JP2825893B2 - Laminated rubber bearing - Google Patents

Laminated rubber bearing

Info

Publication number
JP2825893B2
JP2825893B2 JP1344699A JP34469989A JP2825893B2 JP 2825893 B2 JP2825893 B2 JP 2825893B2 JP 1344699 A JP1344699 A JP 1344699A JP 34469989 A JP34469989 A JP 34469989A JP 2825893 B2 JP2825893 B2 JP 2825893B2
Authority
JP
Japan
Prior art keywords
laminated rubber
viscoelastic
laminate
rubber bearing
viscoelastic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1344699A
Other languages
Japanese (ja)
Other versions
JPH03204420A (en
Inventor
輝男 佐々木
芳明 宮本
一裕 藤澤
清之輔 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP1344699A priority Critical patent/JP2825893B2/en
Publication of JPH03204420A publication Critical patent/JPH03204420A/en
Application granted granted Critical
Publication of JP2825893B2 publication Critical patent/JP2825893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、構造物(建築物・橋、タンク等)や、機器
類(電子計算機・医療機器・保安機器・精密製造機器・
分析解析機器等)及び美術工芸品類等を、その基礎や床
に浮かした状態で載置支持して、地震・機械振動・交通
振動等からの入力振動加速度を低減する免振・防振用の
積層ゴム支承に関し、特にダンピング機能を備えたもの
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to structures (buildings, bridges, tanks, etc.) and equipment (electronic computers, medical equipment, security equipment, precision manufacturing equipment, etc.)
Analytical analysis equipment) and arts and crafts are mounted and supported on the foundation or on the floor in a state of being floated to reduce the input vibration acceleration from earthquakes, mechanical vibrations, traffic vibrations, etc. The present invention relates to a laminated rubber bearing, and more particularly to a laminated rubber bearing having a damping function.

〔従来の技術〕[Conventional technology]

基礎や床等より構造物や機器類に入力される地震等の
振動加速度を軽減する構造として、第7図に示すよう
に、振動減衰率の小さい天然ゴム。合成ゴム等のゴム状
弾性板(1)と鉄板等の硬質板(2)を交互に積層した
積層ゴム支承(3)を、基礎(4)と構造物(5)の間
に挟み込み、構造物等を水平方向に揺動可能に載置支持
する方式がある。
As shown in FIG. 7, a natural rubber having a small vibration damping rate is used as a structure for reducing vibration acceleration caused by an earthquake or the like input to a structure or equipment from a foundation or a floor. A laminated rubber bearing (3) obtained by alternately laminating a rubber-like elastic plate (1) such as a synthetic rubber and a hard plate (2) such as an iron plate is sandwiched between a foundation (4) and a structure (5). And the like are mounted and supported so as to be swingable in the horizontal direction.

この構造において、基礎(4)より地震等の広い周波
数範囲の振動が入力されても、構造物(5)は、積層ゴ
ム支承(3)の剪断バネ剛性等の特性によって定まる低
い共振周波数付近で大きな変位を伴いながら低速で、水
平方向に揺れる。これによって構造物(5)は地震等の
大きな加速度から保護されるが、大きな変位があると、
積層ゴム支承(3)は破断したり、基礎(4)より構造
物(5)に接続されている各種配線、配管類が破損する
おそれがあるので、振動を小さなものにするダンパー機
能を付加する必要がある。
In this structure, even if vibrations in a wide frequency range such as an earthquake are input from the foundation (4), the structure (5) is kept close to a low resonance frequency determined by characteristics such as shear spring rigidity of the laminated rubber bearing (3). Swing horizontally at low speed with large displacement. This protects the structure (5) from large accelerations such as earthquakes, but if there is a large displacement,
Since the laminated rubber bearing (3) may be broken or various wires and pipes connected to the structure (5) from the foundation (4) may be damaged, a damper function for reducing vibration is added. There is a need.

このための手段として第8図に示すように積層ゴム支
承(3)と並列に振動エネルギーを吸収する粘性ダンパ
ー等のダンパー(6)を設置する方式や、第9図に示す
ように積層ゴム支承(7)の中心部に上下方向の貫通孔
を設け、ここに柱状の鉛(8)を埋め込むものが当初考
えられた。
As a means for this, a method of installing a damper (6) such as a viscous damper for absorbing vibration energy in parallel with the laminated rubber bearing (3) as shown in FIG. 8 or a laminated rubber bearing as shown in FIG. Initially, it was conceived to provide a vertical through-hole in the center of (7) and bury column-shaped lead (8) therein.

しかし第8図に示すようにダンパーを併置すると部品
点数が多くなり、設置工事費が高くなる、設計が煩雑に
なる等の問題がある。
However, if dampers are juxtaposed as shown in FIG. 8, there are problems such as an increase in the number of parts, an increase in installation work costs, and a complicated design.

また、第9図に示すように積層ゴム支承(7)に鉛
(8)を埋め込んだものは鉛の初期剛性が高いため、あ
る程度以上に大きなエネルギーを持つ振動でないと構造
物等が基礎に対して相対変位せず、入力加速度の低減効
果が得られない。さらに鉛は繰り返し変形を受けると形
状が初期のものから変形して減衰能力が低下し、大地震
時に生じる大変形で硬質板が鉛を傷付け、傷付けられた
鉛がゴム状弾性板を傷付けることにより積層ゴム支承の
破断を引き起こす危険性がある。
Also, as shown in FIG. 9, the one in which lead (8) is embedded in the laminated rubber bearing (7) has a high initial rigidity of lead. As a result, there is no relative displacement, and the effect of reducing the input acceleration cannot be obtained. Furthermore, when lead is repeatedly deformed, the shape is deformed from the initial one and the damping capacity is reduced, and the hard plate damages lead by the large deformation generated during a large earthquake, and the damaged lead damages the rubber-like elastic plate There is a risk of breaking the laminated rubber bearing.

そこで、他のダンパーや鉛を使用しない工夫として第
10図に示すように積層ゴム支承(9)のゴム状弾性板
(10)自体に高減衰ゴム等の減衰性の大きい材料を使用
することも考えられた。しかし、このゴム状弾性板(1
0)は構造物の鉛直荷重を直接支持するので、減衰率の
高い材料を用いる程に、クリープが大きくなって、長期
耐久性に悪影響を与える。また減衰率の高い材料は弾性
率の温度依存性が大きくなるため、使用できる減衰率の
大きさには限度があり、この積層ゴム支承単体で十分な
減衰効率を得るのは困難であった。
Therefore, as a device that does not use other dampers or lead,
As shown in FIG. 10, it has been considered to use a highly damping material such as high damping rubber for the rubber-like elastic plate (10) itself of the laminated rubber bearing (9). However, this rubbery elastic plate (1
Since 0) directly supports the vertical load of the structure, the creep increases as the material having a higher damping rate is used, which adversely affects long-term durability. In addition, since the material having a high damping rate has a large temperature dependency of the elastic modulus, there is a limit to the magnitude of the damping rate that can be used, and it has been difficult to obtain a sufficient damping efficiency with this laminated rubber bearing alone.

そのため、第1図〜第5図に示すようにゴム状弾性板
に減衰率は余り大きくはないが、クリープが小さい材料
を用いて積層体を構成し、これに、より高い減衰性を持
つ粘弾性体(粘性・弾性またはその双方の性質を有する
物質)を組合せたものを本出願人は先に提案している。
Therefore, as shown in FIGS. 1 to 5, the rubbery elastic plate has a relatively small damping rate, but is formed of a material having a small creep to form a laminated body, which has a higher damping property. The applicant of the present invention has previously proposed a combination of an elastic body (a substance having both viscous and elastic properties or both properties).

この組合せ構造には、第1図〜第3図に示すようにゴ
ム状弾性板(11)と硬質板(12)の積層体(13)に1個
以上の貫通孔を設け、この貫通孔内に高減衰性を持つ粘
弾性体(14)(14a)〜(14d)を充填したタイプ、第4
図に示すようにゴム状弾性板(11)と硬質板(12)の積
層体(13)の周囲に高減衰性を持つ粘弾性体(15)を配
置したタイプ、第5図に示すように高減衰性を持つ粘弾
性体(14e)〜(14h)(15a)(15b)を貫通孔内に充填
するとともに周囲にも配置したタイプがある。
In this combination structure, as shown in FIGS. 1 to 3, one or more through holes are provided in a laminate (13) of a rubber-like elastic plate (11) and a hard plate (12). Filled with a highly damping viscoelastic body (14) (14a) to (14d), 4th
As shown in FIG. 5, a type in which a viscoelastic body (15) having high damping property is arranged around a laminate (13) of a rubber-like elastic plate (11) and a hard plate (12), as shown in FIG. There is a type in which viscoelastic bodies (14e) to (14h), (15a), and (15b) having high damping properties are filled in the through holes and arranged around the through holes.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上述した第1図〜第5図に示す複合型の積層ゴム支承
Aは、高減衰性を持つ粘弾性体(14)(14a)〜(14h)
(15)(15a)(15b)により必要な減衰性能を確保しな
がら、減衰性は余り大きくなくクリープが小さいゴム状
弾性板(11)を用いたクリープの小さい積層体(13)の
部分により、免震・防振に必要な大きな鉛直剛性、小さ
な剪断バネ剛性といった特性を持つ。
The composite type laminated rubber bearing A shown in FIGS. 1 to 5 is a viscoelastic body (14) (14a) to (14h) having a high damping property.
(15) While securing the required damping performance by (15a) and (15b), the part of the laminate (13) with a small creep using a rubbery elastic plate (11) with a very small damping and a small creep, It has characteristics such as large vertical rigidity required for seismic isolation and vibration isolation, and small shear spring rigidity.

しかし、この複合型の積層ゴム支承に使用するゴム状
弾性板(11)と貫通孔内及び外周の高減衰性の粘弾性体
(14)(14a)〜(14h)(15)(15a)(15b)に用いる
材料の組合せ可能な範囲が不明であったため、設計する
際に、それが実際に使用できるか否かを多くの時間と
人、費用がかかる実験によって確認せざるを得ないとい
う問題があった。
However, the rubber-like elastic plate (11) used for the composite laminated rubber bearing and the highly damping viscoelastic bodies (14) (14a) to (14h) (15) (15a) ( The problem that the range of possible combinations of materials used in 15b) was unknown, so when designing, it was necessary to confirm whether or not it could be actually used by a lot of time, people, and expensive experiments. was there.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、複合型の積層ゴム支承(13)に組合せ使用
されるゴム状弾性板(11)と貫通孔内及び外周の粘弾性
体(14)(14a)〜(14h)(15)(15a)(15b)の各々
の性質を、損失係数δ〔損失弾性係数(損失ばね定数)
を貯蔵弾性係数(貯蔵ばね定数)で除した商で損失正切
ともいわれる。〕と剪断バネ定数K(ゴム状弾性板(1
1)についてはそれらを硬質板と積層した積層体(13)
全体としてとらえた剪断バネ定数)により把握し、これ
らにより、複合型の積層ゴム支承の全体の減衰性能を表
す指数Lを求める式を作り、この指数Lについて実際に
使用できる範囲を減衰性能、耐久性の点から検討を加え
て確立し、設計の際に使用する材料の損失係数δと剪断
バネ定数Kを元に指数Lを算出して、実際に使用できる
か否かを簡単に検証できるようにしたものである。
The present invention provides a rubber-like elastic plate (11) used in combination with a composite type laminated rubber bearing (13) and viscoelastic bodies (14) (14a) to (14h) (15) (15a) ) (15b), the loss coefficient δ [loss elastic coefficient (loss spring constant)
Is divided by the storage elastic modulus (storage spring constant) and is also referred to as the loss correctness. ] And shear spring constant K (rubber-like elastic plate (1
For 1), they are laminated with a hard plate (13)
From the above, a formula for obtaining an index L representing the entire damping performance of the composite type laminated rubber bearing is made, and the range in which the index L can be actually used is determined by the damping performance and durability. The index L is calculated based on the loss factor δ and the shear spring constant K of the material used in the design, and it can be easily verified whether or not the material can be actually used. It was made.

すなわち、本発明が提供する積層ゴム支承の構成は、
ゴム状弾性板と硬質板を交互に積層した積層体であっ
て、積層体の積層方向に粘弾性体を充填した1個以上の
貫通孔と、積層体の周囲に配置した1個以上の粘弾性体
の少なくとも一方を有し、特性の異なる粘弾性体を複数
組み合わせて用いたものにおいて、 積層体の剪断バネ定数をK1とし、ゴム状弾性板の材料
の損失係数をδ1とし、貫通孔に挿入した各粘弾性体の
剪断バネ定数をK21,K22,…K2n、その損失係数をδ
21,δ22,…δ2nとし、積層体の周囲に配置した各粘弾
性体の剪断バネ定数をK31,K32,…K3n、その損失係数
をδ31,δ32,…δ3nとしたとき、 とすると、そのときのLが 0.05<L<0.7 であることを特徴とする。
That is, the configuration of the laminated rubber bearing provided by the present invention is:
A laminate in which a rubber-like elastic plate and a hard plate are alternately laminated, wherein one or more through-holes filled with a viscoelastic body in the laminating direction of the laminate and one or more viscosities disposed around the laminate are provided. In the case of using at least one of elastic bodies and using a plurality of viscoelastic bodies having different characteristics in combination, the shear spring constant of the laminate is set to K1, the loss coefficient of the material of the rubber-like elastic plate is set to δ1, and the through-hole is formed. The shear spring constants of the inserted viscoelastic bodies are K2 1 , K2 2 ,... K2 n , and the loss factor is δ
2 1, δ2 2, ... and .delta.2 n, shear spring constant K3 1, K3 2 of the viscoelastic body arranged around the stack, ... K3 n, the loss factor δ3 1, δ3 2, ... δ3 n And when Then, L at that time is characterized by 0.05 <L <0.7.

上記ゴム状弾性板(11)及び、粘弾性体(14)(14
a)〜(14h)(15)(15a)(15b)の剪断バネ定数δ及
び損失係数Kの値は、積層ゴム支承Aの設計共振周波数
で、かつ、設計最大振幅値の±5%〜50%で測定した値
を用いるのが好ましい(以下の文章中にある剪断バネ定
数K及び損失係数δに対しても同じ)。なぜならばゴム
材料等は一般に歪みに対して非線形の応答を示し、微小
変形での剪断バネ定数K、損失係数δを用いて大きな変
形時の特性を推定する事には無理があり、また速度にも
依存し静的な測定結果をもってして動的特性を規定する
のは無理があるからである。
The rubber-like elastic plate (11) and the viscoelastic body (14) (14
The values of the shear spring constant δ and the loss coefficient K of a) to (14h), (15), (15a) and (15b) are the design resonance frequency of the laminated rubber bearing A and ± 5% to 50% of the design maximum amplitude value. It is preferred to use the values measured in% (the same applies to the shear spring constant K and the loss factor δ in the text below). This is because rubber materials and the like generally show a non-linear response to strain, and it is impossible to estimate the characteristics at the time of large deformation using the shear spring constant K and the loss coefficient δ at minute deformation, and it is difficult to estimate the speed at high speed. This is because it is impossible to define the dynamic characteristics based on the static measurement results.

また上記剪断バネ定数Kと損失係数δの測定温度は積
層ゴム支承の通常使用温度又は年間平均気温とするのが
良い。特に高減衰性の材料では、材料の特性の温度依存
性が大きくなり、設計通りの作用をしない場合が発生す
るため、測定温度の許容範囲をも考慮しておく必要があ
る。
The temperature for measuring the shear spring constant K and the loss coefficient δ is preferably the normal use temperature of the laminated rubber bearing or the annual average temperature. Particularly, in the case of a material having a high damping property, the temperature dependence of the characteristics of the material increases, and a case where the material does not operate as designed may occur. Therefore, it is necessary to consider the allowable range of the measurement temperature.

この許容範囲は、例えば実際に使用される温度の上下
限範囲内での剛性が、通常使用温度又は年間平均気温の
剛性の4倍以内、好ましくは3倍以内と規定される。こ
の理由は、次の通りである。
This allowable range is defined, for example, that the rigidity within the upper and lower limits of the temperature actually used is within four times, preferably within three times the rigidity of the normal use temperature or the annual average temperature. The reason is as follows.

通常の設計共振周波数は、入力周波数または入力周波
数の内の卓越周波数の1/3以下となるように設計され
る。したがってゴム状弾性板及び粘弾性体の剛性が4倍
になったとしても、そのときの共振周波数は入力周波数
の0.7倍となり、振動伝達率は約0.8となり、振幅は増大
しない。但し、実際には地震の波等は入力周波数に幅が
あるため少し余裕を持たせ最大の剛性を3倍とするのが
好ましい。この場合は共振周波数は入力周波数の卓越周
波数の0.6倍となり、そのときの振動伝達率は0.5とな
る。このように卓越周波数に対しては入力振幅の減少機
能を維持しているので、これより周波数の高い成分の波
動が含まれていても設計共振周波数での振幅の増大は防
げる。
The normal design resonance frequency is designed to be equal to or less than 1/3 of the input frequency or the dominant frequency among the input frequencies. Therefore, even if the rigidity of the rubber-like elastic plate and the viscoelastic body increases four times, the resonance frequency at that time becomes 0.7 times the input frequency, the vibration transmissibility becomes about 0.8, and the amplitude does not increase. However, in practice, since the input frequency of an earthquake wave or the like has a certain width, it is preferable that the maximum rigidity is tripled with a margin. In this case, the resonance frequency is 0.6 times the dominant frequency of the input frequency, and the vibration transmissibility at that time is 0.5. Since the function of decreasing the input amplitude is maintained for the dominant frequency in this manner, an increase in the amplitude at the design resonance frequency can be prevented even if a wave component having a higher frequency is included.

上記複合形の免震支承Aの減衰性能を表す指数Lの式
は、第1図〜第5図に例示したような貫通孔内と外周の
一方又は双方に粘弾性体(14)(14a)〜(14h)(15)
(15a)(15b)を配した積層ゴム支承のいずれにも適用
されるもので、貫通孔又は外周に粘弾性体がない場合
は、その項を零として計算すればよい。なお1つの積層
ゴム支承における貫通孔の数は多い程に硬質板(12)の
剛性を高く保つことができて好ましいが、製造コストの
面から4個程度が実用上の限界である。
The expression of the index L representing the damping performance of the above-mentioned composite type seismic isolation bearing A is expressed by a viscoelastic body (14) (14a) in one or both of the inside and the outside of the through hole as illustrated in FIGS. ~ (14h) (15)
This applies to any of the laminated rubber bearings provided with (15a) and (15b). If there is no viscoelastic body in the through hole or the outer periphery, the term may be calculated as zero. Note that the larger the number of through holes in one laminated rubber bearing, the higher the rigidity of the hard plate (12) can be maintained, which is preferable, but the practical limit is about four in terms of manufacturing cost.

次に、指数Lを上記範囲に定めた理由について説明す
る。
Next, the reason why the index L is set in the above range will be described.

指数Lは積層ゴム支承Aの減衰性能を表すもので、こ
の値が小さいと減衰比は小さく、この値が大きいと減衰
比が大きくなる。したがって大地震用に設計する程に、
この値を大きくする必要がある。
The index L indicates the damping performance of the laminated rubber bearing A. If this value is small, the damping ratio is small, and if this value is large, the damping ratio is large. Therefore, enough to design for a large earthquake,
This value needs to be increased.

指数Lが0.05未満の場合は小地震用に設置しても、減
衰効果が小さいので、上部構造物の振幅が大きく、通常
用いられるゴム材料では破断してしまう可能性が大きく
実用性がない。
If the index L is less than 0.05, the damping effect is small even when installed for a small earthquake, so the amplitude of the upper structure is large, and there is a high possibility of breakage with a commonly used rubber material, which is not practical.

指数Lが0.05以上0.1未満の場合は、小地震用として
設置すれば、防振効果が高く、揺れも比較的小さいので
好ましい結果が得られる。しかし、中・大地震用として
設置した場合、上部構造物の振幅が大きくなって通常用
いられるゴム材料では破断してしまう可能性がある。
When the index L is not less than 0.05 and less than 0.1, if it is installed for a small earthquake, a favorable result can be obtained because the vibration damping effect is high and the shaking is relatively small. However, when installed for medium or large earthquakes, there is a possibility that the amplitude of the upper structure becomes large, and the rubber material normally used breaks.

指数Lが0.1以上0.16未満の場合は、通常想定される
地震に対応できるであろうが、充分とは言えず、立地条
件や建物の構造等に制限を与えることがある。但し、以
上の物であっても他にダンパーや振幅制御装置等を併設
するならば勿論大地震時にも用いることができる。
If the index L is not less than 0.1 and less than 0.16, it will be possible to cope with the normally assumed earthquake, but it cannot be said that it is sufficient, and the location conditions and the structure of the building may be limited. However, even if the above-mentioned components are additionally provided with a damper, an amplitude control device and the like, they can of course be used at the time of a large earthquake.

より好ましい指数Lの値は0.16〜0.7である。L値が
0.7以上であっても免震性能上、特に問題はないが、使
用する材料の温度依存性が大きくなる、長期耐久性が低
下する、破断時伸びが低下する等の問題が発生し実用的
でない。
A more preferable value of the index L is 0.16 to 0.7. L value is
There is no problem in seismic isolation performance even if it is 0.7 or more, but it is not practical due to problems such as increased temperature dependence of the material used, reduced long-term durability, and reduced elongation at break .

したがって指数Lは0.05〜0.7が実用範囲で、その使
用目的に応じて選択される。
Therefore, the index L is in the practical range of 0.05 to 0.7, and is selected according to the purpose of use.

ところで、上記指数Lで実用範囲が規定される複合形
の積層ゴム支承の構成要素であるゴム状弾性板(11)、
貫通孔内の粘弾性体(14)(14a)〜(14h)、積層体外
周の粘弾性体(15)(15a)(15b)は、個々の理由で損
失係数δ及び絶対剪断弾性率の範囲が制限されている。
これを順に説明する。
Incidentally, a rubber-like elastic plate (11) which is a component of a composite-type laminated rubber bearing whose practical range is defined by the index L,
The viscoelastic bodies (14) (14a) to (14h) in the through-holes and the viscoelastic bodies (15) (15a) (15b) on the outer periphery of the laminate have different ranges of the loss coefficient δ and the absolute shear modulus for individual reasons. Is restricted.
This will be described in order.

ゴム状弾性板(11)の損失係数δは0.01〜0.5で、ク
リープの少ないものが良い。ゴム状弾性板(11)は上部
構造物の鉛直荷重を主として負担するところであるの
で、許容できるクリープ量が小さく、損失係数δを0.5
以上にすると材料のクリープが大きいことから支承の長
期耐久性および温度依存性に問題を生じる。好ましい範
囲は0.1〜0.4で、これを用いれば他の粘弾性体の性能を
合わせて積層ゴム支承として必要な減衰性、圧縮永久歪
みの大きさ、温度依存性等を良好なものにできる。
The rubbery elastic plate (11) preferably has a loss coefficient δ of 0.01 to 0.5 and a small creep. Since the rubber-like elastic plate (11) mainly bears the vertical load of the upper structure, the allowable creep amount is small and the loss coefficient δ is 0.5
In this case, since the creep of the material is large, problems arise in the long-term durability and temperature dependency of the bearing. The preferred range is 0.1 to 0.4. If this is used, the damping property, the magnitude of compression set, the temperature dependency, and the like required for the laminated rubber bearing can be improved in accordance with the performance of other viscoelastic materials.

ゴム状弾性板(11)の絶対剪断弾性率は1〜20kgf/cm
2のものが良く、特に3〜10kgf/cm2が好ましい。1kgf/c
m2以下では材料の強度が低すぎて荷重支持能力を発揮出
来なく、20kgf/cm2以上では積層ゴム支承の剪断バネ定
数を必要な値とするためには、その鉛直方向の高さが大
きくなり過ぎて座屈を起こし易くなる為である。
The absolute shear modulus of the rubber-like elastic plate (11) is 1 to 20 kgf / cm
2 is preferable, and 3 to 10 kgf / cm 2 is particularly preferable. 1kgf / c
m 2 can not exert the load bearing capacity the strength of the material is too low in the following, in order to the necessary values shearing spring constant of the laminated rubber bearing is 20 kgf / cm 2 or more, a large height of the vertical This is because it becomes too easy to cause buckling.

貫通孔に充填する粘弾性体(14)(14a)〜(14h)、
及び外周に配置する粘弾性体(15)(15a)(15b)は、
上述したゴム状弾性板と同じものを用いても良いが、よ
り高減衰な支承とするために、その材料の損失係数δは
0.2〜1.5で、積層体のゴム状弾性板(11)より以上に高
減衰な粘弾性体で且つその絶対剪断弾性率は積層体のゴ
ム状弾性板(11)の0.5〜2倍のものが好ましい。損失
係数δが0.2未満のものは、積層ゴム支承Aに組込んだ
ときに必要な減衰性能を得るのが著しく困難になり、1.
5を超えるものでは材料の剛性が大きくなり過ぎ、かつ
温度依存性も大きくなって、積層ゴム支承Aとし要求さ
れる特性を満足させることが困難となる。特に0.4〜1.2
のものが好ましく、ゴム状弾性板(11)の性能と合わせ
て積層ゴム支承Aとして良好な特性のものを作成でき
る。
Viscoelastic body (14) (14a)-(14h) to be filled in the through hole,
And the viscoelastic body (15) (15a) (15b)
The same rubber-like elastic plate as described above may be used, but the loss coefficient δ of the material is
A viscoelastic material having a damping ratio of 0.2 to 1.5 and higher attenuation than that of the laminated rubber-like elastic plate (11) and having an absolute shear modulus of 0.5 to 2 times that of the laminated rubber-like elastic plate (11). preferable. If the loss coefficient δ is less than 0.2, it becomes extremely difficult to obtain the required damping performance when incorporated into the laminated rubber bearing A, and 1.
If it exceeds 5, the rigidity of the material becomes too large and the temperature dependency also becomes large, and it becomes difficult to satisfy the characteristics required for the laminated rubber bearing A. Especially 0.4-1.2
Is preferable, and a laminated rubber bearing A having good characteristics can be prepared in accordance with the performance of the rubber-like elastic plate (11).

なお、外周に配置する粘弾性体(15)(15b)は、外
気に晒されるため、耐候性の良いものが好ましく、さら
に外的刺激での亀裂の発生を押さえるために、引き裂き
強度の大きいものが好ましい。
The viscoelastic bodies (15) and (15b) arranged on the outer periphery are preferably exposed to the outside air and therefore have good weather resistance, and further have high tear strength to suppress the generation of cracks due to external stimuli. Is preferred.

さらに、複合型の積層ゴム支承Aを剛性の面から把握
するため指数Rを求める次の式を立てて、この実用範囲
を検討した。
Further, in order to grasp the composite-type laminated rubber bearing A from the viewpoint of rigidity, the following formula for calculating the index R was set, and this practical range was examined.

但し:A1はゴム状弾性板と硬質板を交互に積層した積層
体(13)の部分の水平方向の断面積、 A2は貫通孔に充填した粘弾性体(14)(14a)〜(14f)
の水平方向の総断面積、A3は外周に配置した粘弾性体
(15)(15a)(15b)の水平方向の総断面積である。
However: A 1 is a rubber-like elastic plates and horizontal cross-sectional area of the portion of the rigid plate laminate obtained by alternately laminating (13), A 2 is a viscoelastic body filled in the through hole (14) (14a) ~ ( 14f)
The total cross-sectional area of the horizontal, A 3 is the total cross-sectional area in the horizontal direction of the viscoelastic body disposed in the outer periphery (15) (15a) (15b ).

この指数RはR>0.2であるものが良い。The index R preferably satisfies R> 0.2.

指数Rが0.2以下では、使用されるゴム状弾性板の材
料強度が低く実用に耐えられないか、または出来た支承
の積層方向の高さが高くなり、座屈の危険性が発生する
ため、実用的でない。より好ましくは0.4〜1.5の範囲に
おいて高減衰でありながら長期耐久性、温度依存性の少
ない支承となる。指数Rの上限は特にないが、入力され
る振動の卓越周波数および周波数スペクトラムの低周波
数側のパワーレベルによって実用上制限される。またR
の値は少ない方が防振効果は大きい傾向を示す。
When the index R is 0.2 or less, the material strength of the rubber-like elastic plate used is low and cannot be put to practical use, or the height of the formed bearing in the laminating direction becomes high, and there is a risk of buckling. Not practical. More preferably, in the range of 0.4 to 1.5, a bearing having high attenuation and long-term durability and little temperature dependence is obtained. There is no particular upper limit for the index R, but it is practically limited by the dominant frequency of the input vibration and the power level on the lower frequency side of the frequency spectrum. Also R
The smaller the value is, the larger the anti-vibration effect tends to be.

〔実施例〕〔Example〕

本発明の対象とする複合型の積層ゴム支承の構造例で
ある第1図〜第5図をさらに詳しく説明する。
FIGS. 1 to 5, which are structural examples of the composite type laminated rubber bearing to which the present invention is applied, will be described in more detail.

第1図に示す積層ゴム支承Aは貫通孔が一つの場合
で、(16a)は上取付フランジ、(16b)は下取付けフラ
ンジ、(11)はゴム状弾性板、(12)は硬質板、(14)
は貫通孔に挿入した粘弾性体、(17a)(17b)は粘弾性
体取付けフランジである。ゴム状弾性板(11)と硬質板
(12)は固着してなくても良いが、変形が大きな場合は
固着している方が好ましい。また、粘弾性体(14)と、
そのフランジ(17a)(17b)とは固着しなくてもよい
が、変形が大きな場合は固着している方が好ましい。粘
弾性体(14)は貫通孔と高さが同じで外径はその内径寸
法より小さく作ってもよいが、点線で示したように粘弾
性体(14)の外径を貫通孔の内径とほぼ同じでその高さ
を貫通孔より2〜10mm高く作り嵌挿する事により粘弾性
体(14)の圧縮剛性は著しく向上し粘弾性体(14)にも
荷重を支える能力を持たせる事が可能となる。
The laminated rubber bearing A shown in FIG. 1 has one through hole, (16a) is an upper mounting flange, (16b) is a lower mounting flange, (11) is a rubbery elastic plate, (12) is a hard plate, (14)
Denotes a viscoelastic body inserted into the through hole, and (17a) and (17b) denote viscoelastic body mounting flanges. The rubber-like elastic plate (11) and the hard plate (12) do not have to be fixed, but are preferably fixed if the deformation is large. Also, a viscoelastic body (14),
It does not have to be fixed to the flanges (17a) and (17b), but if the deformation is large, it is preferable to be fixed. The viscoelastic body (14) may have the same height as the through hole and an outer diameter smaller than its inner diameter, but as shown by the dotted line, the outer diameter of the viscoelastic body (14) is equal to the inner diameter of the through hole. The compression stiffness of the viscoelastic body (14) is remarkably improved by making the height approximately 2 to 10mm higher than the through hole and inserting it, and the viscoelastic body (14) can also have the ability to support the load. It becomes possible.

粘弾性体(14)は第1図に示すように粘弾性体単独で
も良いが、第2図に示すように鋼板等の硬質板(18)と
粘弾性体(14)との積層体(13)でも良い。その場合硬
質板(18)と粘弾性体(14)とは固着しても良いし、単
に重ねただけでも良い。この様にすることによって大変
形時の鉛直方向の剛性低下を防ぐ事が出来る。
The viscoelastic body (14) may be a viscoelastic body alone as shown in FIG. 1, but as shown in FIG. 2, a laminate (13) of a hard plate (18) such as a steel plate and a viscoelastic body (14) is used. ) Is fine. In this case, the hard plate (18) and the viscoelastic body (14) may be fixed, or may be simply overlapped. By doing so, it is possible to prevent a decrease in rigidity in the vertical direction at the time of large deformation.

第3図(a)(b)に示す積層ゴム支承Aは、貫通孔
が複数個(4個)の場合で、(14a)(14b)(14c)(1
4d)はそれぞれ特性の異なる粘弾性体を示す。(14a)
(14b)(14c)(14d)はそれぞれ同一の粘弾性体でも
良い。
The laminated rubber bearing A shown in FIGS. 3 (a) and 3 (b) has a plurality of (4) through-holes, (14a) (14b) (14c) (1
4d) shows viscoelastic bodies having different properties. (14a)
(14b), (14c) and (14d) may be the same viscoelastic body.

第4図に示す積層ゴム支承Aはその外周に1個の粘弾
性体(15)を配置したものである。(19a)は周囲に配
置した粘弾性体(15)の上取付けフランジ、(19b)は
周囲に配置した粘弾性体(15)の下取付けフランジを示
す。粘弾性体(15)は環状に一体化したものでも良く、
または円周方向に分割されているものでも良い。これが
円周方向に分割されている場合は、積層体(13)と同等
か幾分低めの方が好ましい。それは支承を構造物等に取
りつけた状態で上下フランジ付粘弾性体(15W)の交換
がし易い為である。積層ゴム支承の外周に複数個の粘弾
性体を配置する事も良い。
The laminated rubber bearing A shown in FIG. 4 has one viscoelastic body (15) arranged on the outer periphery. (19a) shows the upper mounting flange of the viscoelastic body (15) arranged around, and (19b) shows the lower mounting flange of the viscoelastic body (15) arranged around. The viscoelastic body (15) may be one integrated into a ring,
Alternatively, it may be divided in the circumferential direction. When this is divided in the circumferential direction, it is preferable to be equal to or slightly lower than the laminate (13). This is because the viscoelastic body (15W) with upper and lower flanges can be easily replaced while the bearing is attached to a structure or the like. It is also possible to arrange a plurality of viscoelastic bodies on the outer periphery of the laminated rubber bearing.

第5図(a)(b)は、積層体(13)に粘弾性体を充
填した複数の貫通孔を設け、外周に複数の粘弾性体を配
置した積層ゴム支承Aを示す。ここで、(14e)(14f)
(14g)(14h)は積層体の貫通孔に挿入した粘弾性体を
示す。(15a)(15b)は積層体の外周に配置された複数
の粘弾性体を示す。
5 (a) and 5 (b) show a laminated rubber bearing A in which a plurality of through-holes filled with a viscoelastic body are provided in the laminate (13), and a plurality of viscoelastic bodies are arranged on the outer periphery. Where (14e) (14f)
(14g) and (14h) indicate viscoelastic bodies inserted into the through holes of the laminate. (15a) and (15b) show a plurality of viscoelastic bodies arranged on the outer periphery of the laminate.

第6図は、寸法形状及び材料の性質を特定して実際に
製作した製品の寸法図を示す。積層体(13)を構成する
ゴム状弾性板(11)は厚み5mmの物を34層と、厚み3mmの
硬質板(12)である鋼板33層で構成されている。ゴム状
弾性板の材料の絶対剪断弾性率は6kgf/cm2で損失係数δ
は0.2である。この積層体(13)の0.5Hz、20℃、50%剪
断変形歪み時の剪断剛性は1330kg/cmであった。
FIG. 6 shows a dimensional diagram of a product actually manufactured by specifying dimensions, shapes and properties of materials. The rubber-like elastic plate (11) constituting the laminate (13) is composed of 34 layers of a 5 mm-thick thing and 33 layers of a steel plate of a 3 mm-thick hard plate (12). The absolute shear modulus of the rubber-like elastic plate material is 6 kgf / cm 2 and the loss factor δ
Is 0.2. The laminate (13) had a shear stiffness of 1330 kg / cm at 0.5 Hz, 20 ° C and 50% shear strain.

貫通孔に挿入されている粘弾性体(14e)〜(14h)の
絶対剪断弾性率は8kg/cm2で損失係数δは0.6である。こ
の粘弾性体(14e)(14h)の上記積層体(13)と同一測
定条件での剪断剛性は547kg/cmであった。粘弾性体(1
4)の外径は貫通孔の内径とほぼ同じに作られており、
高さは272mmで作られ、貫通孔に圧入されている。
The absolute shear modulus of the viscoelastic bodies (14e) to (14h) inserted in the through holes is 8 kg / cm 2 and the loss coefficient δ is 0.6. The shear stiffness of the viscoelastic bodies (14e) (14h) under the same measurement conditions as the laminate (13) was 547 kg / cm. Viscoelastic body (1
4) The outer diameter is almost the same as the inner diameter of the through hole,
It is 272mm high and is press fit into the through hole.

積層体の周囲に配置された粘弾性体(15a)(15b)の
絶対剪断弾性率は6kg/cm2で損失係数δは0.5である。こ
の粘弾性体(15)の上記積層体(13)と同一測定条件で
の剪断剛性は658kg/cmであった。
The viscoelastic bodies (15a) and (15b) arranged around the laminate have an absolute shear modulus of 6 kg / cm 2 and a loss coefficient δ of 0.5. The shear stiffness of the viscoelastic body (15) under the same measurement conditions as the laminate (13) was 658 kg / cm.

それぞれの断面積はA1=3768cm2:A2=1256cm2:A3
2951cm2である。このときの指数Lは0.36で、指数Rは
0.56となり適正なものであった。
The respective cross-sectional areas are A 1 = 3768 cm 2 : A 2 = 1256 cm 2 : A 3 =
Is 2951cm 2. The index L at this time is 0.36, and the index R is
It was 0.56, which was appropriate.

この支承の剪断剛性は2500kg/cm(±50%歪み時)で
透過減衰定数は18%のものが得られた。この積層ゴム支
承で250TONの荷重を支えるとその時の共振周波数は0.5H
zとなる。これは建築物の免震用として用いると好適で
ある。
The shear stiffness of this bearing was 2500 kg / cm (at ± 50% strain) and the transmission attenuation constant was 18%. When the load of 250TON is supported by this laminated rubber bearing, the resonance frequency at that time is 0.5H
z. This is suitable for seismic isolation of buildings.

〔発明の効果〕〔The invention's effect〕

本発明の積層ゴム支承は、以上に述べた様に、構成部
材の特性を一定の範囲内で選択する事により、高減衰で
ありながら長期耐久性並びに、温度依存性を満足する、
最適な免震・防振用支承を提供できる。
As described above, the laminated rubber bearing of the present invention, by selecting the characteristics of the constituent members within a certain range, while satisfying the long-term durability and temperature dependency while having high damping,
We can provide the best seismic isolation and vibration isolation bearings.

【図面の簡単な説明】[Brief description of the drawings]

第1図〜第5図は、夫々、本発明の対象とする複合型の
積層ゴム支承の異なる構造例の断面図を示し、第1図及
び第2図は貫通孔が1つの場合、第3図(a)(b)は
貫通孔が3つの場合、第4図は外周に粘弾性体を配置し
た場合、第5図(a)(b)は貫通孔に充填した複数の
粘弾性体と外周に配置した複数の粘弾性体の双方を持つ
場合である。 第6図は実際に製作した本発明の積層ゴム支承の各部の
寸法を示す断面図である。 第7図〜第10図は従来の積層ゴム支承の断面図を示し、
第7図は減衰機能を持たない基本タイプ、第8図はダン
パーを別設したタイプ、第9図は鉛を封入したタイプ、
第10図はゴム状弾性板に高減衰ゴム等の減衰性の大きい
材料を使用したタイプである。 (11)……減衰性が余り大きくないゴム状弾性板、(1
2)……硬質板、(13)積層体、(14)(14a)〜(15)
〜(15b)……粘弾性体、A……積層ゴム支承。
1 to 5 show sectional views of different structural examples of the composite type laminated rubber bearing to which the present invention is applied. FIGS. 1 and 2 show the case where the number of through holes is one, and FIG. 4 (a) and 4 (b) show the case where there are three through holes, FIG. 4 shows the case where a viscoelastic body is arranged on the outer periphery, and FIGS. This is a case where both the plurality of viscoelastic bodies arranged on the outer periphery are provided. FIG. 6 is a sectional view showing the dimensions of each part of the laminated rubber bearing of the present invention actually manufactured. 7 to 10 show sectional views of a conventional laminated rubber bearing.
FIG. 7 is a basic type having no damping function, FIG. 8 is a type having a separate damper, FIG. 9 is a type encapsulating lead,
FIG. 10 shows a type in which a highly damping material such as high damping rubber is used for the rubber-like elastic plate. (11) ... rubber-like elastic plate with not so large damping
2) Hard plate, (13) laminated body, (14) (14a) to (15)
~ (15b) ... viscoelastic body, A ... laminated rubber bearing.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 実開 昭61−39705(JP,U) (58)調査した分野(Int.Cl.6,DB名) F16F 1/00 - 6/00 F16F 15/08 E04B 1/36 E04H 9/02 331──────────────────────────────────────────────────続 き Continuation of the front page (56) References Japanese Utility Model Sho 61-39705 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) F16F 1/00-6/00 F16F 15 / 08 E04B 1/36 E04H 9/02 331

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ゴム状弾性板と硬質板を交互に積層した積
層体であって、積層体の積層方向に粘弾性体を充填した
1個以上の貫通孔と、積層体の周囲に配置した1個以上
の粘弾性体の少なくとも一方を有し、特性の異なる粘弾
性体を複数組み合わせて用いたものにおいて、 積層体の剪断バネ定数をK1とし、ゴム状弾性板の材料の
損失係数をδ1とし、貫通孔に挿入した各粘弾性体の剪
断バネ定数をK21,K22,…K2n、その損失係数をδ21
δ22,…δ2nとし、積層体の周囲に配置した各粘弾性体
の剪断バネ定数を,K31,K32,…K3n、その損失係数を
δ31,δ32,…δ3nとしたとき、 とすると、そのときのLが0.05<L<0.7であることを
特徴とする積層ゴム支承。
1. A laminate in which rubber-like elastic plates and hard plates are alternately laminated, wherein one or more through-holes filled with a viscoelastic body in the laminating direction of the laminate are disposed around the laminate. In a device having at least one of one or more viscoelastic materials and using a plurality of viscoelastic materials having different characteristics in combination, the shear spring constant of the laminate is K1, and the loss coefficient of the material of the rubber-like elastic plate is δ1. and then, the shearing spring constant of the viscoelastic material is inserted into the through hole K2 1, K2 2, ... K2 n, the loss factor .delta.2 1,
.delta.2 2, and ... .delta.2 n, the shear spring constants of the viscoelastic body arranged around the stack, K3 1, K3 2, ... K3 n, the loss factor δ3 1, δ3 2, was ... .delta.3 n When Then, L at that time is 0.05 <L <0.7.
JP1344699A 1989-12-28 1989-12-28 Laminated rubber bearing Expired - Fee Related JP2825893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1344699A JP2825893B2 (en) 1989-12-28 1989-12-28 Laminated rubber bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1344699A JP2825893B2 (en) 1989-12-28 1989-12-28 Laminated rubber bearing

Publications (2)

Publication Number Publication Date
JPH03204420A JPH03204420A (en) 1991-09-06
JP2825893B2 true JP2825893B2 (en) 1998-11-18

Family

ID=18371298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1344699A Expired - Fee Related JP2825893B2 (en) 1989-12-28 1989-12-28 Laminated rubber bearing

Country Status (1)

Country Link
JP (1) JP2825893B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016114242A (en) * 2014-12-16 2016-06-23 崇興 蔡 Friction attenuation energy absorption device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4497795B2 (en) * 2002-06-28 2010-07-07 株式会社ブリヂストン Seismic pads, insulator mounting structure, and transformer equipment
JP4600144B2 (en) * 2005-05-16 2010-12-15 横浜ゴム株式会社 Complex seismic isolation bearing
ES2644754B1 (en) * 2016-04-29 2018-09-13 Tejasa-Tc, S.L.L. ANTISISM PROTECTION SYSTEM FOR A FLOATING Slab.

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6139705U (en) * 1984-08-16 1986-03-13 鹿島建設株式会社 Building seismic isolation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016114242A (en) * 2014-12-16 2016-06-23 崇興 蔡 Friction attenuation energy absorption device

Also Published As

Publication number Publication date
JPH03204420A (en) 1991-09-06

Similar Documents

Publication Publication Date Title
Jangid et al. SEISMIC BEHAVIOUR OF BASE-ISOLATED BUILDINGS: A STATE-OF-THE ART REVIEW.
Di Sarno et al. Innovative strategies for seismic retrofitting of steel and composite structures
CN110344502B (en) Buckling-restrained low-frequency vibration isolation rubber support
US5233800A (en) Earthquake-proofing device of peripherally restraining type
US5373670A (en) Shakeproof bearing
JP2825893B2 (en) Laminated rubber bearing
JPH0337435A (en) Vibration escaping support
JPH08120973A (en) Design method of base isolation building and special building constructed in the method
JP2536924B2 (en) Seismic isolation support
JP2006207680A (en) Laminated rubber supporter
JP3465714B2 (en) Vibration energy absorbing device and manufacturing method thereof
JP2951214B2 (en) 3D seismic isolation device
JPS63293340A (en) Laminated rubber bearing
JP2002195327A (en) Laminated rubber pivotally supporting body
Lyu et al. Experimental study on the effect of nonlinear viscous dampers on base-isolated structures under near-fault earthquakes
JP4828951B2 (en) Laminated rubber bearing and seismic isolation system
JP3039846B2 (en) Laminated rubber bearing
Pianese et al. High damping rubber isolators for low-rise masonry buildings
EP0287683B1 (en) Vibration-proof structure
JP3503712B2 (en) Lead encapsulated laminated rubber
JP3961748B2 (en) Vibration damping device
JP2006170233A (en) Base isolator and base isolation structure
JP2002201816A (en) Base isolation foundation structure of building
JPH0768801B2 (en) Surrounding seismic isolation device
JPH0542202Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees