electro-optic effect material layers 14 and 15 are n 1 , the relationship is set so as to satisfy a relationship of n 0 <n 1 . As a material satisfying such a relationship, for example, quartz glass or the like is used for the substrate 11,
PLZT or liquid crystal can be used for the electro-optic effect material layers 14 and 15 (in this embodiment, PLZT is used for the electro-optic effect material layers 14 and 15).

ついで、第1の電気光学効果物質層14表面上には電極
機能を持つ第1反射鏡16が単層(又は複数層)構造で複
数個個別に形成されている。また、他方の第2電気光学
効果物質層15表面上にも同様に電極機能を持つ第2反射
鏡17が単層(又は複数層)構造で複数個個別に形成され
ている。これらの反射鏡16,17はAu金属薄膜とされてい
る。ここに、第1反射鏡16は1次元アレイ状等間隔配列
の例えば入射側光導波路、ここでは入射側光ファイバ18
による入射位置P間を埋めるよう1次元に規則的に等間
隔に配設されている。第2反射鏡17も同様に、1次元ア
レイ状等間隔配列の例えば出射側光導波路、ここでは出
射側光ファイバ19への出射位置間を埋めるように1次元
に規則的に等間隔に配設されている。このような第1,2
反射鏡16,17を含め、本実施例の光スイッチアレイは、
スパッタリング法、蒸着法等の通常の薄膜形成技術や、
フォトリソグラフィ法、エッチング等の加工技術によっ
て、高精度かつ簡単に作製できる。
Next, on the surface of the first electro-optical effect material layer 14, a plurality of first reflecting mirrors 16 having an electrode function are individually formed in a single-layer (or plural-layer) structure. Similarly, a plurality of second reflecting mirrors 17 having an electrode function are individually formed on the surface of the other second electro-optical effect material layer 15 in a single-layer (or multiple-layer) structure. These reflecting mirrors 16 and 17 are made of Au metal thin film. Here, the first reflecting mirror 16 is, for example, an incident side optical waveguide of a one-dimensional array-shaped equidistant array, here an incident side optical fiber 18.
Are arranged one-dimensionally at regular intervals so as to fill the space between the incident positions P. Similarly, the second reflecting mirrors 17 are also arranged one-dimensionally at regular intervals so as to fill the space between the emission positions to the emission-side optical waveguides, for example, the emission-side optical fibers 19 in this case. Have been. Such first and second
The optical switch array of this embodiment, including the reflecting mirrors 16 and 17,
Ordinary thin film forming techniques such as sputtering and evaporation,
It can be manufactured with high precision and easily by processing techniques such as photolithography and etching.

ここに、前記第1反射鏡16は各々個別に電圧印加手段
(図示せず)により選択的に電圧印加させるものであ
る。この場合、第1透明薄膜電極12は共通電極的に作用
し、第1反射鏡16は何れも電気的に独立して電圧印加を
受け得るように配線接続されている。これは、第2反射
鏡17側でも同様であり、第2透明薄膜電極13を共通電極
として、第2反射鏡17は各々個別に電圧印加手段(図示
せず)により選択的に電圧印加されるものである。第2
反射鏡17は何れも電気的独立して電圧印加を受け得るよ
うに配線接続されている。また、前記入射光ファイバ18
の入射位置Pに対しては第1図に示すようにコリメート
レンズ20が結合され、出射位置に対しては集光レンズ21
を介して出射側光ファイバ19が結合されるものである。
Here, the first reflecting mirrors 16 selectively apply a voltage individually by voltage applying means (not shown). In this case, the first transparent thin-film electrode 12 acts as a common electrode, and the first reflecting mirrors 16 are all connected to each other so that they can receive a voltage independently and electrically. The same applies to the second reflecting mirror 17 side. The second reflecting mirror 17 is individually and selectively applied with a voltage by voltage applying means (not shown) using the second transparent thin film electrode 13 as a common electrode. Things. Second
Each of the reflecting mirrors 17 is wired and connected so that a voltage can be applied electrically independently. Further, the incident optical fiber 18
The collimating lens 20 is coupled to the incident position P as shown in FIG.
The outgoing side optical fiber 19 is coupled via the.

このような構成において、本実施例の動作原理を第1
図により説明する。いま、ある入射側光ファイバ18a伝
搬してきた入射光22a(ただし、アレイ方向に偏波面を
有する直線偏光)は、コリメートレンズ20aによりコリ
メートされて基板11に入射する場合を考える。この時、
第1反射鏡16と第1透明薄膜電極12を等電位(この場
合、接地=0Vでよい)とし、同様に、第2反射鏡17と第
2透明薄膜電極13を等電位とすると、入射光22aは一転
鎖線で示すように基板11中を直進透過して、対応する出
射側の集光レンズ21aを通り、出射光23aとして出射側光
ファイバ19a中に出射される。一方、入射側光ファイバ1
8aに隣接する第1反射鏡16bに電圧Vを印加し、他の第
1反射鏡16a,〜、第1,2透明薄膜電極12,13及び第2反射
鏡17は設置(0V)したままとすると、第1反射鏡16bに
対応する第1電気光学効果物質層14内部に破線で示すよ
うな電界分布が生ずる。これにより、第1電気光学効果
物質層14は電気光学効果により屈折率が変化して屈折率
分布が形成される。よって、光ファイバ18aから入射し
た入射光22aは実線で示すように第1電気光学効果物質
層14内部で屈折される。屈折された入射光22aは、第1
電気光学効果物質層14と基板11との間の屈折率関係によ
りスネルの法則に従いその屈折角を増大させて第2反射
鏡17aに伝播する。よって、この後は、反射鏡17a,16a間
で複数回の反射を繰返して伝搬し、隣接の集光レンズ21
bに結合して対応する出射側光ファイバ19b中に出射光23
bとして出射される。
In such a configuration, the operation principle of this embodiment is the first.
This will be described with reference to the drawings. Now, consider a case where incident light 22a (a linearly polarized light having a plane of polarization in the array direction) that has propagated through a certain incident-side optical fiber 18a is collimated by a collimating lens 20a and enters the substrate 11. At this time,
When the first reflecting mirror 16 and the first transparent thin-film electrode 12 are set to the same potential (in this case, grounding may be 0 V), and similarly, the second reflecting mirror 17 and the second transparent thin-film electrode 13 are set to the same potential. 22a is transmitted straight through the substrate 11 as indicated by the chain line, passes through the corresponding exit-side condenser lens 21a, and is emitted as emission light 23a into the emission-side optical fiber 19a. On the other hand, the incident side optical fiber 1
A voltage V is applied to the first reflecting mirror 16b adjacent to the first reflecting mirror 8a, and the other first reflecting mirrors 16a,..., The first and second transparent thin-film electrodes 12, 13 and the second reflecting mirror 17 are kept installed (0 V). Then, an electric field distribution as shown by a broken line is generated inside the first electro-optic effect material layer 14 corresponding to the first reflecting mirror 16b. As a result, the refractive index of the first electro-optical effect material layer 14 changes due to the electro-optical effect, and a refractive index distribution is formed. Therefore, the incident light 22a incident from the optical fiber 18a is refracted inside the first electro-optic effect material layer 14 as shown by the solid line. The refracted incident light 22a is
Due to the refractive index relationship between the electro-optic effect material layer 14 and the substrate 11, the refraction angle is increased according to Snell's law and propagates to the second reflecting mirror 17a. Therefore, thereafter, the light is repeatedly propagated a plurality of times between the reflecting mirrors 17a and 16a, and propagates to the adjacent condensing lens 21a.
b, the outgoing light 23 in the corresponding outgoing side optical fiber 19b.
It is emitted as b.

従って、一般論としては、第3図に示すように、入射
側のある1つの入射側光ファイバ18に注目した場合、そ
の両側の2つの入射側反射鏡を16b,16cとし、出射側に
おいて入射側光ファイバ18に対応する出射側光ファイバ
を19a、その両側の出射側光ファイバを19b,19cとする
と、第1反射鏡16b,16cに対する電圧印加の制御によ
り、出射側光ファイバ19a〜19cの任意のものに結合させ
ることができる。即ち、第1反射鏡16b,16cの何れにも
電圧印加しなければ出射側光ファイバ19aに結合し、第
1反射鏡16bのみに電圧印加すれば出射側光ファイバ19b
に係合し、第1反射鏡16cのみに電圧印加すれば出射側
光ファイバ19cに結合することになる。ここに、本実施
例は、基板11中心に入出側が対称に形成されており、第
2反射鏡17側を入射側とし、第1反射鏡16側を出射側と
する場合には同様に適用できる(第3図中に入射光2
2′,出射光23′はこの使用例を示す)。
Therefore, as a general theory, as shown in FIG. 3, when attention is paid to one incident-side optical fiber 18 on the incident side, the two incident-side reflecting mirrors on both sides thereof are set to 16b and 16c, and the incident light is incident on the exit side. Assuming that the output side optical fiber corresponding to the side optical fiber 18 is 19a and the output side optical fibers on both sides thereof are 19b and 19c, the output side optical fibers 19a to 19c are controlled by controlling the voltage application to the first reflecting mirrors 16b and 16c. It can be attached to anything. That is, if no voltage is applied to either of the first reflecting mirrors 16b and 16c, the light is coupled to the outgoing optical fiber 19a. If a voltage is applied only to the first reflecting mirror 16b, the outgoing optical fiber 19b is applied.
When the voltage is applied only to the first reflecting mirror 16c, the light is coupled to the output side optical fiber 19c. Here, the present embodiment can be similarly applied when the entrance and exit sides are formed symmetrically at the center of the substrate 11, and the second reflection mirror 17 side is the entrance side and the first reflection mirror 16 side is the exit side. (In Fig. 3, the incident light 2
2 'and outgoing light 23' show this use example).

なお、図示例に限らず、種々の変形構成が可能で、例
えば第1,2反射鏡16,17を誘電体多層構造とすれば吸収の
ない高反射率のものとなる。
It should be noted that the present invention is not limited to the illustrated example, and various modified configurations are possible. For example, if the first and second reflecting mirrors 16 and 17 have a dielectric multilayer structure, a high reflectance without absorption is obtained.

つづいて、本発明の第二の実施例を第4図により説明
する。前記実施例では、1次元アレイ状に形成したが、
本実施例では2次元アレイ状に形成し、多チャネル化し
たものである。これにより、分岐入射される入射光22を
所望の出射位置から出射する出射光23となるように制御
できる。
Next, a second embodiment of the present invention will be described with reference to FIG. In the above embodiment, the one-dimensional array is formed.
In the present embodiment, it is formed in a two-dimensional array and has multiple channels. This makes it possible to control the incident light 22 that is branched and incident so as to become the emitted light 23 that is emitted from a desired emission position.

発明の効果 本発明は、上述したように第1,2透明薄膜電極、第1,2
電気光学効果物質層を両面に形成した基板に、電極機能
を持つ第1,2反射鏡を各々形成し、第1反射鏡又は第2
反射鏡の各々に選択的に電圧印加することにより第1電
気光学効果物質層又は第2電気光学効果物質層の電気光
学効果を利用して入・出射側光導波路間の結合を切換え
制御するようにしたので、確実かつ高速の光スイッチン
グが可能で、特に、各々の電気光学効果物質層を挾んで
透明薄膜電極と反射鏡とがあり電圧印加により屈折率変
化を生じさせるとともに、電気光学効果物質層と基板と
の間の屈折率差による角度増幅及び反射鏡間の多重反射
を利用するため、電気光学効果が小さくても切換え可能
であり、かつ、低電圧駆動が可能となり、構造的にも、
基板両面に対して所定の第1,2反射鏡の膜を形成すれば
よく、面内一括処理が可能で、小型デバイス化、アレイ
化が可能となり、加えて、伝播方向が入射から出射まで
同一方向であるので、積層光回路への応用も容易であ
り、特に基板中心に積層方向に対称構造であるので、双
方向スイッチング機能を持たせることもできる。
Effect of the Invention The present invention provides, as described above, the first and second transparent thin-film electrodes,
First and second reflecting mirrors each having an electrode function are formed on a substrate having an electro-optical effect material layer formed on both surfaces thereof, and the first reflecting mirror or the second reflecting mirror is formed.
By selectively applying a voltage to each of the reflecting mirrors, the coupling between the input and output optical waveguides is switched and controlled using the electro-optic effect of the first electro-optic effect material layer or the second electro-optic effect material layer. As a result, reliable and high-speed optical switching is possible. In particular, there is a transparent thin-film electrode and a reflecting mirror sandwiching each electro-optic effect material layer. In order to utilize the angle amplification by the refractive index difference between the layer and the substrate and the multiple reflection between the reflecting mirrors, it is possible to switch even if the electro-optical effect is small, and it is possible to drive at a low voltage, and also in terms of structure. ,
It suffices to form the first and second reflecting mirror films on both sides of the substrate, so that in-plane batch processing is possible, miniaturization and arraying are possible, and the propagation direction is the same from incident to outgoing Since it is a direction, it is easy to apply to a laminated optical circuit. In particular, since it has a symmetrical structure in the laminating direction at the center of the substrate, it can have a bidirectional switching function.

【図面の簡単な説明】[Brief description of the drawings]

第1図ないし第3図は本発明の第一の実施例を示すもの
で、第1図は動作原理を示す概略断面構造図、第2図は
スイッチアレイ単体の構造を示す斜視図、第3図は動作
原理の一般論を説明するための斜視図、第4図は本発明
の第二の実施例を示す斜視図、第5図は従来例を示す斜
視図である。 11……基板、12……第1透明薄膜電極、13……第2透明
薄膜電極、14……第1電気光学効果物質層、15……第2
電気光学効果物質層、16……第1反射鏡、17……第2反
射鏡、18,19……光導波路
1 to 3 show a first embodiment of the present invention. FIG. 1 is a schematic sectional structural view showing an operation principle, FIG. 2 is a perspective view showing a structure of a single switch array, and FIG. FIG. 4 is a perspective view for explaining the general theory of the operation principle, FIG. 4 is a perspective view showing a second embodiment of the present invention, and FIG. 5 is a perspective view showing a conventional example. 11 ... substrate, 12 ... first transparent thin film electrode, 13 ... second transparent thin film electrode, 14 ... first electro-optical effect material layer, 15 ... second
Electro-optic effect material layer, 16: first reflecting mirror, 17: second reflecting mirror, 18, 19: optical waveguide

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】透明材料による基板と、この基板の両面に
形成した第1,2透明薄膜電極と、これらの第1,2透明薄膜
電極表面に各々形成した前記基板の屈折率より高屈折率
の第1,2電気光学効果物質層と、1次元又は2次元アレ
イ状に配列された入・出射側各々の光導波路間に配設さ
せてこれらの第1,2電気光学効果物質層表面に各々形成
した電極機能を持つ第1,2反射鏡と、これらの第1反射
鏡と第1透明薄膜電極又は第2透明薄膜電極と第2反射
鏡とに対して選択的に電圧を印加する電圧印加手段とよ
りなり、これらの選択的な電圧印加により前記第1電気
光学効果物質層又は第2電気光学効果物質層内部の電界
分布を制御しその電気光学効果による偏向と第1,2反射
鏡間の多重反射とにより入・出射光導波路間の結合を切
換え制御するようにしたことを特徴とする光スイッチア
レイ。
1. A substrate made of a transparent material, first and second transparent thin-film electrodes formed on both surfaces of the substrate, and a refractive index higher than the refractive index of the substrate formed on each of the first and second transparent thin-film electrodes. Between the first and second electro-optical effect material layers and the optical waveguides on each of the input and output sides arranged in a one-dimensional or two-dimensional array, and on the surfaces of these first and second electro-optical effect material layers. First and second reflecting mirrors each having an electrode function formed thereon, and a voltage for selectively applying a voltage to the first reflecting mirror and the first transparent thin film electrode or the second transparent thin film electrode and the second reflecting mirror. The electric field distribution inside the first electro-optical effect material layer or the second electro-optical effect material layer is controlled by selectively applying these voltages, and the deflection by the electro-optical effect and the first and second reflecting mirrors are performed. The coupling between the input and output optical waveguides is switched and controlled by multiple reflection between Optical switch array according to claim.
JP14835990A 1990-06-06 1990-06-06 Optical switch array Expired - Fee Related JP2837511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14835990A JP2837511B2 (en) 1990-06-06 1990-06-06 Optical switch array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14835990A JP2837511B2 (en) 1990-06-06 1990-06-06 Optical switch array

Publications (2)

Publication Number Publication Date
JPH0440428A JPH0440428A (en) 1992-02-10
JP2837511B2 true JP2837511B2 (en) 1998-12-16

Family

ID=15450996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14835990A Expired - Fee Related JP2837511B2 (en) 1990-06-06 1990-06-06 Optical switch array

Country Status (1)

Country Link
JP (1) JP2837511B2 (en)

Also Published As

Publication number Publication date
JPH0440428A (en) 1992-02-10

Similar Documents

Publication Publication Date Title
JP3522117B2 (en) Self-guided optical circuit
US20210356838A1 (en) Non-moving optical beam steering using non-pixelated liquid crystal optical phased arrays
US6879431B2 (en) Optical deflection apparatus and optical deflection method
US5937115A (en) Switchable optical components/structures and methods for the fabrication thereof
US4278327A (en) Liquid crystal matrices
US6137619A (en) High-speed electro-optic modulator
US6175667B1 (en) High-speed polarization-insensitive electro-optic modulator
US5071232A (en) Optical deflection element and space optical matrix switching device
WO1996007943A1 (en) Projection display with electrically-controlled waveguide-routing
EP0783719A1 (en) Method for manipulating optical energy using poled structure
JP2003172912A (en) Liquid crystal variable wavelength filter device and driving method therefor
JPS5885420A (en) Interference type multimode fiber optics switch and modulator
JP2005222056A (en) One-by-n optical switch and optical switch module
WO2005121876A1 (en) Optical device using polarized variable element
JPH02179626A (en) Light wavelength converter
US7027670B2 (en) Cascaded deflectors for multi-channel optical switches, and optical switching modules and methods having cascaded deflectors
US4004847A (en) Light optic data handling system
JP2837511B2 (en) Optical switch array
JP2834844B2 (en) Optical switch array
JP3224585B2 (en) Light switch
JPH03267922A (en) Optical switch array
US4032220A (en) Light optic data handling system
JPH0750284B2 (en) Optical path switch
JPH04140714A (en) Variable wavelength filter module
JP3108344B2 (en) Optical filter module

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees