JP2837150B2 - Soft magnetic material for inductor and method of manufacturing inductor using the same - Google Patents

Soft magnetic material for inductor and method of manufacturing inductor using the same

Info

Publication number
JP2837150B2
JP2837150B2 JP9222494A JP22249497A JP2837150B2 JP 2837150 B2 JP2837150 B2 JP 2837150B2 JP 9222494 A JP9222494 A JP 9222494A JP 22249497 A JP22249497 A JP 22249497A JP 2837150 B2 JP2837150 B2 JP 2837150B2
Authority
JP
Japan
Prior art keywords
powder
glass
inductor
zno
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9222494A
Other languages
Japanese (ja)
Other versions
JPH10163018A (en
Inventor
昌植 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansei Denki KK
Original Assignee
Sansei Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansei Denki KK filed Critical Sansei Denki KK
Publication of JPH10163018A publication Critical patent/JPH10163018A/en
Application granted granted Critical
Publication of JP2837150B2 publication Critical patent/JP2837150B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/043Printed circuit coils by thick film techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Soft Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、チップインダクタ
ー、チップビーズのようなチップ部品、又は、巻線型イ
ンダクターのような電磁波の遮蔽部品等に用いられる軟
磁性材料およびそれを用いたインダクターの製造方法に
関する。より詳しくは、低温焼成が可能であり、外部応
力に対する電磁気的特性の変化が少ない、優れた電磁気
的性を有するNi−Cu−Zn系軟磁性材料およびそれ
を用いた巻線型又はチップ型インダクターの製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soft magnetic material used for a chip component such as a chip inductor or a chip bead, or an electromagnetic wave shielding component such as a wire-wound inductor, and the production of an inductor using the same. About the method. More specifically, it is possible to perform low-temperature sintering, change in electromagnetic properties with respect to external stress is small, and a Ni-Cu-Zn-based soft magnetic material having excellent electromagnetic properties and a wire-wound or chip-type inductor using the same. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】今日、電子、通信機器の著しい発展は、
電子部品の小型化、薄膜化および実装性の改良等が基礎
になって新しい産業構造を構築しているが、このような
産業構造の発展は、以前は無視することのできた新しい
問題、即ち環境および通信障害等を誘発して社会的問題
を生じさせるという両面性を持つようになった。特に、
無線通信機器およびマルチ環境が一般に常用されること
により、悪化した電磁気環境に関する各国の電磁気障害
規制(FCC、CISPR、VDE、MIL)が強化され
ることにより、電磁波障害除去(EMI/EMC)素子に
対する開発が要求され、その部品の需要急増と共に機能
の複雑化、高集積化および高効率化に発展している。
2. Description of the Related Art Today, the remarkable development of electronic and communication devices is
New industrial structures are being built on the basis of miniaturization, thinning of electronic components, and improvement of mountability, but the development of such industrial structures is a new problem that could be neglected before, namely, environmental problems. In addition, it has a two-sided effect of inducing communication problems and causing social problems. Especially,
With the general use of wireless communication devices and multi-environments, the electromagnetic interference regulations (FCC, CISPR, VDE, MIL) of each country regarding the deteriorated electromagnetic environment have been strengthened, and electromagnetic interference elimination (EMI / EMC) elements have been strengthened. Development is required, and the demand for such components is rapidly increasing, and the functions are becoming complicated, highly integrated, and highly efficient.

【0003】その際に、電磁波障害除去素子用または電
力用トランスのような電子部品などの素材として応用さ
れる軟磁性材料の適用範囲も特性別、周波数帯域別に細
分化され、その製造方法も従来の粉末冶金学的な製造方
法から積層式部品製造に研究が活発に進められ実用化さ
れており、今日、セラミック電子部品の製造分野に小型
チップ部品の製造技術として定着するようになった。
At this time, the application range of soft magnetic materials applied as materials for electronic components such as electromagnetic wave elimination devices or power transformers is subdivided according to characteristics and frequency bands. Research has been actively pursued from the powder metallurgy manufacturing method to the production of laminated components, and the technology has been put to practical use. Today, it has become established as a technology for producing small chip components in the field of producing ceramic electronic components.

【0004】一般的にチップインダクター、チップビー
ズ、チップアレイ、チップLCフィルターおよびチップ
トランス等のような小型チップ部品に用いられる軟磁性
材料は、高いインダクタンスを必要としており、そのよ
うな軟磁性材料ではMn−Znフェライト、Niフェラ
イト、Ni−ZnフェライトまたはNi−Cu−Znフ
ェライト等を挙げることができる。Mn−Znフェライ
トの場合、透磁率が高く電力損失が非常に少ないため電
源用トランスコア、電力ライン用フィルター等の磁芯材
料に用いられるが、高周波特性が低いために1MHz以
上の周波数帯域では適用するのが難しいという短所があ
る。現在、このような高周波帯域において用いられる磁
芯材料としては、Niフェライト、Ni−Znフェライ
トまたはNi−Cu−Znフェライト等がある。
Generally, soft magnetic materials used for small chip components such as chip inductors, chip beads, chip arrays, chip LC filters, chip transformers, etc., require a high inductance, and such soft magnetic materials Examples include Mn-Zn ferrite, Ni ferrite, Ni-Zn ferrite, Ni-Cu-Zn ferrite, and the like. Mn-Zn ferrite is used in magnetic core materials such as transformer cores for power supplies and filters for power lines because of its high magnetic permeability and very low power loss. However, it is used in the frequency band of 1 MHz or more because of its low high-frequency characteristics. There is a disadvantage that it is difficult to do. At present, as a magnetic core material used in such a high frequency band, there are Ni ferrite, Ni-Zn ferrite, Ni-Cu-Zn ferrite and the like.

【0005】一方、上記軟磁性材料を製造する従来の方
法では、焼成工程は、約1000〜1400℃で1〜5
時間程度行われる。しかし、チップインダクターやチッ
プビーズフィルター等の電子部品の内部電極は普通Ag
電極を用い、上記のような焼成温度は内部電極のAgの
溶融点(960℃)を越えており、非常に高い温度条件
で製造した部品などは一般的な周波数帶域の500KH
z〜20MHzにおいて損失が非常に大きいという短所
を持っているために要求するインダクタンスを実現する
のに非常に難しいという問題点がある。したがって、軟
磁性体の焼成温度を下げるために、一般的に磁芯材料の
粒度を0.01〜1μmまで微粉砕することで、粒子の
エネルギー準位を基底状態(準安定状態)にして、焼成
時の粒子間の物質移動面を増加させることにより、焼結
を促進させ低温焼成を図る方法が行われている。しか
し、上記微粉砕工程を通じた製造方法は、設備費の高価
格化と製造工程の複雑化によって、製品コストの増加の
みならず実用化にも問題がある。
On the other hand, in the conventional method for producing the above soft magnetic material, the firing step is performed at about 1000 to 1400 ° C. for 1 to 5 hours.
It takes about an hour. However, the internal electrodes of electronic components such as chip inductors and chip bead filters are usually Ag
The electrode is used, and the sintering temperature as described above exceeds the melting point of Ag of the internal electrode (960 ° C.), and parts manufactured under extremely high temperature conditions have a general frequency band of 500 KH.
There is a disadvantage that the loss is very large at z to 20 MHz, so that it is very difficult to realize the required inductance. Therefore, in order to lower the firing temperature of the soft magnetic material, the particle size of the magnetic core material is generally finely pulverized to 0.01 to 1 μm to bring the energy level of the particles to the ground state (metastable state). A method of promoting sintering and performing low-temperature sintering by increasing the mass transfer surface between particles during sintering has been performed. However, the production method using the above-mentioned pulverization process has problems not only in the increase in product cost but also in practical use due to the high cost of equipment and the complexity of the production process.

【0006】更に、他の例として(ZnO+Bi23
を主成分とする低温化合物を利用して焼成を図る方法
(特開昭59−67119号)、そしてB23のような
成分を利用する方法(特開昭64−45771号)およ
びZnO、V25のようなフラックスを添加剤として用
い、粒子の界面拡散を誘導することによって焼成する方
法(特開昭60−210572号)が知られており常用
されている。しかし、低融点化合物を添加する方法等
は、周波数特性を向上させるCo成分の挙動を妨げるこ
とで、所定の効果を低減させる。更に、焼成の過程にお
いて母材の軟磁性材料の焼結進行温度より低い温度帯域
において、添加物などが液状で存在し、それらが軟磁性
体の粒界に拡散して焼結を促進させるメカニズムで駆動
させるため、かえって部分的な添加剤の偏析によりイン
ダクダンスの低減および損失をもたらすと同時に内部電
極のAgと反応したり、Ag電極に拡散してチップイン
ダクターの電磁気的特性(インダクタンス、Qファクタ
ー)を劣化させることにより、製品の信頼性に大きな影
響を及ぼすという問題点があった。
Further, as another example, (ZnO + Bi 2 O 3 )
(JP-A-59-67119), a method using a component such as B 2 O 3 (JP-A-64-45771), and ZnO, A method of baking by inducing interfacial diffusion of particles using a flux such as V 2 O 5 as an additive (Japanese Patent Application Laid-Open No. Sho 60-210572) is known and commonly used. However, the method of adding the low melting point compound or the like reduces the predetermined effect by preventing the behavior of the Co component for improving the frequency characteristics. Furthermore, during the sintering process, in the temperature range lower than the sintering progress temperature of the soft magnetic material as the base material, additives and the like exist in a liquid state, and they diffuse into the grain boundaries of the soft magnetic material to promote sintering. In order to reduce the inductance and reduce the loss due to the partial segregation of the additive, it reacts with the Ag of the internal electrode or diffuses into the Ag electrode and electromagnetic characteristics (inductance, Q There is a problem that the deterioration of the factor) has a great effect on the reliability of the product.

【0007】[0007]

【発明が解決しようとする課題】したがって、本発明は
上記従来の問題点を解決するために、母材の主成分と反
応しても、電磁気的特性の劣化が最小であり、内部電極
のAgと反応しないようにする複合ガラスの粉末を添加
することによって、非常に低い焼成温度で、内部電極の
安定性を図ることは言うまでもなく、500KHz〜2
0MHzの周波数帯域における特性の優れたNi−Cu
−Zn系軟磁性材料を提供することである。
Therefore, in order to solve the above-mentioned conventional problems, the present invention minimizes the deterioration of the electromagnetic characteristics even when reacting with the main component of the base material, and reduces the Ag of the internal electrode. Needless to say, by adding a composite glass powder that does not react with the internal electrode at a very low firing temperature, the stability of the internal electrode can be improved.
Ni-Cu with excellent characteristics in the frequency band of 0 MHz
-To provide a Zn-based soft magnetic material.

【0008】更に、本発明の他の目的は、上記Ni−C
u−Zn系軟磁性材料を利用する低温焼成において、巻
線型またはチップ型インダクターを製造する方法を提供
することである。
Further, another object of the present invention is to provide the above-mentioned Ni-C
An object of the present invention is to provide a method of manufacturing a wire-wound or chip-type inductor in low-temperature firing using a u-Zn-based soft magnetic material.

【0009】[0009]

【課題を解決するための手段および作用・効果】上記目
的達成のために、本発明は、インダクター用Ni−Cu
−Zn系軟磁性材料において、モル%で、Fe23が4
9.0〜50.0%、CuOが5〜13%、NiOが7.
5〜25%、およびZnOが12〜38.5%からなる
磁性粉末に、B23−Bi23−ZnO系ガラスを0.
05〜15.0wt%含有させた組成のインダクター用
軟磁性材料に関する。
In order to achieve the above object, the present invention provides a Ni-Cu for inductor.
-In the Zn-based soft magnetic material, Fe 2 O 3 is 4% by mol%.
9.0-50.0%, CuO 5-13%, NiO 7.
5-25%, and the magnetic powder ZnO consists 12 to 38.5%, the B 2 O 3 -Bi 2 O 3 -ZnO based glass 0.
The present invention relates to a soft magnetic material for an inductor having a composition containing 0.05 to 15.0 wt%.

【0010】更に、本発明はインダクター用Ni−Cu
−Zn系軟磁性材料において、モル%で、Fe23が4
9.0〜50.0%、CuOが5〜13%、NiOが7.
5〜25%、およびZnOが12〜38.5%からなる
磁性粉末にCoOが2.0wt%以下、Co23が2.0
wt%以下、およびCo34が2.0wt%以下の中か
ら一種または二種以上と、B23−Bi23−ZnO系
ガラスが0.05〜15.0wt%を含有させたインダク
ター用軟磁性材料に関する。
Further, the present invention relates to a Ni—Cu for inductor.
-In the Zn-based soft magnetic material, Fe 2 O 3 is 4% by mol%.
9.0-50.0%, CuO 5-13%, NiO 7.
5-25%, and ZnO are the CoO magnetic powder consisting of 12 to 38.5% or less 2.0 wt% Co 2 O 3 is 2.0
wt% or less, and Co 3 O 4 is one or two or more of the following 2.0 wt% and, B 2 O 3 -Bi 2 O 3 -ZnO based glass is contained 0.05~15.0Wt% To a soft magnetic material for an inductor.

【0011】更に、本発明は、巻線型インダクターの製
造方法において、モル%で、Fe23が49.0〜50.
0%、CuOが5〜13%、NiOが7.5〜25%、
およびZnOが12〜38.5%からなる磁性粉末にB2
3−Bi23−ZnO系ガラスを0.05〜15.0w
t%添加し、それを粉砕後乾燥した後に仮焼する工程、
仮焼した粉末に5〜10重量%の主剤と5〜16重量%
の反応抑制剤を加えたバインダーを5〜15重量%添加
して造粒する工程、および造粒粉末を成型し、860〜
910℃の温度で焼結する工程、から構成される巻線型
インダクターの製造方法に関する。
Further, the present invention provides a method of manufacturing a wire wound inductor, wherein the content of Fe 2 O 3 is 49.0 to 50.
0%, CuO 5-13%, NiO 7.5-25%,
And B 2 in the magnetic powder ZnO consists 12 to 38.5%
O 3 -Bi 2 O 3 -ZnO based glass is 0.05 to 15.0 w
adding t%, pulverizing it, drying and calcining it,
5-10% by weight of base material and 5-16% by weight in calcined powder
5 to 15% by weight of a binder to which a reaction inhibitor is added, and granulating the granulated powder;
Sintering at a temperature of 910 ° C.

【0012】更に、本発明は、巻線型インダクターの製
造方法において、モル%で、Fe23が49.0〜50.
0%、CuOが5〜13%、NiOが7.5〜25%お
よびZnOが12〜38.5%からなる磁性粉末にB2
3−Bi23−ZnO系ガラスを0.05〜15.0wt
%添加し、それを粉砕後に乾燥する工程、乾燥した磁性
粉末にCoOが2.0wt%以下、Co23が2.0wt
%以下およびCo34が2.0wt%以下の中から一種
または二種以上を添加し、それを仮焼する工程、仮焼粉
末に5〜10重量%の主剤と5〜16重量%の反応抑制
剤を加えたバインダーを5〜15重量%の範囲に添加し
て造粒する工程、および造粒粉末を成型し、860〜9
10℃の温度で焼結する工程、から構成される巻線型イ
ンダクターの製造方法に関する。
Further, the present invention relates to a method of manufacturing a wire wound inductor, wherein the content of Fe 2 O 3 is 49.0 to 50.
0%, 5-13% of CuO, 7.5-25% of NiO, and 12-38.5% of ZnO to B 2 O
3 0.05~15.0Wt the -Bi 2 O 3 -ZnO based glass
%, Followed by drying after pulverization. The dried magnetic powder contains 2.0 wt% or less of CoO and 2.0 wt% of Co 2 O 3 .
% Or less and Co 3 O 4 of 2.0 wt% or less, and calcining the same. 5-10 wt% of the main agent and 5-16 wt% of the calcined powder are added to the calcined powder. A step of adding a binder to which a reaction inhibitor has been added in a range of 5 to 15% by weight to granulate, and molding a granulated powder;
And a step of sintering at a temperature of 10 ° C.

【0013】更に、本発明はチップ型インダクターの製
造方法において、モル%で、Fe23が49.0〜50.
0%、CuOが5〜13%、NiOが7.5〜25%お
よびZnOが12〜38.5%からなる磁性粉末にB2
3−Bi23−ZnO型ガラスを0.05〜15.0wt
%添加し、それを粉砕した後に乾燥する工程、乾燥した
粉末にバインダーを約1:1〜1:4添加した後、ドクタ
ーブレード法によりグリーンシートをつくる工程、つく
った複数のグリーンシートを積層し、積層したシート上
にAg内部電極を印刷した後、更にグリーンシートを複
数個積層し、それを焼成する工程、および焼成した焼結
体に外部電極を形成する工程、から構成されたチップ型
インダクターの製造方法に関する。
Furthermore, the present invention relates to a method of manufacturing a chip type inductor, wherein the content of Fe 2 O 3 is 49.0 to 50.
0%, 5-13% of CuO, 7.5-25% of NiO, and 12-38.5% of ZnO to B 2 O
3 0.05~15.0Wt the -Bi 2 O 3 -ZnO type glass
%, Pulverizing it and drying, adding a binder to the dried powder in a ratio of about 1: 1 to 1: 4, forming a green sheet by a doctor blade method, laminating a plurality of the formed green sheets. A step of printing a Ag internal electrode on the laminated sheet, further laminating a plurality of green sheets, firing the green sheet, and forming an external electrode on the fired sintered body. And a method for producing the same.

【0014】更に、本発明はチップ型インダクターの製
造方法において、モル%で、Fe23が49.0〜50.
0%、CuOが5〜13%、NiOが7.5〜25%、
およびZnOが12〜38.5%からなる磁性粉末にC
oOが2.0wt%以下、Co23が2.0wt%以下、
およびCo34が2.0wt%以下の中から一種または
二種以上とB23−Bi23−ZnO系ガラスを0.0
5〜15.0wt%添加し、それを粉砕した後に乾燥す
る工程、乾燥した粉末にバインダーを約1:1〜1:4に
添加した後、ドクダーブレード法によりグリーンシート
をつくる工程、つくった複数のグリーンシートを積層
し、積層のシート上にAg内部電極を印刷した後、更
に、グリーンシートを複数個積層し、それを860〜9
10℃で焼成する工程、および焼成した焼結体に外部電
極を形成する工程、から構成されたチップ型インダクタ
ーの製造方法に関するものである。
Further, according to the present invention, there is provided a method of manufacturing a chip type inductor, wherein Fe 2 O 3 is 49.0 to 50.
0%, CuO 5-13%, NiO 7.5-25%,
And magnetic powder composed of 12 to 38.5% of ZnO contains C
oO is 2.0 wt% or less, Co 2 O 3 is 2.0 wt% or less,
And Co 3 O 4 is one or two or more of the following 2.0 wt% and B 2 O 3 -Bi 2 O 3 the -ZnO based glass 0.0
A step of adding 5 to 15.0% by weight, pulverizing it and then drying it, adding a binder to the dried powder in a ratio of about 1: 1 to 1: 4, and then making a green sheet by the dokuda blade method. After laminating a plurality of green sheets and printing an Ag internal electrode on the laminated sheets, a plurality of green sheets are further laminated, and
The present invention relates to a method for manufacturing a chip-type inductor comprising a step of firing at 10 ° C. and a step of forming an external electrode on the fired sintered body.

【0015】以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0016】一般的に、磁性材料は、その組織および組
成により周波数帯域による特性が異なっている。本発明
においては500KHz〜20MHz程度の常用周波数
帶域において、適合するNi−Cu−Znフェライトを
利用するものの、このようなNi−Cu−Zn系のフェ
ライトは、そのNiO成分が低く、相対的にZnO成分
量が高い。本発明に合致する望ましい基本組成として
は、モル%で、Fe23が49.0〜50.0%、CuO
が5.0〜13.0%、NiOが7.5〜25.0%、およ
びZnOが12〜38.5%からなる軟磁性粉末を挙げ
ることができる。更に望ましくは、上記磁性粉末に添加
剤としてCoO、Co23およびCo34から構成され
るCo系粉末の中から少なくとも一種または二種以上を
約2.0wt%以下添加したものを基本組成とする。
In general, magnetic materials have different characteristics depending on the frequency band depending on their structure and composition. In the present invention, in a common frequency band of about 500 KHz to 20 MHz, suitable Ni-Cu-Zn ferrite is used. However, such Ni-Cu-Zn ferrite has a low NiO component and is relatively low. High ZnO content. A desirable basic composition that conforms to the present invention is, in mol%, 49.0 to 50.0% of Fe 2 O 3 and CuO
Of soft magnetic powder consisting of 5.0 to 13.0%, NiO of 7.5 to 25.0%, and ZnO of 12 to 38.5%. More preferably, the magnetic powder is obtained by adding at least one or two or more of Co-based powders composed of CoO, Co 2 O 3 and Co 3 O 4 as additives to about 2.0 wt% or less. Composition.

【0017】本発明においては、上記のような軟磁性粉
末にB23−Bi23−ZnO系ガラスが0.05〜1
5.0wt%添加されることを特徴とする。上記のガラ
スは、軟磁性母材の主成分と反応しても電磁気的特性の
劣化を最小にすることができ、さらに、チップ系インダ
クターの場合、内部電極のAgと反応を行わないから焼
成温度を低下させるという長所がある。上記ガラスを
0.05〜15.0wt%含有すれば、母材の焼成温度を
既存の低融点化合物(Bi23またはV25)を使用した
ときの温度、即ち、1000〜1350℃程度で約86
0〜910℃まで低下させることが可能であり、更に、
焼成に起因する母材と内部電極間の収縮時の応力を減少
させ、内部電極の安定化を図ることができる。この際、
上記ガラスはwt%でB23が10〜40%、Bi23
が20〜40%、およひZnOが20〜70%の組成で
添加することが望ましい。
In the present invention, the soft magnetic powder as described above contains B 2 O 3 —Bi 2 O 3 —ZnO based glass in an amount of 0.05 to 1%.
It is characterized in that 5.0 wt% is added. The above glass can minimize the deterioration of the electromagnetic characteristics even if it reacts with the main component of the soft magnetic base material. Further, in the case of the chip type inductor, it does not react with Ag of the internal electrode, so that the firing temperature is reduced. Has the advantage of lowering If the glass is contained in an amount of 0.05 to 15.0% by weight, the sintering temperature of the base material is set to a temperature at which an existing low melting point compound (Bi 2 O 3 or V 2 O 5 ) is used, that is, 1000 to 1350 ° C. About 86
0-910 ° C., and
The stress at the time of shrinkage between the base material and the internal electrode caused by firing can be reduced, and the internal electrode can be stabilized. On this occasion,
The above glass contains 10% to 40% of B 2 O 3 in wt% and Bi 2 O 3
Is preferably added at a composition of 20 to 40% and ZnO of 20 to 70%.

【0018】一方、本発明による軟磁性材料を使用して
製造する巻線型インダクターの場合、特に、ガラスの母
材内の挙動は母材の緻密化を誘導して、一般の軟磁性体
の焼結密度より高い焼結密度を保つことにより機械的強
度を向上させることが可能であり、焼結体表面の緻密化
による外部電極のメッキの際に、異物質の吸着を抑制し
て製造収率を向上させることができる。本発明による巻
線型またはチップ型インダクターの製造時添加するガラ
スの粒度の大きさは0.1〜10μmである粉末を用い
るのが望ましい。より望ましくは、母材の偏重した分布
を誘発させ、母材の粗大化粒子の成長防止のためには、
上記粒度の大きさは0.2〜5μmとする。
On the other hand, in the case of a wire-wound inductor manufactured using the soft magnetic material according to the present invention, particularly, the behavior of the glass in the base material induces the densification of the base material and the firing of the general soft magnetic material. It is possible to improve the mechanical strength by keeping the sintering density higher than the consolidated density, and to suppress the adsorption of foreign substances during the plating of the external electrode due to the densification of the sintered body surface, and to reduce the production yield. Can be improved. It is preferable to use a powder having a particle size of 0.1 to 10 μm to be added at the time of manufacturing the wound type or chip type inductor according to the present invention. More preferably, to induce an uneven distribution of the base material and to prevent the growth of coarse particles in the base material,
The size of the particle size is 0.2 to 5 μm.

【0019】以下、上記のように、ガラスが添加された
乾燥した粉末を利用して巻線型インダクターを製造する
方法を説明する。
Hereinafter, a method of manufacturing a wire-wound inductor using a dry powder to which glass is added as described above will be described.

【0020】巻線型インダクターの場合、乾燥の粉末を
仮焼後、ここに5〜10重量%の主剤と5〜16重量%
の反応抑制剤を加えたバインダーを5〜15重量%添加
して造粒する。本発明に適合する主剤としては、通常の
焼結コア製造の際に用いられる主剤であれば可能である
が、例を挙げればポリビニルアルコールまたはメチルセ
ルローズ等を挙げることができる。更に、反応抑制剤は
軟磁性フェライト粒子が互いに凝集することを防ぎ、マ
ニトルまたはプロピレングリコール等を挙げることがで
きる。
In the case of the wire wound type inductor, after the dried powder is calcined, 5 to 10% by weight of the base material and 5 to 16% by weight
5-15% by weight of a binder to which the above-mentioned reaction inhibitor is added is granulated. The main agent suitable for the present invention can be any main agent used in the production of ordinary sintered cores. Examples thereof include polyvinyl alcohol and methyl cellulose. Further, the reaction inhibitor prevents the soft magnetic ferrite particles from aggregating with each other, and examples thereof include mantle and propylene glycol.

【0021】更に仮焼温度は、650〜880℃である
ことが望ましく、700〜850℃がより望ましい。
Further, the calcination temperature is preferably from 650 to 880 ° C, more preferably from 700 to 850 ° C.

【0022】その後、仮焼粉末を造粒してその造粒粉末
を成型して所望の成型体を製造する。製造した成型体
は、通常低融点化合物が含有したものより低温の約86
0〜910℃で焼結する。焼結過程において約750〜
900℃の区間は粒子の整列化および緻密化が進められ
る区間であるため、急激な昇温時には空孔が生じ、透磁
率の低下および品質係数値の低下が起こるため、できる
限り急激な昇温を避けるのが良い。例を挙げれば上記区
間では約10℃/分程度の昇温するのが望ましい。更
に、焼結温度に至った後、約2〜3時間保持した後、7
00℃までの冷却区間に於いては急冷を避けるようにす
る。万が一その区間において急冷をすれば、母剤中のC
uO成分が析出して電磁気的特性が劣化するから注意を
要する。上記区間における望ましい冷却速度は約5℃/
分以内である。
Thereafter, the calcined powder is granulated, and the granulated powder is molded to produce a desired molded body. The molded product thus produced usually has a lower temperature of about 86
Sinter at 0-910 ° C. About 750 to sintering process
The section at 900 ° C. is a section in which the alignment and densification of the particles are advanced, so that vacancies are generated at the time of rapid temperature rise, and the permeability and the quality coefficient value decrease. It is better to avoid. For example, in the above section, it is desirable to raise the temperature by about 10 ° C./min. Further, after reaching the sintering temperature, after holding for about 2 to 3 hours, 7
Avoid rapid cooling in the cooling section up to 00 ° C. Should quenching occur in that section, C in the parent drug
Care must be taken because the uO component precipitates and the electromagnetic characteristics deteriorate. A desirable cooling rate in the above section is about 5 ° C /
Within minutes.

【0023】このような方法によれば、その組織相が非
常に安定であり、品質係数が少なくとも150以上、そ
のピーク域が約100KHz〜20MHz程度であり、
インダクタンスが少なくとも10μHとなる電磁気的特
性が良好な軟磁性材料を、既存のものより低温において
製造し得る利点がある。
According to such a method, the tissue phase is very stable, the quality factor is at least 150 or more, the peak area is about 100 KHz to 20 MHz,
There is an advantage that a soft magnetic material having good electromagnetic characteristics with an inductance of at least 10 μH can be manufactured at a lower temperature than existing ones.

【0024】反面、上記ガラスが添加された乾燥の粉末
を利用したチップ系インダクターの製造方法は次の通り
である。
On the other hand, a method of manufacturing a chip-type inductor using the above-mentioned glass-added dry powder is as follows.

【0025】即ち、上記乾燥粉末にバインダーとしてP
VB、メチルセルローズ、オレイン酸、プロピレングリ
コール、トルエンまたはマニトル等の有機高分子からな
るバインダーを約1:1〜1:4添加した後、ドクターブ
レード法でグリーンシートをつくった後、つくった複数
のグリーンシートを積層し、積層したシート上にAg内
部電極を印刷した後、更にグリーンシートを複数個積層
してそれを880〜910℃で焼成する。この際、焼成
温度は従来より低い約860〜910℃でも可能であ
る。焼成した焼結体に外部電極を形成すれば本発明にお
いて得ようとするチッブ型インダクターが得られる。
That is, P is used as a binder in the dry powder.
After adding about 1: 1 to 1: 4 of a binder composed of an organic polymer such as VB, methylcellulose, oleic acid, propylene glycol, toluene or mantle, a green sheet was prepared by a doctor blade method, and then a plurality of prepared sheets were formed. After laminating the green sheets and printing the Ag internal electrodes on the laminated sheets, a plurality of green sheets are further laminated and fired at 880 to 910 ° C. In this case, the firing temperature can be set at about 860 to 910 ° C., which is lower than the conventional one. If an external electrode is formed on the fired sintered body, a chip type inductor to be obtained in the present invention can be obtained.

【0026】以下、本発明を実施例を通じて具体的に説
明する。
Hereinafter, the present invention will be described specifically with reference to examples.

【0027】[0027]

【発明の実施の形態】実施例1 表1のような組成で原料を秤量し、その原料をポリウレ
タンのジャーに投入しYTZボールを使用し、原料重量
の1〜3倍の蒸留水を添加しながら平均粒度が1〜1.
5μmになるように約8〜24時間粉砕し、混合した。
混合した粉末を乾燥した後、約700〜850℃で2〜
3時間仮焼し、更に、上記ジャーにおいて再粉砕した。
この際、上記仮焼した粉末に10B23−65Bi23
−25ZnOガラス粉末を投入し約24〜48時間再粉
砕した。粉末の粒度が0.1〜1.5μmとなるとき、乾
燥機を通して乾燥したところ、乾燥は水分が原料の重量
当たり0.2〜0.7%まで減量した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Example 1 Raw materials having the composition shown in Table 1 were weighed, and the raw materials were put into a polyurethane jar. Using YTZ balls, 1 to 3 times the weight of the raw materials was added to distilled water. While the average particle size is 1 to 1.
The mixture was ground to about 5 μm for about 8 to 24 hours and mixed.
After drying the mixed powder, at about 700-850 ° C.
The mixture was calcined for 3 hours, and then re-ground in the jar.
At this time, 10B 2 O 3 -65Bi 2 O 3 powder as described above calcined
-25 ZnO glass powder was charged and reground for about 24-48 hours. When the powder had a particle size of 0.1 to 1.5 μm, it was dried through a drier, and the water content was reduced to 0.2 to 0.7% by weight of the raw material.

【0028】乾燥した粉末は、60〜80メッシュのふ
るいを通して均一な粒子として取出した後、ここに5〜
10重量%のポリビニルアルコールおよび5〜16重量
%のマニトルが一緒に溶解したバインダーを約5〜15
重量%添加し、上記粉末を50メッシュのふるいで均一
な粒子として取出し、外径25mm、内径18mm、高
さ4.5mmトロイダルコアとして成型し、上記成型体
を焼結した。この際、焼結は約420℃までは約2℃/
分程度に昇温し、その温度で約4時間保って脱バインダ
ーし、次いで750℃までは約3℃/分の速度で昇温
し、更に、約900℃まで約1℃/分程度の速度で昇温
した。900℃で2〜3時間程度保った後、700℃ま
では約3℃/分の速度で、そして常温までは10℃/分の
速度で冷却した。このように焼結した材料に直径0.5
5mmのエナメル銅線を20回巻線した後10KHz〜
40MHzの周波数帯域でHP41194Aインピタン
スアナライザを利用しインダクタンスと品質係数(Qフ
ァクター)を測定し、その結果を表1に示した。一方、
表1において、従来例は焼結温度が約950℃において
進行した。
The dried powder is taken out as uniform particles through a 60-80 mesh sieve,
About 5 to 15% by weight of a binder in which 10% by weight of polyvinyl alcohol and 5 to 16% by weight of a
% By weight, and the powder was taken out as uniform particles through a 50-mesh sieve, molded into a toroidal core having an outer diameter of 25 mm, an inner diameter of 18 mm, and a height of 4.5 mm, and the molded body was sintered. At this time, sintering is performed at about 2 ° C /
Temperature to about 750 minutes, keep the temperature for about 4 hours to remove the binder, then raise the temperature to about 750 ° C at a rate of about 3 ° C / minute, and further up to about 900 ° C at a rate of about 1 ° C / minute. The temperature rose. After being kept at 900 ° C. for about 2 to 3 hours, it was cooled at a rate of about 3 ° C./min to 700 ° C. and at a rate of 10 ° C./min to room temperature. The material thus sintered has a diameter of 0.5.
After winding 5mm enameled copper wire 20 times, 10KHz ~
The inductance and the quality factor (Q factor) were measured in a 40 MHz frequency band using an HP41194A impedance analyzer, and the results are shown in Table 1. on the other hand,
In Table 1, the conventional example proceeded at a sintering temperature of about 950 ° C.

【表1】 [Table 1]

【0029】表1に示したように、本発明の条件を満た
す発明例(1〜9)の場合、低温焼成が可能であるのみな
らず、軟磁性焼結体のインダクタンス値も10μH以
上、高周波から品質係数(Q)も約150以上を示し、優
れた電磁気的特性を持っていることが確認された。即
ち、本発明のこのような特性はガラスおよびCo系添加
剤を全く添加しない従来の場合に比べて、焼成温度が約
50〜100℃低いだけでなく、焼成後の損失が非常に
減少する特性を示していることがわかる。
As shown in Table 1, in the case of the invention examples (1 to 9) satisfying the conditions of the present invention, not only low-temperature sintering is possible but also the inductance value of the soft magnetic sintered body is 10 μH or more, As a result, the quality factor (Q) was about 150 or more, and it was confirmed that the product had excellent electromagnetic characteristics. In other words, such characteristics of the present invention not only reduce the firing temperature by about 50 to 100 ° C. but also greatly reduce the loss after firing as compared with the conventional case where no glass and Co-based additives are added. It turns out that it shows.

【0030】その反面、比較例(2〜6)の場合、ガラス
が添加されずにBi系またはV系の添加剤が添加されて
おり、低温焼成帯域で焼結が充分でないため、相対的に
低いインダクタンス或いは品質係数値を示したが、それ
はBi成分またはV成分単独では焼結体から界面拡散が
生じにくいからである。更に、比較例(1)は、基本的に
本発明の磁性粉末原料の組成範囲をはずれた場合であ
り、低温焼成により品質係数が低いため電磁気的特性が
低下した。
On the other hand, in the case of Comparative Examples (2 to 6), Bi or V additive was added without adding glass, and sintering was not sufficient in the low-temperature sintering zone. The low inductance or the quality factor value was exhibited because the Bi component or the V component alone hardly causes interface diffusion from the sintered body. Further, Comparative Example (1) was a case where the composition range of the magnetic powder raw material of the present invention was basically out of the range, and the electromagnetic characteristics were degraded due to the low quality factor due to the low temperature firing.

【0031】実施例2 ガラスの種類による電磁気的特性を調べるため、表2の
ような互いに異なる物理的特性を有するガラスを、実施
例1と同一な方法で同一の組成を有する磁性粉末に一定
量を添加し、焼結体を製造して各軟磁性焼結体に製作し
たトロイダルコアに対して電磁気的特性を測定し、その
結果を表3に示した。このとき、測定条件は直径0.6
mmのエナメル銅線を20回巻線した後、インピダンス
アナライザHP4194Aで行った。
Example 2 In order to examine the electromagnetic characteristics according to the type of glass, a certain amount of glass having different physical characteristics as shown in Table 2 was added to a magnetic powder having the same composition in the same manner as in Example 1. Was added, a sintered body was manufactured, and the electromagnetic characteristics of the toroidal cores manufactured in each soft magnetic sintered body were measured. The results are shown in Table 3. At this time, the measurement condition was 0.6 in diameter.
After winding an enameled copper wire of 20 mm in diameter 20 times, the measurement was performed with an impedance analyzer HP4194A.

【表2】 [Table 2]

【表3】 [Table 3]

【0032】表2および3に示したように、同一なガラ
スであっても、各ガラスの作業点と熱膨張係数を異にす
る組成が異なることにより、製造した軟磁性焼結体の電
磁気的特性変化が非常に大きいことがわかる。即ち、軟
磁性粉末に添加されるガラスが重量%で、Bが10〜4
0%、Biが20〜70%、Znが20〜40%の本発
明の条件を満足するガラス[発明材(a〜d)]を使用し
た発明例(8)、(10〜15)の場合、常用周波数帯にお
けるインダクタンス値が少なくとも15μH以上であ
り、品質係数が150以上だけでなく、品質係数のピー
ク域が全て100KHz〜20MHz程度であることが
わかる。
As shown in Tables 2 and 3, even when the same glass is used, the working point of each glass is different from the composition having a different coefficient of thermal expansion. It can be seen that the characteristic change is very large. That is, the glass to be added to the soft magnetic powder is% by weight, and B is 10 to 4%.
In the case of invention examples (8) and (10-15) using glasses [inventive materials (ad)] satisfying the conditions of the present invention in which 0%, Bi is 20 to 70%, and Zn is 20 to 40%. It can be seen that the inductance value in the common frequency band is at least 15 μH or more, the quality factor is not only 150 or more, and the peak range of the quality factor is all about 100 KHz to 20 MHz.

【0033】その反面、本発明のガラスとは異なり、B
−Si系ガラス[(A〜C)]を用いた比較例(7〜9)の
場合、インダクタンス値が非常に小さかったり、品質係
数が小さく、電磁気的特性が低下することがわかる。
On the other hand, unlike the glass of the present invention, B
In the case of Comparative Examples (7 to 9) using -Si-based glass [(A to C)], it is found that the inductance value is very small, the quality factor is small, and the electromagnetic characteristics are reduced.

【0034】実施例3 表1の組成を有する原料を実施例1と同一な方法により
乾燥した粉末をつくり、上記粉末にPVB、マニトルバ
インダーを約1:1〜1:4添加し、それを200〜32
5メッシュのふるいで均一な粒子にして取出した後、ド
クダーブレード法により厚み10〜200μmのグリー
ンシートをつくった。
Example 3 A raw material having the composition shown in Table 1 was dried in the same manner as in Example 1 to prepare a powder, and PVB and a manifold binder were added to the powder at a ratio of about 1: 1 to 1: 4. 200-32
After taking out uniform particles with a 5-mesh sieve, a green sheet having a thickness of 10 to 200 μm was prepared by the dokuda blade method.

【0035】つくった複数のグリーンシートを積層し、
積層したシート上にAg内部電極を印刷し、更に、グリ
ーンシートを複数個積層して焼成した。その際、焼成は
880〜910℃で1〜3時間行った。この焼結体に外
部電極を形成してチップインダクターを製造した。この
ように製造したインダクターに対してHP4192Aネ
ットワークアナライザにより電磁気的特性を測定し、そ
の結果を表4に示した。
A plurality of the produced green sheets are laminated,
An Ag internal electrode was printed on the laminated sheet, and a plurality of green sheets were laminated and fired. At that time, firing was performed at 880 to 910 ° C. for 1 to 3 hours. External electrodes were formed on the sintered body to produce a chip inductor. Electromagnetic characteristics of the inductor thus manufactured were measured with a HP4192A network analyzer, and the results are shown in Table 4.

【表4】 [Table 4]

【0036】表4に示した通り、本発明の条件を満たす
発明例(16〜22)の場合、低温において焼成が可能で
あるのみならず、軟磁性焼結体のインダクタンス値も1
40nH以上、高周波において、品質係数(Q)も約34
以上を示す優れた電磁気的特性を有することが確認され
た。即ち、本発明のこのような特性はガラスおよびCo
系添加剤を全く添加しない従来のチップインダクターの
場合に比べて、焼成温度が約50〜100℃低いだけで
なく、焼成後の損失が非常に減少する特性を示している
ことがわかる。
As shown in Table 4, in the case of the invention examples (16 to 22) satisfying the conditions of the present invention, not only can firing be performed at a low temperature, but also the inductance value of the soft magnetic sintered body is 1
At a high frequency of 40 nH or more, the quality factor (Q) is about 34
It was confirmed that it had the excellent electromagnetic characteristics shown above. That is, such a property of the present invention is obtained by using glass and Co.
It can be seen that the firing temperature is lower by about 50 to 100 ° C. and the loss after firing is greatly reduced as compared with the case of the conventional chip inductor without any system additive.

【0037】上述のように、本発明によれば、低温にお
いても充分に焼成が進行し、電磁気的特性の優れた軟磁
性材料を得ることが可能である。このような製造方法
は、既存の軟磁性材料の製造設備をそのまま用いること
ができ、高価な製造設備の投資や複雑な管理を行う必要
がないので、廉価なチップ部品用軟磁性材料を製造する
のに非常に有用である。
As described above, according to the present invention, sintering proceeds sufficiently even at a low temperature, and a soft magnetic material having excellent electromagnetic characteristics can be obtained. With such a manufacturing method, existing soft magnetic material manufacturing equipment can be used as it is, and there is no need to invest in expensive manufacturing equipment or perform complicated management, so that a low-cost soft magnetic material for chip components is manufactured. Very useful for:

Claims (23)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 インダクター用Ni−Cu−Zn系軟磁
性材料において、モル%で、Fe23が49.0〜50.
0%、CuOが5〜13%、NiOが7.5〜25%、
およびZnOが12〜38.5%からなる磁性粉末にB2
3−Bi23−ZnO系ガラスが0.05〜15.0w
t%含有することを特徴するインダクター用軟磁性材
料。
1. A inductor for an Ni-Cu-Zn-based soft magnetic material, in mol%, Fe 2 O 3 is from 49.0 to 50.
0%, CuO 5-13%, NiO 7.5-25%,
And B 2 in the magnetic powder ZnO consists 12 to 38.5%
O 3 —Bi 2 O 3 —ZnO based glass is 0.05 to 15.0 w
A soft magnetic material for an inductor, characterized by containing t%.
【請求項2】 上記磁性粉末にCoOが2.0wt%以
下、Co23が2.0wt%以下およびCo34が2.0
wt%以下の中から1種または2種以上が追加して含有
することを特徴とする請求項1記載のインダクター用軟
磁性材料。
2. The magnetic powder according to claim 1, wherein the content of CoO is 2.0 wt% or less, the content of Co 2 O 3 is 2.0 wt% or less, and the content of Co 3 O 4 is 2.0 wt%.
2. The soft magnetic material for an inductor according to claim 1, further comprising one or more of wt% or less.
【請求項3】 上記ガラスはwt%で、B23が10〜
40%、Bi23が20〜40%、およびZnOが20
〜70%の組成を有することを特徴とする請求項1記載
の軟磁性材料。
3. The above glass is in wt.% And B 2 O 3 is 10% by weight.
40% Bi 2 O 3 is 20-40%, and ZnO is 20
The soft magnetic material according to claim 1, having a composition of about 70%.
【請求項4】 巻線型インダクターの製造方法におい
て、モル%でFe23が49.0〜50.0%、CuOが
5〜13%、NiOが7.5〜25%、およびZnOが
12〜38.5%からなる磁性粉末にB23−Bi23
−ZnO系ガラスを0.05〜15.0wt%添加し、そ
れを粉砕した後、乾燥して仮焼する工程、仮焼した粉末
に5〜10重量%の主剤と5〜16重量%の反応抑制剤
を加えたバインダーを5〜15重量%添加して造粒する
工程、および造粒粉末を成型し、860〜910℃で焼
結する工程、から構成されることを特徴とする巻線型イ
ンダクターの製造方法。
4. A method of manufacturing a wire-wound inductor, comprising: 49.0 to 50.0% of Fe 2 O 3, 5 to 13% of CuO, 7.5 to 25% of NiO, and 12% of ZnO in mol%. the magnetic powder consisting of ~38.5% B 2 O 3 -Bi 2 O 3
-Adding 0.055 to 15.0 wt% of ZnO-based glass, pulverizing it, drying and calcining, and reacting the calcined powder with 5 to 10 wt% of the main agent and 5 to 16 wt%. A wire-wound inductor comprising a step of adding 5 to 15% by weight of a binder to which an inhibitor is added and granulating, and a step of forming a granulated powder and sintering it at 860 to 910 ° C. Manufacturing method.
【請求項5】 上記磁性粉末にCoOが2.0wt%以
下、Co23が2.0wt%以下およびCo34が2.0
wt%以下の中から1種または2種以上が追加して含有
することを特徴とする請求項4記載の製造方法。
5. The magnetic powder according to claim 1, wherein the content of CoO is 2.0 wt% or less, the content of Co 2 O 3 is 2.0 wt% or less, and the content of Co 3 O 4 is 2.0 wt%.
5. The method according to claim 4, wherein one or more of the components by weight are additionally contained.
【請求項6】 上記ガラスはwt%で、B23が10〜
40%、Bi23が20〜40%、およびZnOが20
〜70%の組成を有することを特徴とする請求項4記載
の製造方法。
6. The above glass is in wt%, and B 2 O 3 is 10%.
40% Bi 2 O 3 is 20-40%, and ZnO is 20
5. The method according to claim 4, wherein the composition has a composition of about 70%.
【請求項7】 上記ガラスはその粒度の大きさが0.1
〜10μmである粉末を用いることを特徴とする請求項
6記載の製造方法。
7. The glass has a particle size of 0.1.
The method according to claim 6, wherein a powder having a diameter of from 10 to 10 µm is used.
【請求項8】 上記ガラスはその粒度の大きさが0.2
〜5μmである粉末を用いることを特徴とする請求項7
記載の製造方法。
8. The glass has a particle size of 0.2.
8. A powder having a size of about 5 .mu.m is used.
The manufacturing method as described.
【請求項9】 上記仮焼は650〜880℃で実施する
ことを特徴とする請求項4記載の製造方法。
9. The method according to claim 4, wherein the calcination is performed at 650 to 880 ° C.
【請求項10】 上記焼結温度で5時間以内保持するこ
とを特徴とする請求項4記載の製造方法。
10. The method according to claim 4, wherein the sintering temperature is maintained within 5 hours.
【請求項11】 上記焼結の際に、750〜900℃ま
での昇温過程は約10℃/分以内であり、900℃から
700℃までの冷却過程は約5℃/分以内であることを
特徴とする請求項4記載の製造方法。
11. During the sintering, the heating process from 750 to 900 ° C. is within about 10 ° C./min, and the cooling process from 900 ° C. to 700 ° C. is within about 5 ° C./min. The production method according to claim 4, wherein:
【請求項12】 上記主剤としてはポリビニルアルコー
ルまたはメチルセルローズを用いることを特徴とする請
求項4記載の製造方法。
12. The method according to claim 4, wherein polyvinyl alcohol or methyl cellulose is used as the main agent.
【請求項13】 上記反応抑制剤としてはマニトルまた
はプロピレングリコールを用いることを特徴とする請求
項4記載の製造方法。
13. The production method according to claim 4, wherein the reaction inhibitor is manitol or propylene glycol.
【請求項14】 チップ型インダクターの製造方法にお
いて、モル%で、Fe23が49.0〜50.0%、Cu
Oが5〜13%、NiOが7.5〜25%、およびZn
Oが12〜38.5%からなる磁性粉末にB23−Bi2
3−ZnO系ガラスを0.05〜15.0wt%添加
し、それを粉砕した後に乾燥する工程、乾燥した粉末に
バインダーを約1:1〜1:4添加した後、ドクターブレ
ード法によりグリーンシートをつくる工程、つくった複
数のグリーンシートを積層し、積層のシート上にAg内
部電極を印刷した後、更にグリーンシートを複数個積層
し、それを焼成する工程、および焼成した焼結体に外部
電極を形成する工程、から構成されることを特徴とする
チップ型インダクターの製造方法。
14. A method for manufacturing a chip type inductor, comprising: 49.0-50.0% Fe 2 O 3 in mole%;
5-13% O, 7.5-25% NiO, and Zn
O and B in the magnetic powder consisting of 12~38.5% 2 O 3 -Bi 2
A step of adding 0.05 to 15.0 wt% of O 3 -ZnO-based glass, pulverizing it, and drying it; adding about 1: 1 to 1: 4 of a binder to the dried powder; A step of forming a sheet, laminating a plurality of the formed green sheets, printing an Ag internal electrode on the laminated sheet, further laminating a plurality of green sheets, firing the same, and firing the sintered body. Forming an external electrode. A method for manufacturing a chip-type inductor, comprising:
【請求項15】 上記磁性粉末にCoOが2.0wt%
以下、Co23が2.0wt%以下及びCo34が2.0
wt%以下の中から1種または2種以上を追加して添加
することを特徴とする請求項14記載の製造方法。
15. The magnetic powder contains 2.0 wt% of CoO.
Hereinafter, the content of Co 2 O 3 is 2.0 wt% or less and the content of Co 3 O 4 is 2.0
15. The method according to claim 14, wherein one or more of the components are added in an amount of not more than wt%.
【請求項16】 上記ガラスはwt%で、B23が10
〜40%、Bi23が20〜40%、およびZnOが2
0〜70%の組成であることを特徴とする請求項14記
載の製造方法。
16. The glass is in wt%, and B 2 O 3 is 10%.
4040%, Bi 2 O 3 20-40%, and ZnO 2
The method according to claim 14, wherein the composition is 0 to 70%.
【請求項17】 上記ガラスはその粒度の大きさが0.
1〜10μmである粉末を用いることを特徴とする請求
項16記載の製造方法。
17. The glass has a particle size of 0.1.
The method according to claim 16, wherein a powder having a size of 1 to 10 µm is used.
【請求項18】 上記ガラスはその粒度の大きさが0.
2〜5μmである粉末を用いることを特徴とする請求項
17記載の製造方法。
18. The glass has a particle size of 0.1.
The method according to claim 17, wherein a powder having a size of 2 to 5 µm is used.
【請求項19】 上記仮焼は650〜880℃で行うこ
とを特徴とする請求項14記載の製造方法。
19. The method according to claim 14, wherein the calcination is performed at 650 to 880 ° C.
【請求項20】 上記焼成温度において5時間以内保持
することを特徴とする請求項14記載の製造方法。
20. The method according to claim 14, wherein the calcination temperature is maintained within 5 hours.
【請求項21】 上記焼成温度において1〜3時間行う
ことを特徴とする請求項20記載の製造方法。
21. The method according to claim 20, wherein the heating is performed at the firing temperature for 1 to 3 hours.
【請求項22】 上記焼成の際に、750〜900℃ま
での昇温過程は約10℃/分以内であり、900℃から
700℃までの冷却過程は約5℃/分以内であることを
特徴とする請求項21記載の製造方法。
22. In the above-mentioned baking, the heating process from 750 to 900 ° C. is within about 10 ° C./min, and the cooling process from 900 ° C. to 700 ° C. is within about 5 ° C./min. The manufacturing method according to claim 21, wherein:
【請求項23】 上記バインダーはPVBとマニトルが
混合しているものを用いることを特徴とする請求項14
記載の製造方法。
23. The binder according to claim 14, wherein the binder is a mixture of PVB and mantle.
The manufacturing method as described.
JP9222494A 1996-11-30 1997-08-19 Soft magnetic material for inductor and method of manufacturing inductor using the same Expired - Fee Related JP2837150B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1996-60293 1996-11-30
KR1019960060293A KR100222757B1 (en) 1996-11-30 1996-11-30 A soft magnetic material for inductor and a method for manufacturing therewith

Publications (2)

Publication Number Publication Date
JPH10163018A JPH10163018A (en) 1998-06-19
JP2837150B2 true JP2837150B2 (en) 1998-12-14

Family

ID=19484961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9222494A Expired - Fee Related JP2837150B2 (en) 1996-11-30 1997-08-19 Soft magnetic material for inductor and method of manufacturing inductor using the same

Country Status (4)

Country Link
US (1) US5855810A (en)
JP (1) JP2837150B2 (en)
KR (1) KR100222757B1 (en)
DE (1) DE19725849C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101315111B1 (en) * 2011-09-06 2013-10-08 고등기술연구원연구조합 Method for manufacturing high-frequency magnetic materials using by used glasses of a waste liquid crystal display panel

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6127296A (en) * 1998-04-24 2000-10-03 Tdk Corporation Ceramic-glass composite material and method for the preparation thereof
JP3454164B2 (en) * 1998-08-21 2003-10-06 株式会社村田製作所 Ferrite sintered body
US6191934B1 (en) * 1998-10-02 2001-02-20 Sarnoff Corporation & Co., Ltd. High dielectric constant embedded capacitors
JP3582454B2 (en) * 1999-07-05 2004-10-27 株式会社村田製作所 Multilayer coil component and method of manufacturing the same
JP3508642B2 (en) * 1999-09-03 2004-03-22 株式会社村田製作所 Multilayer inductor
DE60002428T2 (en) * 1999-09-28 2004-01-15 Nec Tokin Corp MAGNETIC COMPOSITE FILM AND PRODUCTION PROCESS
JP4069284B2 (en) * 2001-02-23 2008-04-02 Tdk株式会社 Magnetic ferrite materials and multilayer ferrite parts
JP2002198213A (en) * 2000-12-25 2002-07-12 Tdk Corp Low-temperature baked high-performance ferrite material and ferrite part
JP4074438B2 (en) * 2001-03-01 2008-04-09 Tdk株式会社 Magnetic oxide sintered body and high-frequency circuit component using the same
JP4074440B2 (en) * 2001-03-01 2008-04-09 Tdk株式会社 Magnetic oxide sintered body and high-frequency circuit component using the same
AU2002354911B2 (en) * 2001-07-16 2007-08-30 Depuy Products, Inc. Meniscus regeneration device and method
DE10146805B4 (en) * 2001-09-22 2015-03-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing a film for lining casings
KR100478710B1 (en) * 2002-04-12 2005-03-24 휴먼일렉스(주) Method of manufacturing soft magnetic powder and inductor using the same
WO2005095301A1 (en) * 2004-03-30 2005-10-13 Siemens Aktiengesellschaft Glass ceramic composition, electrical component comprising one such composition, and ceramic multi-layer body comprising one such electric component
JP4753016B2 (en) * 2005-09-30 2011-08-17 戸田工業株式会社 Ferrite powder, green sheet containing ferrite powder, and ferrite sintered body
JP4687536B2 (en) * 2006-03-31 2011-05-25 株式会社村田製作所 Magnetic body and method for manufacturing the same, and winding coil and method for manufacturing the same
KR100982639B1 (en) * 2008-03-11 2010-09-16 (주)창성 Multilayered chip power inductor using the magnetic sheet with soft magnetic metal powder
JP2010150104A (en) * 2008-12-26 2010-07-08 Fdk Corp Magnetic composition, inductor, and substrate for electronic circuit
CN101555132B (en) * 2009-04-30 2012-02-29 上海华源磁业有限公司 Sand glue for preventing blank from adhesion, preparation and application thereof
CN101671175B (en) * 2009-09-14 2012-09-26 宜兴市昊源陶瓷厂 Ceramic wine-bottle and preparation method thereof
JP5712645B2 (en) * 2010-03-16 2015-05-07 Tdk株式会社 Ferrite composition and electronic component
JP5318146B2 (en) * 2011-04-07 2013-10-16 阪和ホーロー株式会社 Fever glaze
KR101548775B1 (en) * 2011-09-14 2015-09-01 삼성전기주식회사 NiZnCu based ferrite composition, and multilayered chip devices using the same
CN113636838A (en) * 2021-09-15 2021-11-12 横店集团东磁股份有限公司 Nickel-zinc ferrite material and preparation method and application thereof
CN115010479B (en) * 2022-06-23 2023-06-30 横店集团东磁股份有限公司 Shrinkage-free nickel-copper-zinc ferrite material and preparation method thereof
CN116403796B (en) * 2023-05-09 2024-02-13 清远市佳和磁材有限公司 High-frequency inductor and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL81425C (en) * 1950-05-10
DE1064867B (en) * 1958-05-06 1959-09-03 Siemens Ag Electrically highly insulating, glass-like ferromagnetic material
JPS60210572A (en) * 1984-04-04 1985-10-23 日本電気株式会社 Low temperature sintered oxide magnetic material
JPS61111935A (en) * 1984-11-02 1986-05-30 Hitachi Ltd Glass composition
JP2727509B2 (en) * 1987-08-17 1998-03-11 ティーディーケイ株式会社 Chip inductors and LC composite parts
DE68921971T2 (en) * 1988-12-28 1995-08-03 Matsushita Electric Ind Co Ltd Composite ferrite material.
US5260620A (en) * 1992-03-09 1993-11-09 Morrill Giles W Asynchronous induction motor
US5252521A (en) * 1992-10-19 1993-10-12 Ferro Corporation Bismuth-containing lead-free glass enamels and glazes of low silica content

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101315111B1 (en) * 2011-09-06 2013-10-08 고등기술연구원연구조합 Method for manufacturing high-frequency magnetic materials using by used glasses of a waste liquid crystal display panel

Also Published As

Publication number Publication date
US5855810A (en) 1999-01-05
JPH10163018A (en) 1998-06-19
DE19725849C2 (en) 2002-06-20
KR100222757B1 (en) 1999-10-01
DE19725849A1 (en) 1998-06-04
KR19980041027A (en) 1998-08-17

Similar Documents

Publication Publication Date Title
JP2837150B2 (en) Soft magnetic material for inductor and method of manufacturing inductor using the same
CN107311637B (en) A kind of method that low-power consumption manganese-zinc ferrite is prepared based on nucleocapsid crystal grain
JP2923268B2 (en) High frequency soft magnetic material for low temperature firing and method of manufacturing inductor using the same
KR100478710B1 (en) Method of manufacturing soft magnetic powder and inductor using the same
JP4158081B2 (en) Soft magnetic hexagonal ferrite composite particle powder, green sheet using the soft magnetic hexagonal ferrite composite particle powder, and soft magnetic hexagonal ferrite sintered body
JP3492802B2 (en) Low loss ferrite material
US5817250A (en) Magnetodielectric ceramic composite material, method of manufacturing same
DE60201699T2 (en) Composite particles on soft magnetic hexagonal ferrite base, use of a green body may and sintered ceramics on this ferrite basis
EP1283529B1 (en) Mn-Zn ferrite and coil component using the same
JP3550251B2 (en) Ferrite sintered body for high frequency region and signal chip inductor using the same
JP4255044B2 (en) Oxide magnetic material and method for producing oxide magnetic material
JP3580145B2 (en) Method for producing Ni-Cu-Zn ferrite material
JP4045410B2 (en) Soft magnetic hexagonal ferrite composite particle powder, green sheet using the soft magnetic hexagonal ferrite composite particle powder, and soft magnetic hexagonal ferrite sintered body
TW455570B (en) Soft ferrite material for use in making inductors, and method for manufacturing inductors using the material
CN115028443B (en) Laminated ferrite inductance material and preparation method thereof
JP3580144B2 (en) Method for producing Ni-Cu-Zn ferrite material
JP6245966B2 (en) Soft magnetic materials for inductors
KR19980027155A (en) Magnetic Materials for High Frequency Band Chip Inductance Components
JPH04196201A (en) Manufacture of ferrite magnetic substance
JPH03233907A (en) Ferrite magnetic substance
KR20120127553A (en) NiZnCu FERRITE, PREPARATION METHOD THEREOF AND ELECTRONIC PART COMPRISING THE SAME
JPH04223303A (en) Manufacture of oxide magnetic material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071009

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees