JP2832213B2 - Manufacturing method of optical glass - Google Patents

Manufacturing method of optical glass

Info

Publication number
JP2832213B2
JP2832213B2 JP1020354A JP2035489A JP2832213B2 JP 2832213 B2 JP2832213 B2 JP 2832213B2 JP 1020354 A JP1020354 A JP 1020354A JP 2035489 A JP2035489 A JP 2035489A JP 2832213 B2 JP2832213 B2 JP 2832213B2
Authority
JP
Japan
Prior art keywords
sio
fine particles
average particle
fluorine
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1020354A
Other languages
Japanese (ja)
Other versions
JPH02199033A (en
Inventor
毅 北川
久晃 岡崎
隆男 木村
修一 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1020354A priority Critical patent/JP2832213B2/en
Publication of JPH02199033A publication Critical patent/JPH02199033A/en
Application granted granted Critical
Publication of JP2832213B2 publication Critical patent/JP2832213B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光学ガラスを製造する方法に関する。さら
に詳しくは、割れや気泡などの不整がなく光学的に均質
な大型のフッ素添加石英ガラス体を製造する方法に関す
る。
Description: FIELD OF THE INVENTION The present invention relates to a method for producing optical glass. More specifically, the present invention relates to a method for producing a large optically homogeneous large fluorinated quartz glass body without irregularities such as cracks and bubbles.

(従来技術) 高純度なガラスの製造方法として、シリコンアルコキ
シドの加水分解、縮合により溶液中でSiO2ガラス重合体
を生成する、ゾルゲル法が知られている。ゾルゲル法で
は、適当な触媒の元で加水分解することにより、異なる
構造のガラス重合体を得ることができる。例えば、塩酸
などの酸性触媒を添加した場合には、線形ポリマ状の重
合体が生成する。一方、アンモニアなどの塩基性触媒を
用いた場合には、平均粒径が0.001〜0.3μmの広い範囲
で単一な粒度分布を有する微粒子状の重合体を得ること
ができる。ゾルゲル法によるフッ素添加石英ガラスの製
造方法として、液相フッ素添加法が本発明者らにより提
案されている。
(Prior art) As a method for producing high-purity glass, a sol-gel method of producing a SiO 2 glass polymer in a solution by hydrolysis and condensation of silicon alkoxide is known. In the sol-gel method, a glass polymer having a different structure can be obtained by hydrolysis under an appropriate catalyst. For example, when an acidic catalyst such as hydrochloric acid is added, a linear polymer-like polymer is generated. On the other hand, when a basic catalyst such as ammonia is used, a fine particle polymer having a single particle size distribution over a wide range of an average particle size of 0.001 to 0.3 μm can be obtained. The present inventors have proposed a liquid phase fluorine addition method as a method for producing a fluorine-containing quartz glass by a sol-gel method.

第5図に、このフッ素添加石英ガラス製造方法の工程
を示す。この方法は、シリコンアルコキシドを加水分解
したゾル溶液1に、フッ素添加剤として、アルコキシ基
の一部をフッ素で置換したアルコキシド4を加えてフッ
素添加SiO2ゾル溶液5とし、続いてゲル6化し、乾燥
し、多孔質ゲル体7とし、これを高温処理して透明なフ
ッ素添加石英ガラス体8を得る方法である。
FIG. 5 shows the steps of this method for producing a fluorine-added quartz glass. In this method, a sol solution 1 obtained by hydrolyzing a silicon alkoxide is added with an alkoxide 4 in which a part of an alkoxy group is substituted with fluorine as a fluorine additive to form a fluorinated SiO 2 sol solution 5, and then a gel 6 is formed. This is a method in which a porous gel body 7 is dried to obtain a transparent fluorine-containing quartz glass body 8 by performing a high-temperature treatment.

この方法によれば、金属やOH基などの不純物が少な
く、また、気泡などの不整のない均質なフッ素添加石英
ガラス体を、屈折率の制御性よく製造することができ
る。
According to this method, it is possible to produce a homogeneous fluorine-added quartz glass body having a small amount of impurities such as metals and OH groups and having no irregularities such as bubbles with good controllability of the refractive index.

(発明の解決しようとする問題点) 従来、この方法では、粒度分布の狭いSiO2微粒子を含
むゾル溶液を用いていたため、以下の問題点が生じてい
た。SiO2微粒子の平均粒径が0.03μm以下の場合には、
ゲルの気孔径が小さいため、乾燥工程において溶媒や水
分を蒸発させる際、ゲル体の内部に大きな応力が生じ、
ゲル体の割れが発生し易かった。このため、直径20mm、
長さ50mm程度以上の寸法を持ったガラス体は得られてい
なかった。一方、平均粒径が0.03μm以上のSiO2微粒子
を用いた場合には、ゲル体が柔弱であり、乾燥工程にお
いてゲル体の変形が生じるため、所定の形状のガラス体
を、寸法精度よく製造することは困難であった。
(Problems to be Solved by the Invention) Conventionally, in this method, a sol solution containing SiO 2 fine particles having a narrow particle size distribution has been used, so the following problems have occurred. When the average particle size of the SiO 2 fine particles is 0.03 μm or less,
Due to the small pore size of the gel, a large stress is generated inside the gel body when evaporating the solvent or water in the drying process,
The gel body was easily cracked. For this reason, diameter 20mm,
A glass body having a length of about 50 mm or more has not been obtained. On the other hand, when SiO 2 fine particles having an average particle size of 0.03 μm or more are used, the gel body is soft and the gel body is deformed in the drying step, so that a glass body having a predetermined shape is manufactured with high dimensional accuracy. It was difficult to do.

本発明は、上記の問題点に鑑みなされたものであり、
光学的に均質な大型のフッ素添加石英ガラス体を、寸法
精度よく製造する方法を提供するものである。
The present invention has been made in view of the above problems,
An object of the present invention is to provide a method for producing a large, optically homogeneous, fluorinated quartz glass body with high dimensional accuracy.

(問題を解決するための手段) 本発明の製造方法は、シリコンのアルコキシドSi(O
R)(Rはアルキル基)を加水分解した平均粒径が0.0
05μm以上0.03μm未満のSiO2微粒子を含むゾル溶液
と、平均粒径が0.03μm以上のSiO2微粒子を混合し、続
いてゲル化、乾燥して、多孔質ゲル体とし、これを高温
処理して、透明なガラス体を得ることを特徴とする。
(Means for Solving the Problem) The production method of the present invention relates to a method for producing silicon alkoxide Si (O
R) 4 (R is an alkyl group) has an average particle size of 0.0
A sol solution containing SiO 2 fine particles of less than 0.03 .mu.m or more 05Myuemu, average particle size were mixed more SiO 2 fine particles 0.03 .mu.m, then gelled, dried, and a porous gel body which was high-temperature treatment And obtaining a transparent glass body.

また、本発明の第2の製造方法は、上記0.03μm以上
のSiO2微粒子を混合した後のゾル溶液にシリコンアルコ
キシドのアルコキシ基の少なくとも一つをフッ素で置換
したアルコキシド Si(OR)4-nFn(0<n≦4) を加えたことを特徴としている。
Further, in the second production method of the present invention, an alkoxide Si (OR) 4-n in which at least one of the alkoxy groups of the silicon alkoxide is substituted with fluorine is added to the sol solution after mixing the SiO 2 fine particles of 0.03 μm or more. F n (0 <n ≦ 4) is added.

さらに本発明によれば、上記平均粒径が0.03μm以上
のSiO2微粒子の添加量が、全シリコン原子に対し、10モ
ル%以上であることを特徴とする。
Further, according to the present invention, the amount of the SiO 2 fine particles having an average particle diameter of 0.03 μm or more is 10 mol% or more based on all silicon atoms.

本発明をさらに詳しく説明する。 The present invention will be described in more detail.

本発明の光学ガラスの製造方法を第1図に示す。この
第1図より明らかなように、本発明による光学ガラスの
製造方法によれば、Si(OR)(Rはアルキル基)を加
水分解してえた平均粒径が0.005μm以上0.03μm未満
のSiO2微粒子を含むゾル溶液1と、平均粒径が0.03μm
以上のSiO2微粒子2を混合し、このSiO2溶液3に任意に
Si(OR)4-nFn4を添加混合する。このような任意にフッ
素置換アルコキシドを添加したフッ素添加SiO2ゾル溶液
5を静置してゲル6としたのち、乾燥して多孔質ゲル体
7とする。これを高温処理して透明ガラス体8を得る。
FIG. 1 shows a method for producing the optical glass of the present invention. As apparent from FIG. 1, according to the optical glass manufacturing method of the present invention, the average particle size obtained by hydrolyzing Si (OR) 4 (R is an alkyl group) is 0.005 μm or more and less than 0.03 μm. Sol solution 1 containing SiO 2 fine particles, average particle size 0.03 μm
The above SiO 2 fine particles 2 are mixed and optionally added to this SiO 2 solution 3.
Add Si (OR) 4-n F n 4 and mix. The fluorine-containing SiO 2 sol solution 5 to which such fluorinated alkoxide is arbitrarily added is allowed to stand to form a gel 6 and then dried to form a porous gel body 7. This is subjected to a high temperature treatment to obtain a transparent glass body 8.

上述のようなSiO2ゾル溶液に含まれるSiO2微粒子の平
均粒径は0.005μm以上0.03μm未満である。このSiO2
微粒子の平均粒径が0.005μm未満であると、後述の実
施例より明らかなように均質で、気泡などの不整のない
ガラスの作製が困難であるという欠点を生じる。
The average particle size of the SiO 2 fine particles contained in the above-mentioned SiO 2 sol solution is 0.005 μm or more and less than 0.03 μm. This SiO 2
When the average particle diameter of the fine particles is less than 0.005 μm, it is difficult to produce a glass which is homogeneous and free from irregularities such as bubbles, as is apparent from Examples described later.

このようなゾル溶液に平均粒径が0.03μm以上のSiO2
微粒子を添加する。この微粒子は乾燥工程などにおい
て、割れなどを防止するために添加され、0.03μm未満
の平均粒径であると、割れ防止などの効果が発揮しにく
い。一方この粒子の平均粒径の上限は好ましくは0.1μ
mである。0.1μmを越えるとゾル溶液中で微粒子が沈
殿してしまい恐れを生じるからである。
SiO 2 having an average particle size of 0.03 μm or more is added to such a sol solution.
Add microparticles. These fine particles are added in the drying step or the like in order to prevent cracks and the like, and if the average particle diameter is less than 0.03 μm, the effect of preventing cracks and the like is hardly exhibited. On the other hand, the upper limit of the average particle size of these particles is preferably 0.1μ
m. If the thickness exceeds 0.1 μm, the fine particles precipitate in the sol solution, which may cause a fear.

この微粒子の添加量は好ましくは10モル%以上であ
る。10モル%未満であると、乾燥工程において割れを生
じる恐れがある。一方、好ましい添加量の上限は70モル
%である。70モル%を越えて添加しても改良効果は変化
しないからである。
The added amount of the fine particles is preferably at least 10 mol%. If it is less than 10 mol%, cracks may occur in the drying step. On the other hand, the preferable upper limit of the addition amount is 70 mol%. This is because the improvement effect does not change even if it is added in excess of 70 mol%.

上述のようなゾル溶液に本発明においては任意にSi
(OR)4-nFnで示されるアルコキシドを添加する。この
フッ素置換アルコキシドはゲル強度を高くするために添
加され、その好ましい添加量は1〜70モル%である。1
モル%未満であると添加効果がなく、一方70モル%を越
えるとフッ素の触媒効果によって縮重合を生じ、2次粒
子を生成する。このため粒子の粒径が大きくなって1500
℃未満で透明ガラス化できなくなるという欠点を生じ
る。
In the present invention, a sol solution as described above may optionally contain Si.
(OR) addition of the alkoxide represented by the 4-n F n. This fluorine-substituted alkoxide is added to increase the gel strength, and the preferred addition amount is 1 to 70 mol%. 1
If it is less than mol%, there is no effect of addition, while if it exceeds 70 mol%, condensation polymerization occurs due to the catalytic effect of fluorine, and secondary particles are formed. As a result, the particle size becomes
There is a disadvantage that the glass cannot be transparently vitrified at a temperature lower than 0 ° C.

上述のアルコキシドおよびフッ素置換アルコキシドに
おいて、Rはアルキル基であり、好ましくはメチル、エ
チル、プロピル、ブチル等低級アルキル基であるのがよ
い。
In the above alkoxides and fluorine-substituted alkoxides, R is an alkyl group, preferably a lower alkyl group such as methyl, ethyl, propyl and butyl.

(作用) 本発明の方法は、ゾル溶液中に、より粒径の大きいSi
O2微粒子を添加することにより、ゲルの機械的強度を高
めることができ、乾燥工程における割れを発生すること
なく、寸法精度の高い大型フッ素添加石英ガラス体の製
造を可能とするものである。本方法で得られるガラスに
は、気泡などの不整の残留がなく、光学的な均質性が非
常に高いという特徴がある。
(Action) The method of the present invention is a method of preparing a sol solution containing Si having a larger particle size.
By adding O 2 fine particles, the mechanical strength of the gel can be increased, and a large fluorinated quartz glass body with high dimensional accuracy can be produced without causing cracks in the drying step. The glass obtained by this method is characterized by having no irregular residuals such as bubbles and having a very high optical homogeneity.

以下、実施例により詳細に説明する。 Hereinafter, an embodiment will be described in detail.

(実施例1) テトラエトキシシランSi(OC2H5をアンモニア触
媒の元に加水分解し、平均粒径が0.01μmのSiO2微粒子
を含有するゾル溶液を作製した。このゾル溶液に、気相
法により作製した平均粒径が0.01μm、0.03μm、0.1
μmのSiO2微粒子粉末を加え、フッ素添加剤として Si(OC2H53Fを2モル%添加し、十分混合した後、容
器中でゲル化し、ゆっくりと乾燥して、多孔質ゲル体
(直径12mm、長さ50mm)を得た。
Example 1 Tetraethoxysilane Si (OC 2 H 5 ) 4 was hydrolyzed under an ammonia catalyst to prepare a sol solution containing fine particles of SiO 2 having an average particle diameter of 0.01 μm. This sol solution has an average particle size of 0.01 μm, 0.03 μm, 0.1
Add 2 μm of Si (OC 2 H 5 ) 3 F as a fluorine additive and mix well, then gel in a container and dry slowly to obtain a porous gel. (Diameter 12 mm, length 50 mm).

作製した乾燥ゲル体の曲げ強度を、三点曲げ試験によ
り評価した。第2図に結果を示す。アルコキシドから作
製したSiO2微粒子の粒径と等しい0.01μmの微粒子を添
加した場合には、ゲルの強度は一定であるのに対し、平
均粒径が0.03μm、0.1μmの微粒子を添加した場合に
は、添加量の増加と共に乾燥ゲル体の強度が大きくなる
ことが明らかとなった。平均粒径0.1μmの微粒子を10
モル%以上添加した場合には、曲げ強度は添加しない場
合の2倍となった。
The bending strength of the produced dried gel body was evaluated by a three-point bending test. FIG. 2 shows the results. When 0.01 μm fine particles equal to the particle size of the SiO 2 fine particles made from the alkoxide are added, the gel strength is constant, while the average particle size is 0.03 μm, when the fine particles of 0.1 μm are added. It was clarified that the strength of the dried gel body increased with an increase in the amount of added. 10 particles with an average particle size of 0.1 μm
When more than mol% was added, the flexural strength was twice as high as when not added.

本実施例により、アルコキシドの加水分解により作製
したSiO2微粒子を含むゾル溶液に、より粒径の大きいSi
O2微粒子粉末を添加することにより、ゲル体の機械的強
度が高まることが明らかとなった。
According to the present example, a sol solution containing SiO 2 fine particles produced by hydrolysis of
It was clarified that the mechanical strength of the gel body was increased by adding the O 2 fine particle powder.

(実施例2) テトラエトキシシランSi(OC2H5をアンモニア触
媒の元に加水分解し、平均粒径が0.01μmのSiO2微粒子
を含有するゾル溶液を作製した。このゾル溶液に、気相
法により作製した平均粒径が0.1μmのSiO2微粒子粉末
を加え、フッ素添加剤として Si(OC2H53Fを10モル%添加し、十分混合した後、容
器中でゲル化し、ゆっくりと乾燥して、多孔質ゲル体を
得た。このゲル体を1350℃で高温処理して、透明なフッ
素添加石英ガラス体(直径45〜55mm、長さ135〜160mm)
を得た。
Example 2 Tetraethoxysilane Si (OC 2 H 5 ) 4 was hydrolyzed under an ammonia catalyst to prepare a sol solution containing fine particles of SiO 2 having an average particle diameter of 0.01 μm. To this sol solution, added are SiO 2 fine particles having an average particle diameter of 0.1 μm produced by a gas phase method, and 10 mol% of Si (OC 2 H 5 ) 3 F as a fluorine additive, and after sufficient mixing, It gelled in the container and dried slowly to obtain a porous gel body. This gel body is treated at a high temperature of 1350 ° C to produce a transparent fluoridated quartz glass body (45-55 mm in diameter, 135-160 mm in length)
I got

第3図に、透明ガラス体に発生した割れの密度(ガラ
ス体中に生じた割れの総数をガラス体の体積で除した
値)と、気相法で作製したSiO2微粒子の添加量との関係
を示す。図に示すように、添加量が増すと共に割れの密
度が減少し、添加量10モル%以上で全く割れのないフッ
素添加石英ガラス棒が得られることが判明した。
FIG. 3 shows the relationship between the density of cracks generated in the transparent glass body (the value obtained by dividing the total number of cracks generated in the glass body by the volume of the glass body) and the amount of added SiO 2 fine particles produced by the gas phase method. Show the relationship. As shown in the figure, it was found that the cracking density decreased as the amount of addition increased, and that a fluorine-added quartz glass rod free of cracks was obtained at an addition amount of 10 mol% or more.

本実施例により、アルコキシドの加水分解により作製
したSiO2微粒子を含むゾル溶液に、より粒径の大きいSi
O2微粒子粉末を添加することにより、割れのないフッ素
添加石英ガラス体を作製できることが明らかとなった。
実施例1で示したように、ゲルの機械的強度が高まり、
割れの発生を防ぐことができたものと考えられる。
According to the present example, a sol solution containing SiO 2 fine particles produced by hydrolysis of
It was clarified that a crack-free fluorine-added quartz glass body could be prepared by adding O 2 fine particles.
As shown in Example 1, the mechanical strength of the gel increased,
It is considered that the occurrence of cracks could be prevented.

(実施例3) テトラエトキシシランSi(OC2H5をアンモニア触
媒の元に加水分解し、平均粒径が0.003、0.005、0.01μ
mのSiO2微粒子を含有する3種類のゾル溶液を作製し
た。これらのゾル溶液それぞれ70モル%に、気相法によ
り作製した平均粒径が0.1μmのSiO2微粒子粉末20モル
%を加え、フッ素添加剤として Si(OC2H53Fを10モル%添加し、十分混合した後、容
器中でゲル化し、ゆっくりと乾燥して、3種類の多孔質
ゲル体を得た。これらのゲル体を1350℃で高温処理し
て、フッ素添加石英ガラス体(直径10mm、長さ80mm)を
得た。
Example 3 Tetraethoxysilane Si (OC 2 H 5 ) 4 was hydrolyzed under an ammonia catalyst, and the average particle diameter was 0.003, 0.005, 0.01 μm.
Three types of sol solutions containing m 2 SiO 2 fine particles were prepared. To 70 mol% of each of these sol solutions, 20 mol% of SiO 2 fine particles having an average particle diameter of 0.1 μm prepared by a gas phase method was added, and 10 mol% of Si (OC 2 H 5 ) 3 F was added as a fluorine additive. After the addition and thorough mixing, the mixture was gelled in a container and dried slowly to obtain three types of porous gel bodies. These gel bodies were treated at a high temperature of 1350 ° C. to obtain a fluorine-added quartz glass body (diameter 10 mm, length 80 mm).

その結果、平均粒径0.003μmの微粒子を含有するゾ
ル溶液に微粒子粉末を添加して作製したガラスには、気
泡の残留が認められた。一方、平均粒径0.005μm以上
のゾル溶液に微粒子粉末を添加して作製したガラスは、
非常に均質であり、気泡などの不整は全く見られなかっ
た。
As a result, residual bubbles were observed in the glass produced by adding the fine particle powder to the sol solution containing the fine particles having an average particle diameter of 0.003 μm. On the other hand, glass prepared by adding fine powder to a sol solution having an average particle diameter of 0.005 μm or more,
It was very homogeneous and no irregularities such as bubbles were observed.

本実施例より、平均粒径が0.005μm以上のSiO2微粒
子を含むゾル溶液に、より粒径の大きいSiO2微粒子を添
加することにより、気泡や割れのない非常に均質なフッ
素添加石英ガラス体を作製できることが明らかとなっ
た。
From this example, by adding SiO 2 fine particles having a larger particle diameter to a sol solution containing SiO 2 fine particles having an average particle diameter of 0.005 μm or more, a very uniform fluorine-doped quartz glass body without bubbles and cracks is obtained. It was found that can be prepared.

(実施例4) 気相法で作製したSiO2微粒子粉末に変えて、アルコキ
シドをアンモニア触媒の元に加水分解した、平均粒径が
0.03μmのSiO2微粒子を含むゾル溶液を添加し、実施例
2と同様の実験を行なった。
(Example 4) The alkoxide was hydrolyzed under an ammonia catalyst in place of the SiO 2 fine particle powder produced by a gas phase method.
The same experiment as in Example 2 was performed by adding a sol solution containing 0.03 μm SiO 2 fine particles.

第4図に、フッ素添加石英ガラス体(直径43〜48mm、
長さ130〜150mm)に発生した割れの密度と、平均粒径0.
03μmのSiO2微粒子の添加量との関係を示す。実施例2
の場合と同様に、添加量が増すと共に割れの密度が減少
し、添加量40モル%以上で全く割れのないフッ素添加石
英ガラス棒が得られることが判明した。
FIG. 4 shows a fluorine-added quartz glass body (43 to 48 mm in diameter,
(Length of 130-150mm)
The relationship with the added amount of 03 μm SiO 2 fine particles is shown. Example 2
As in the case of (1), it was found that the cracking density decreased as the amount of addition increased, and that a fluorine-containing quartz glass rod free of cracks was obtained at an addition amount of 40 mol% or more.

本実施例より、アルコキシドの加水分解により作製し
た、より粒径の大きいSiO2微粒子を含むゾル溶液を添加
することにより、気相法で作製した微粒子粉末を添加し
た場合と同様に、割れのないフッ素添加石英ガラス体を
作製できることが明らかとなった。
From this example, by adding a sol solution containing SiO 2 fine particles having a larger particle diameter, which was produced by hydrolysis of an alkoxide, as in the case of adding the fine particle powder produced by a gas phase method, there was no crack. It became clear that a fluorine-added quartz glass body could be produced.

(実施例5) 実施例4と同様にして、平均粒径が0.01μmの微粒子
を50モル%、平均粒径が0.03μmの微粒子を40モル%含
有するSiO2ゾル溶液に、フッ素添加剤Si(OC2H53Fを1
0モル%添加し、十分混合した後、シャーレ内でゲル化
し、ゆっくりと乾燥して、多孔質ゲル板を得た。このゲ
ル板を1350℃で高温処理して、割れや気泡の全くない透
明なフッ素添加石英ガラス板(直径60mm、厚さ10mm)を
得た。
(Example 5) In the same manner as in Example 4, a fluorine additive Si was added to an SiO 2 sol solution containing 50 mol% of fine particles having an average particle diameter of 0.01 µm and 40 mol% of fine particles having an average particle diameter of 0.03 µm. (OC 2 H 5) 3 F 1
After 0 mol% was added and mixed well, the mixture was gelled in a Petri dish and dried slowly to obtain a porous gel plate. This gel plate was treated at a high temperature of 1350 ° C. to obtain a transparent fluorine-containing quartz glass plate (diameter 60 mm, thickness 10 mm) having no cracks or bubbles.

(実施例6) 作製したフッ素添加石英ガラスの光学的な品質を評価
するため、光ファイバの作製を行なった。実施例5と全
く同様にして作製したゾル溶液を、円筒状の容器中でゲ
ル化し、乾燥後、1350℃で高温処理して、透明なフッ素
添加石英ガラス管(石英ガラスに対する比屈折率差−0.
38%、外径25mm、内径15mm、長さ200mm)を得た。この
フッ素添加石英ガラス管を加熱し、表面よりフッ素を蒸
発させ、管内表面にフッ素濃度の小さい拡散層を生じせ
しめ、続いてこのガラス管を中実化して、中心軸に高屈
折率部(コア)を有する光ファイバ母材を得た。この母
材を高温で線引きして、シングルモード光ファイバを得
た。
(Example 6) In order to evaluate the optical quality of the produced fluorine-doped quartz glass, an optical fiber was produced. The sol solution prepared in exactly the same manner as in Example 5 was gelled in a cylindrical container, dried, and then subjected to high temperature treatment at 1350 ° C. to obtain a transparent fluorine-added quartz glass tube (differential refractive index difference from quartz glass). 0.
38%, outer diameter 25 mm, inner diameter 15 mm, length 200 mm). The fluorine-doped quartz glass tube is heated to evaporate fluorine from the surface to form a diffusion layer having a low fluorine concentration on the inner surface of the tube. Then, the glass tube is solidified, and a high refractive index portion (core ) Was obtained. This base material was drawn at a high temperature to obtain a single mode optical fiber.

得られたフッ素添加石英ガラス管は、均一な内径、外
径、肉厚を持ち、本方法により、寸法精度の高いガラス
管を製造できることが判明した。作製した光ファイバの
損失は、波長1.60μmにおいて0.3dB/kmと小さく、作製
したガラスが光学的に均質であることが明らかとなっ
た。
The obtained fluorine-added quartz glass tube has a uniform inner diameter, outer diameter, and wall thickness, and it has been found that a glass tube with high dimensional accuracy can be manufactured by this method. The loss of the fabricated optical fiber was as small as 0.3 dB / km at a wavelength of 1.60 μm, which revealed that the fabricated glass was optically homogeneous.

(発明の効果) 以上説明したように、アルコキシドの加水分解により
作製した、平均粒径が0.005μm以上0.03μm未満のSiO
2微粒子を含有するゾル溶液に、より粒径に大きいSiO2
微粒子を加えることにより、従来法で得られるガラス体
と比較して2倍以上寸法の大きい、光学的に均質なフッ
素添加石英ガラス体を、寸法精度よく、製造することが
できる。
(Effects of the Invention) As described above, SiO having an average particle diameter of 0.005 μm or more and less than 0.03 μm produced by hydrolysis of an alkoxide.
(2) In a sol solution containing fine particles, SiO 2 with a larger particle size
By adding the fine particles, it is possible to produce an optically homogeneous fluorine-doped quartz glass body having a size twice or more as large as a glass body obtained by a conventional method with high dimensional accuracy.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の光学ガラス製造方法の工程を示した
図、第2図は気相法で作製したSiO2微粒子の添加量と乾
燥ゲル体の曲げ強度の関係を示す図、第3図はフッ素添
加石英ガラス体に発生した割れの密度と、平均粒径0.1
μmのSiO2微粒子の添加量との関係を示す図、第4図は
フッ素添加石英ガラス体に発生した割れの密度と、平均
粒径0.03μmのSiO2微粒子の添加量との関係を示す図、
第5図は従来のフッ素添加石英ガラスの製造方法の工程
を示した図である。
FIG. 1 is a diagram showing the steps of the optical glass manufacturing method of the present invention, FIG. 2 is a diagram showing the relationship between the amount of added SiO 2 fine particles produced by a gas phase method and the bending strength of the dried gel body, FIG. Is the density of cracks generated in the fluorine-added quartz glass body,
diagram showing the relationship between the additive amount of SiO 2 particles in [mu] m, FIG. FIG. 4 is showing the density of cracks generated in the fluorine-doped quartz glass member, the relationship between the additive amount of SiO 2 particles having an average particle size of 0.03μm ,
FIG. 5 is a diagram showing steps of a conventional method for producing a fluorine-added quartz glass.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柴田 修一 東京都千代田区内幸町1丁目1番6号 日本電信電話株式会社内 (56)参考文献 特開 昭60−65735(JP,A) 特開 昭62−246828(JP,A) 特開 昭62−100421(JP,A) (58)調査した分野(Int.Cl.6,DB名) C03B 8/02────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shuichi Shibata Nippon Telegraph and Telephone Corporation, 1-6-1, Uchisaiwaicho, Chiyoda-ku, Tokyo (56) References JP-A-60-65735 (JP, A) JP-A Sho 62-246828 (JP, A) JP-A-62-100421 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C03B 8/02

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】シリコンのアルコキシドSi(OR)(Rは
アルキル基)を加水分解した平均粒径が0.005μm以上
0.03μm未満のSiO2微粒子を含むゾル溶液と、平均粒径
が0.03μm以上のSiO2微粒子を混合し、続いてゲル化、
乾燥して、多孔質ゲル体とし、これを高温処理して、透
明なガラス体を得ることを特徴とする光学ガラスの製造
方法。
An average particle diameter of hydrolyzed silicon alkoxide Si (OR) 4 (R is an alkyl group) is at least 0.005 μm.
A sol solution containing SiO 2 fine particles of less than 0.03 .mu.m, the average particle diameter of a mixture of more SiO 2 fine particles 0.03 .mu.m, followed by gelling,
A method for producing an optical glass, comprising drying a porous gel body, and treating the porous gel body at a high temperature to obtain a transparent glass body.
【請求項2】平均粒径が0.03μm以上のSiO2微粒子を混
合したゾル溶液はシリコンアルコキシドのアルコキシ基
の少なくとも一つをフッ素で置換したアルコキシド Si(OR)4-nFn(0<n≦4) を添加したものであることを特徴とする特許請求の範囲
第1項記載の光学ガラスの製造方法。
2. A sol solution in which SiO 2 fine particles having an average particle diameter of 0.03 μm or more are mixed is an alkoxide Si (OR) 4-n F n (0 <n) in which at least one of alkoxy groups of silicon alkoxide is substituted with fluorine. <4) The method for producing an optical glass according to claim 1, characterized by adding (4).
【請求項3】平均粒径が0.03μm以上のSiO2微粒子の添
加量が、全シリコン原子に対し、10モル%以上であるこ
とを特徴とする特許請求の範囲第1項または第2項記載
の記載の光学ガラスの製造方法。
3. The method according to claim 1, wherein the amount of the SiO 2 fine particles having an average particle size of 0.03 μm or more is 10 mol% or more based on all silicon atoms. The method for producing an optical glass according to the above.
JP1020354A 1989-01-30 1989-01-30 Manufacturing method of optical glass Expired - Lifetime JP2832213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1020354A JP2832213B2 (en) 1989-01-30 1989-01-30 Manufacturing method of optical glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1020354A JP2832213B2 (en) 1989-01-30 1989-01-30 Manufacturing method of optical glass

Publications (2)

Publication Number Publication Date
JPH02199033A JPH02199033A (en) 1990-08-07
JP2832213B2 true JP2832213B2 (en) 1998-12-09

Family

ID=12024779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1020354A Expired - Lifetime JP2832213B2 (en) 1989-01-30 1989-01-30 Manufacturing method of optical glass

Country Status (1)

Country Link
JP (1) JP2832213B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6193926B1 (en) * 1999-09-03 2001-02-27 Heraeus Amersil, Inc. Process for making molded glass and ceramic articles
JP3690245B2 (en) 2000-06-05 2005-08-31 株式会社村田製作所 Manufacturing method of glass powder
GB2391431A (en) 2002-07-30 2004-02-04 Fujitsu Ltd Adaptive modulation and coding method

Also Published As

Publication number Publication date
JPH02199033A (en) 1990-08-07

Similar Documents

Publication Publication Date Title
CA1311127C (en) Glass body formed from a vapor-derived gel and process for producing same
CN1030221A (en) The photoconductive fiber making method
JPH07507033A (en) Sol-gel method for producing germania-doped silica glass rods
Scherer Structural evolution of sol-gel glasses
KR100322132B1 (en) Silica glass composition for sol-gel process
US5919280A (en) Method for fabricating silica glass
JP2832213B2 (en) Manufacturing method of optical glass
US8763430B2 (en) Method for manufacturing grin lens
CA2246153C (en) Method for fabricating silica glass
CA1318131C (en) Fabrication of high-silica glass article
KR100549422B1 (en) silica glass composition and manufacturing method of silica glass using the same
KR100248062B1 (en) Composition for forming silica glass and the method for preparing silica glass using the same
JPS6270234A (en) Production of high silica glass product
KR100326113B1 (en) Fabrication method of dopant doped silica glass by extrusion
KR100312230B1 (en) Manufacture method of metal doped silica glass
KR100549424B1 (en) Silica glass composition for sol-gel process
KR100346122B1 (en) Fabrication method of doped silica glass by sol-gel process
JPS61295247A (en) Preparation of optical fiber glass
MacChesney Optical fiber fabrication by the solgel method: recent advances
JPS61178428A (en) Production of optical glass
JPS62187132A (en) Production of glass for optical fiber
JPS62275036A (en) Production of base material for optical fiber
JPH01270523A (en) Production of quartz-based glass form with refractive index distribution
KR20010068796A (en) Manufacturing method of silica glass by extrusion process
JPS62278140A (en) Production of optical fiber preform

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081002

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091002

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091002

Year of fee payment: 11