JP2825827B2 - Method for producing steel with excellent arrest characteristics - Google Patents

Method for producing steel with excellent arrest characteristics

Info

Publication number
JP2825827B2
JP2825827B2 JP63282892A JP28289288A JP2825827B2 JP 2825827 B2 JP2825827 B2 JP 2825827B2 JP 63282892 A JP63282892 A JP 63282892A JP 28289288 A JP28289288 A JP 28289288A JP 2825827 B2 JP2825827 B2 JP 2825827B2
Authority
JP
Japan
Prior art keywords
steel
rolling
temperature
toughness
arrest characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63282892A
Other languages
Japanese (ja)
Other versions
JPH02129318A (en
Inventor
忠 石川
滋 大下
英勝 益永
利昭 土師
敬治 今野
秀里 間淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17658453&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2825827(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63282892A priority Critical patent/JP2825827B2/en
Publication of JPH02129318A publication Critical patent/JPH02129318A/en
Application granted granted Critical
Publication of JP2825827B2 publication Critical patent/JP2825827B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は脆性破壊伝播停止特性(以下アレスト特性と
稱す。)に優れ、更には溶接熱影響部(以下HAZ部と稱
す)靱性、母材靱性も優れた構造用鋼材の製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention has excellent brittle fracture arrestability (hereinafter referred to as arrest characteristics), and further has a toughness of a heat affected zone (hereinafter referred to as a HAZ). The present invention relates to a method for producing a structural steel material having excellent base metal toughness.

〈従来の技術〉 近年、海洋構造物、船舶、貯槽等の大型溶接構造用鋼
の材質特性に対する要望は厳しさを増しており、特にLN
G、LPG等を貯蔵するタンクやラインパイプは、脆性破壊
がもたらす被害の大きさとそれがもたらす社会不安の大
きさから、アレスト特性の向上が求められている。
<Prior art> In recent years, demands for material properties of steel for large welded structures such as marine structures, ships, storage tanks, etc. have been increasing strictly.
Tanks and line pipes storing G, LPG, etc., are required to have improved arrest characteristics due to the magnitude of damage caused by brittle fracture and the magnitude of social unrest caused by the damage.

具体的には、−46℃の液化ガスを貯蔵するタンク用鋼
材のアレスト特性としては、温度勾配型ESSO試験におい
て測定される靱性値、Kcaで400kgf/mm1.5以上を示す事
が求められている。
Specifically, the arrest properties of steel for tanks that store liquefied gas at -46 ° C are required to show a toughness value of 400 kgf / mm 1.5 or more in Kca measured in a temperature gradient ESSO test. .

一方従来から鋼材のアレスト特性に注目した提案はあ
り、例えば特開昭60−29452号公報にはアレスト特性に
優れた高張力鋼が開示されている。
On the other hand, there have been proposals focusing on the arrest characteristics of steel materials. For example, Japanese Patent Application Laid-Open No. Sho 60-29452 discloses a high-tensile steel having excellent arrest characteristics.

ここに開示された高張力鋼は、従来のセパレーション
とは異なり、延性に富んだフェライト組織内に適当な大
きさで分散状態の先行微小亀裂生成領域として上記延性
に富んだフェライト組織より脆性破壊発生特性が劣る組
織又は第2相を生成して、伝播する脆性亀裂に対して適
当な位置に先行微小亀裂を発生させ、両亀裂間を延性破
壊で連結させ伝播する亀裂の運動エネルギーを吸収して
遂に停止させるものである。しかしNi及びNbを使用する
にもかかわらず上記Kcaが300kgf/mm1.5を示す温度は−3
0℃でしかなく、上記した近年の要望を満たさないもの
である。
The high-strength steel disclosed herein is different from the conventional separation in that the brittle fracture occurs in the ductile ferrite structure as a micro-crack forming region in an appropriately sized and dispersed state in the ductile ferrite structure. By generating a structure or a second phase having inferior properties, a preceding micro-crack is generated at an appropriate position with respect to the propagating brittle crack, and the two cracks are connected by ductile fracture to absorb the kinetic energy of the propagating crack. At last it will be stopped. However, despite the use of Ni and Nb, the temperature at which the above Kca shows 300 kgf / mm 1.5 is −3.
It is only 0 ° C. and does not satisfy the recent demands described above.

前記した近年の要望に応える提案としては、特開昭62
−77419号公報にアレスト特性の優れた高張力鋼の製造
法が開示されている。
Japanese Patent Application Laid-Open No.
Japanese Patent Publication No. 77419 discloses a method for producing a high-tensile steel having excellent arrest characteristics.

この提案は、Ni及びNbを使用し、炭素を0.05〜0.20%
含有せしめて強度と未再結晶域温度幅を確保した低合金
鋼スラブを900℃以上に加熱して一様にオーステナイト
化し、これをAr3点−20℃以上の仕上げ温度で圧延し、
微細なフェライト組織を生成して好ましい集合組織を得
て後、その温度からつまりAr3点−20℃からAr3点−80℃
迄を空冷速度で冷却してフェライト組織を層状に変態さ
せ、次いでその温度から水冷して低温度とし、これによ
ってフェライトと層状ベーナイト又はマルテンサイトの
焼入れ2相組織を生成し、更にその鋼のAc1点以下の温
度に加熱する焼戻処理をして強度と靱性の優れた高張力
鋼を得るものである。
This proposal uses Ni and Nb and makes the carbon 0.05-0.20%
A low-alloy steel slab that contains and secures the strength and the temperature range of the unrecrystallized region is heated to 900 ° C or higher to uniformly austenite, and this is rolled at a finishing temperature of Ar 3 points −20 ° C or higher,
After forming a fine ferrite structure and obtaining a preferred texture, from that temperature, that is, from Ar 3 point -20 ° C to Ar 3 point -80 ° C
The ferrite structure is transformed into a layer by cooling at an air cooling rate until the temperature is lowered to a low temperature by water cooling from that temperature, thereby forming a quenched two-phase structure of ferrite and lamellar bainite or martensite, and further obtaining the Ac of the steel. A high-strength steel with excellent strength and toughness is obtained by performing a tempering treatment at a temperature of one point or less.

この結果ここに開示されている製造法から得られる高
張力鋼は、鋼材に細粒フェライトと層状ベーナイト又は
マルテンサイト組織を生成し、脆性クラックが発生し伝
播する際に、細かいセパーレーションを多発させて応力
を分散し、板厚効果と相乗的に作用させる事によって、
−50℃においてKcaが400kgf/mm1.5〜720kgf/mm1.5を示
し、アレスト特性を大幅に向上したもので、前記した近
年の要望を満たしている。
As a result, the high-strength steel obtained from the manufacturing method disclosed herein generates fine-grained ferrite and layered bainite or martensite structure in the steel material, and when brittle cracks are generated and propagated, fine separation frequently occurs. By dispersing the stress and acting synergistically with the thickness effect,
At −50 ° C., Kca is 400 kgf / mm 1.5 to 720 kgf / mm 1.5 , and the arrest characteristics are greatly improved, satisfying the above-mentioned recent demands.

〈発明が解決しようとする課題〉 上記特開昭62−77419号公報の提案はその目的を達成
するに当たって、低合金スラブを900℃以上に加熱して
後Ar3点−20℃迄に圧延をする事、及び圧延後の制御冷
却に続く水冷後にAc1点以下の温度に加熱して焼戻処理
を行う事を必須としており、このため多大の熱エネルギ
ーを必要として製造費の増大が避けられない。
<Problems to be Solved by the Invention> In order to achieve the object, the proposal of Japanese Patent Application Laid-Open No. Sho 62-77419 mentioned above involves heating a low alloy slab to 900 ° C. or more, and then rolling it to an Ar 3 point of −20 ° C. It is essential to perform tempering by heating to a temperature of 1 point or less after cooling with water following controlled cooling after rolling, and this requires a large amount of heat energy and avoids an increase in manufacturing costs. Absent.

又仕上圧延温度がAr3点−20℃未満になると大きく伸
びたフェライト粒を生成して提案の目的が達成出来なく
なるとして、Ar3点−20℃以上の温度で仕上圧延を終了
する事を特定しており、このため圧延開始温度はパスス
ゲジュール、仕上板厚の変化によって変動している。
Also, if the finish rolling temperature is less than Ar 3 point-20 ° C, ferrite grains that are greatly elongated will be generated and the proposed purpose can not be achieved, and it is specified that finish rolling will be completed at a temperature of Ar 3 point-20 ° C or higher. For this reason, the rolling start temperature fluctuates due to changes in the pass-through schedule and the finished plate thickness.

この様な通常の圧延方法で上記特開昭62−77419号公
報の提案を実施すると、必ずしも該提案が実施例に示す
Kca値が得られない事がある。
When the proposal of Japanese Patent Application Laid-Open No. 62-77419 is implemented by such a normal rolling method, the proposal is not necessarily shown in the examples.
Kca value may not be obtained.

本発明はこれ等の問題点を伴わずに、少なくとも−46
℃でのKcaが600kgf/mm1.5以上のアレスト特性を有する
鋼材を生産性良く、経済的に効率良く製造する方法を提
供する事を課題とするものである。
The present invention without these problems, at least -46
An object of the present invention is to provide a method for efficiently and economically producing a steel material having an arrest characteristic of 600 kgf / mm 1.5 or more at a Kca of 150 ° C.

〈課題を解決するための手段〉 本発明は上記課題を達成するために、以下の手段を特
徴とする。
<Means for Solving the Problems> The present invention is characterized by the following means in order to achieve the above objects.

(1)重量%で、 C:0.02〜0.18% Si≦0.5% Mn:0.4〜1.8% Al:0.007〜0.1% S:0.001〜0.02% P≦0.015% N≦0.004% Ti:0,003〜0.02% B≦0.003% を含有し、残部がFeおよび不可避的不純物からなる構造
用鋼を鋳型に注入して凝固し、該凝固完了鋼片を未再結
晶終了温度からAr3点温度迄の範囲で圧下率50%以上の
未再結晶域圧延を行い、続いて700℃以上750℃以下の範
囲で圧下率30%以上50%以下の2相域圧延を行う事を特
徴とするアレスト特性の優れた鋼材の製造方法。
(1) By weight%, C: 0.02 to 0.18% Si ≦ 0.5% Mn: 0.4 to 1.8% Al: 0.007 to 0.1% S: 0.001 to 0.02% P ≦ 0.015% N ≦ 0.004% Ti: 0,003 to 0.02% B Structural steel containing ≦ 0.003% and the remainder consisting of Fe and unavoidable impurities is poured into a mold and solidified, and the solidified steel slab is subjected to a rolling reduction in the range from the unrecrystallization end temperature to the Ar 3 point temperature. Rolling of unrecrystallized zone of 50% or more, followed by rolling of two-phase zone with rolling reduction of 30% to 50% in the range of 700 ° C to 750 ° C. Production method.

(2)前記構造用鋼が、さらに、 Ta:0.003〜0.02% Zr:0.003〜0.02% のうちの1種又は2種以上を含有する事を特徴とする上
記(1)に記載のアレスト特性の優れた鋼材の製造方
法。
(2) The arrest property according to (1), wherein the structural steel further contains one or more of Ta: 0.003 to 0.02% and Zr: 0.003 to 0.02%. Excellent steel production method.

(3)前記構造用鋼が、さらに、 Cu≦1.0% Mo≦0.5% Cr≦0.5% V≦0.1% のうちの1種又は2種以上を含有する事を特徴とする上
記(1)及び(2)の何れかに記載のアレスト特性の優
れた鋼材の製造方法。
(3) The above (1) and (1), wherein the structural steel further contains one or more of Cu ≦ 1.0% Mo ≦ 0.5% Cr ≦ 0.5% V ≦ 0.1% The method for producing a steel material having excellent arrest characteristics according to any one of 2).

(4)前記構造用鋼が、さらに、 Ca≦0.003% Mg≦0.003% REM≦0.003% のうちの1種又は2種以上を含有する事を特徴とする上
記(1)から(3)の何れか1つに記載のアレスト特性
の優れた鋼材の製造方法。
(4) The structural steel according to any one of the above (1) to (3), further comprising one or more of Ca ≦ 0.003% Mg ≦ 0.003% REM ≦ 0.003% The method for producing a steel material excellent in arrest characteristics according to any one of the first to third aspects.

(5)前記構造用鋼を鋳型に注入して凝固し、その後、
該凝固完了鋼片を1250℃以上で2時間以上5時間未満保
定することを特徴とする上記(1)から(4)の何れか
1つに記載のアレスト特性の優れた鋼材の製造方法。
(5) The structural steel is poured into a mold and solidified, and thereafter,
The method for producing a steel material having excellent arrest characteristics according to any one of the above (1) to (4), wherein the solidified steel slab is held at 1250 ° C. or more for 2 hours to less than 5 hours.

通常の構造用鋼材(溶接構造用鋼材を含む)は所要の
材質を得るために、従来から当業分野での活用で確認さ
れている作用・効果の関係を基に、例えば特開昭61−11
7213号公報に記載されている様に、鉄及び不可避的な成
分に後述する理由を基に各元素を付記した量宛添加して
構成している。
In order to obtain required materials, ordinary structural steel materials (including welded structural steel materials) are obtained, for example, based on the relationship between the functions and effects that have been confirmed by utilization in the field of the art. 11
As described in Japanese Patent No. 7213, the composition is formed by adding each element to iron and inevitable components based on the reasons described later, in the amounts indicated.

本発明は、上記の通常の構造用鋼(溶接構造用鋼材を
含む)の成分を含有するものであり、基本成分として、 C:0.002〜0.18% Si≦0.5% Mn:0.4〜1.8% Al:0.007〜0.1% S:0.001〜0.02% P≦0.015% N≦0.004% Ti:0.003〜0.02% B≦0.003% を含有し、 さらに、必要に応じて、 Ta:0.003〜0.02% Zr:0.003〜0,02% のうちの1種又は2種以上、 Cu≦1.0% Mo≦0.5% Cr≦0.5% V≦0.1% のうちの1種又は2種以上、 Ca≦0.003% Mg≦0.003% REM≦0.003% のうちの1種又は2種以上を含有しても良い。
The present invention contains the components of the above-described ordinary structural steels (including welded structural steels), and contains, as basic components, C: 0.002 to 0.18% Si ≦ 0.5% Mn: 0.4 to 1.8% Al: 0.007 ~ 0.1% S: 0.001 ~ 0.02% P≤0.015% N≤0.004% Ti: 0.003 ~ 0.02% B≤0.003%, and if necessary, Ta: 0.003 ~ 0.02% Zr: 0.003 ~ 0 , 02%, one or more of Cu ≦ 1.0%, Mo ≦ 0.5%, Cr ≦ 0.5%, V ≦ 0.1%, one or more of Ca ≦ 0.003%, Mg ≦ 0.003%, REM ≦ 0.003 % May be contained alone or in combination.

但し、上記のCa,Mg,REMを2種以上添加する場合は、
その合計量は0.005%以下とすることが好ましい。
However, when adding two or more of the above Ca, Mg, REM,
The total amount is preferably set to 0.005% or less.

また、Ceq(%)は、0.45以下とすることが好まし
い。
Further, Ceq (%) is preferably set to 0.45 or less.

又これ等の成分の添加理由及び添加量の限定理由は、
一般には次の通りである。
The reasons for adding these components and the reasons for limiting the amount added are as follows:
Generally, it is as follows.

Cは鋼の強度を向上するために使用し、用途上の必要
強度から0.02%を下限とし、耐溶接割れ性の劣化から0.
18%を上限としている。
C is used to improve the strength of steel, with the lower limit being 0.02% from the strength required for the application, and from the deterioration of weld cracking resistance to 0.02%.
The upper limit is 18%.

又Siは母材の強度維持、溶鋼の予備脱酸のために必要
としているが、HAZ部に高炭素マルテンサイトを生成し
て靱性が低下するのを防止するために0.5%を上限とし
ている。
Further, Si is necessary for maintaining the strength of the base material and for pre-deoxidizing the molten steel, but the upper limit is 0.5% in order to prevent the formation of high carbon martensite in the HAZ to prevent a decrease in toughness.

Mnは母材強度、靱性の確保と併せて粒内フェライト
(以下IFPと稱す)の生成核となる複合体の外殻を形成
するMnSの生成に0.4%を下限とし、HAZの耐溶接割れ
性、HAZの靱性の劣化防止から1.8%を上限としている。
In addition to ensuring the strength and toughness of the base metal, the lower limit of the generation of MnS, which forms the outer shell of the composite that forms the nucleus of intragranular ferrite (hereinafter referred to as IFP), is 0.4%, and the resistance of the HAZ to weld cracking The upper limit is 1.8% in order to prevent the deterioration of the HAZ toughness.

Pはミクロ偏析によるHAZの靱性と耐割れ性の劣化を
防止するため0.015%を上限としている。
P has an upper limit of 0.015% in order to prevent deterioration of toughness and crack resistance of HAZ due to micro segregation.

Alは脱酸、母材組織の細粒化、固溶Nの固定等のため
に0.007%以上で使用されるが、鋼の清浄度の低下防止
から0.1%を上限としている。
Al is used in an amount of 0.007% or more for deoxidation, refinement of the base material structure, fixation of solid solution N, and the like, but the upper limit is 0.1% in order to prevent a decrease in the cleanliness of steel.

Sは通常IFP生成核となる複合体の外殻を形成するMnS
の生成に0.001%以上を必要とするが、粗大なA系介在
物を形成して母材の靱性の悪化、異方性の増大を防止す
るため0.005%を上限としている。
S is MnS that forms the outer shell of the complex that normally forms IFPs
Although 0.001% or more is required for the generation of manganese, the upper limit is 0.005% in order to prevent the deterioration of the toughness and the increase in anisotropy of the base material by forming coarse A-based inclusions.

Bは一般に大入熱溶接時のHAZ靱性に有害な粒界フェ
ライト、フェライト・サイドプレートの抑制、BNの析出
によるHAZ固溶Nの固定等から少なくとも0.0002%を添
加しているが、多量の添加はFe23(CB)6の析出による靱
性低下、及びフリーBによるHAZの硬化性の増加を招く
ので、これ等を防止するため0.003%を上限としてい
る。
B is generally added at least 0.0002% because of the suppression of grain boundary ferrite and ferrite side plate, which are harmful to HAZ toughness during large heat input welding, and fixing of HAZ solid solution N by BN precipitation. Causes the toughness to decrease due to the precipitation of Fe 23 (CB) 6 and the hardening of HAZ due to free B, so the upper limit is 0.003% in order to prevent these.

NもS、Bと同様に複合体の芯となるTi、Zr、Ta、等
の窒化物の析出のため添加するが、マトリックスの靱性
低下、HAZにおける高炭素マルテンサイトの生成促進等
を防止するため0.004%を上限としている。
N is added for precipitation of nitrides such as Ti, Zr, and Ta, which are the cores of the composite, like S and B. However, it prevents the decrease in the toughness of the matrix and the promotion of generation of high carbon martensite in HAZ. Therefore, the upper limit is 0.004%.

Ti、Zr、Ta、は1種又は2種以上を選択添加して前記
した複合体の芯となる窒化物を生成しIFPの生成核とし
て作用せしめるため、0.003%以上の添加量が必要であ
るが、鋼の清浄度の低下を防止するため0.02%を上限と
している。
One or more of Ti, Zr, and Ta are selectively added to generate a nitride serving as a core of the above-described composite and to act as a core for generating IFP. Therefore, an addition amount of 0.003% or more is required. However, the upper limit is 0.02% to prevent a decrease in the cleanliness of steel.

上記成分の他に、さらに、母材強度の上昇、及び母
材、HAZの靱性向上の目的で、Cu、Mo、V、Crの1種又
は2種以上、或いは、HAZの結晶粒粗大化防止と母材
の異方性(圧延方向のL方向と圧延方向と直角方向のC
方向の方向性)の軽減を目的として、REM、Ca,Mgの1種
又は2種以上の何れか一方又は両方を添加してもよい。
In addition to the above components, for the purpose of increasing the strength of the base material and improving the toughness of the base material and HAZ, one or more of Cu, Mo, V, and Cr, or preventing coarsening of the crystal grains of HAZ And the anisotropy of the base material (L direction in the rolling direction and C in the direction perpendicular to the rolling direction)
One or both of REM, Ca, and Mg may be added for the purpose of reducing the directionality in the direction.

Cuは母材の強度を高める割にHAZの硬さ上昇が少ない
が、応力除去焼鈍によりHAZの硬化性が増加するので1.0
%を上限としている。
Cu has a small increase in HAZ hardness in spite of increasing the strength of the base material, but since the hardening of HAZ increases by stress relief annealing, it is 1.0%.
% Is the upper limit.

Nb,Mo、V、Crは焼き入れ性の向上と析出硬化とによ
り母材強度を高め、母材の低温靱性を向上する事が知ら
れているが、HAZ靱性及び硬化性への悪影響を防止する
ためそれぞれ0.05%、0.5%及び0.1%、0.5%を各々の
上限としている。
It is known that Nb, Mo, V, and Cr increase the base metal strength by improving hardenability and precipitation hardening, and improve the low-temperature toughness of the base metal, but prevent adverse effects on HAZ toughness and hardenability Therefore, the upper limits are 0.05%, 0.5%, 0.1%, and 0.5%, respectively.

又の群の成分として前記の通りHAZのオーステナイ
ト結晶粒粗大化防止のため、酸化物及び硫化物生成元素
である原子番号57〜71のランタノイド系元素及びYの1
種又は2種以上から選ばれた希土類元素(REM)とCa及
びMgの三者の中1種又は2種以上を添加している。
As a component of the group, as described above, in order to prevent austenite crystal grain coarsening of HAZ, a lanthanoid element having an atomic number of 57 to 71, which is an oxide and sulfide forming element, and one of Y
A rare earth element (REM) selected from species or two or more and one or more of Ca and Mg are added.

これ等の元素は酸化物、硫化物もしくは酸硫化物を形
成し、HAZの結晶粒粗大化、母材の異方性を軽減する事
を目的に添加されるが、IFPの生成核となるMnSの形成が
困難になるのを防止するために、これ等の元素の2種以
上の合計は0.005%を上限としており、各々単独添加の
場合は0.003%を上限としている。
These elements form oxides, sulfides, or oxysulfides, and are added for the purpose of coarsening the crystal grains of HAZ and reducing the anisotropy of the base material. The upper limit of the total of two or more of these elements is 0.005%, and the upper limit is 0.003% in the case of single addition of each, in order to prevent the formation of a compound from becoming difficult.

又Ceqは0.45以下とするのが一般的であり、その理由
は焼き入れ性の増大によってIFPの生成を極めて困難に
し、HAZ靱性を低下せしめるとされている。
It is generally said that Ceq is 0.45 or less because the increase of hardenability makes it extremely difficult to generate IFP and lowers the HAZ toughness.

通常前記Ceqは次式で算出される値である。 Usually, Ceq is a value calculated by the following equation.

Ceq=C%+Si%/24+Mn%/6+Ni%/40+Cr%/5+Mo
%/4+V%/14 又特開昭58−19431号公報でラインパイプ用として提
示している成分、 C :0.04 〜0.18% V :0.01 〜0.10% Si:0.01 〜0.90% Cu:0.05 〜0.50% Mn:0.30 〜2.00% Cr:0.05 〜1.0% Nb:0.008〜0.06% Mo:0.05 〜0.50% S :0.012〜0.02% Ti:0.005〜0.050% Ni:0.20 〜2.00% 更には特開昭59−47323号公報で高張力鋼として開示し
ている成分、 C :0.02 〜0.15% V :≦0.2% Si:0.01 〜0.30% Nb:≦0.08% Mn:0.50 〜2.00% Cr:≦1.0% Al:0.01 〜0.1 Mo:≦0.5% Ti:0.005〜0.030% Cu:≦0.50% N :(0.2〜0.5)×Ti% Ni:≦1.5% の各々の成分を有する各鋼にも本発明は適用可能であ
る。
Ceq = C% + Si% / 24 + Mn% / 6 + Ni% / 40 + Cr% / 5 + Mo
% / 4 + V% / 14 Also disclosed in JP-A-58-19431 for use in line pipes, C: 0.04 to 0.18% V: 0.01 to 0.10% Si: 0.01 to 0.90% Cu: 0.05 to 0.50% Mn: 0.30 to 2.00% Cr: 0.05 to 1.0% Nb: 0.008 to 0.06% Mo: 0.05 to 0.50% S: 0.012 to 0.02% Ti: 0.005 to 0.050% Ni: 0.20 to 2.00% Further, JP-A-59-47323 No .: disclosed as high-tensile steel in the publication: C: 0.02 to 0.15% V: ≤ 0.2% Si: 0.01 to 0.30% Nb: ≤ 0.08% Mn: 0.50 to 2.00% Cr: ≤ 1.0% Al: 0.01 to 0.1 Mo: ≦ 0.5% Ti: 0.005 to 0.030% Cu: ≦ 0.50% N: (0.2 to 0.5) × Ti% Ni: ≦ 1.5% The present invention is also applicable to each steel having each of the above components.

又本発明の実施において、凝固後の鋼片を再結晶終了
温度以下にするのは、連続鋳造後の冷却により行うと良
く、その間にAr3点以上の温度域で寸法・形状を調整す
るサイジング又は粗等の一次圧延加工を加える事は本発
明の作用・効果に支障がないので必要に応じて実施して
良く、更に1250℃以上の温度で2時間以上5時間以下の
保定は、鋼種によって使い分けて良く、使用する時は上
記圧延を含んで上記冷却過程で行う方法が熱経済上(エ
ネルギー経済上)最良であるが、不可能な時に再加熱方
法を用いる事は差し支えはない。
In the practice of the present invention, the temperature of the slab after solidification is set to be equal to or lower than the recrystallization end temperature by cooling after continuous casting, and in the meantime, sizing to adjust the size and shape in the temperature range of Ar 3 points or more. Alternatively, the addition of a primary rolling process such as a coarse process may be carried out as necessary because it does not hinder the operation and effect of the present invention. Further, the retention at a temperature of 1250 ° C. or more for 2 hours or more and 5 hours or less depends on the type of steel. When used, the method of performing the above-mentioned cooling process including the above-mentioned rolling is the best in terms of thermoeconomics (energy economy), but it is practicable to use the reheating method when it is impossible.

〈作用〉 本発明者等は前記従来技術が有する課題を解消するた
めに、次記する化学成分を有する一般的な構造用鋼を供
試鋼として種々実験・検討を繰り返した。
<Function> In order to solve the problems of the conventional technology, the present inventors repeated various experiments and studies using a general structural steel having the following chemical components as a test steel.

供試鋼Aの化学成分 C :0.072% T.Al:0.044% Si:0.267% Ti :0.007% Mn:1.37 % B :0.0009% P :0.007% N :0.0033% S :0.002% ceq :0.308 供試鋼Bの化学成分 C :0.072% Ti :0.007% Si :0.267% B :0.0009% Mn :1.37 % N :0.0033% P :0.007% Ni :0.01% S :0.002% Nb :0.002% T.Al:0.044% ceq:0.308 その結果、本発明者等は製造費の低減及びHAZの靱性
向上を目的に、Ni及びNbを添加しない構造用鋼Aは、未
再結晶域温度幅を拡大するためのNbの添加もなく、且つ
C量が低いため、再結晶回復速度が著しく早く、そのた
め圧延中にも再結晶又は歪みの回復が進行し、本来結晶
粒の微細化を最も効率良く実施出来る未再結晶域圧延で
ありながら、結晶粒の微細化を図る事が難しい。これは
Nbを用いた上記特開昭62−77419号公報が提案する方法
で製品化する時も同様で、温度待ちを含む圧延終了温度
と異なり、実質的な圧延を支配する圧延開始温度が時と
して未再結晶域を外れ、結晶粒の微細化が不充分になっ
て安定したアレスト特性が得られない前記した現象が生
ずる事を知見した。
Chemical composition of test steel A: C: 0.072% T. Al: 0.044% Si: 0.267% Ti: 0.007% Mn: 1.37% B: 0.0009% P: 0.007% N: 0.0033% S: 0.002% ceq: 0.308 Chemical composition of steel B: C: 0.072% Ti: 0.007% Si: 0.267% B: 0.0009% Mn: 1.37% N: 0.0033% P: 0.007% Ni: 0.01% S: 0.002% Nb: 0.002% T.Al: 0.044 % Ceq: 0.308 As a result, the inventors of the present invention, for the purpose of reducing the manufacturing cost and improving the toughness of HAZ, use the structural steel A to which Ni and Nb are not added in order to increase the temperature range of the unrecrystallized region. Since there is no addition and the C content is low, the recrystallization recovery speed is remarkably fast, so that the recrystallization or the recovery of strain progresses even during rolling, and the unrecrystallized region where the grain refinement can be performed most efficiently originally. Despite the rolling, it is difficult to refine the crystal grains. this is
The same applies when commercializing by the method proposed in the above-mentioned Japanese Patent Application Laid-Open No. 62-77419 using Nb. Unlike the rolling end temperature including the temperature waiting, the rolling start temperature that controls the substantial rolling is sometimes unsatisfactory. It has been found that the above-mentioned phenomenon occurs in which the crystal grains are out of the recrystallization region and the crystal grains are insufficiently refined, so that stable arrest characteristics cannot be obtained.

この狭い未再結晶域温度幅で所要の圧延を完了する事
が圧延工程の工程能力不足等で不可能な場合は、未再結
晶域温度幅を拡大するため供試鋼Bの如くNbを添加する
とアレスト特性は向上するがHAZ靱性が低下する事を知
得した。
If it is not possible to complete the required rolling at this narrow unrecrystallized zone temperature range due to insufficient process capability of the rolling process, etc., add Nb as in test steel B to expand the unrecrystallized zone temperature range. Then, it was found that the arrest property was improved, but the HAZ toughness was lowered.

そこで、母材の優れたアレスト特性と共に優れたHAZ
靱性を有する鋼材を必要とする時の製造方法を検討した
結果、Nbの添加に頼らず実質的な圧延を支配する未再結
晶域圧延開始温度を厳守し、そこから得られた鋼材を2
相域圧延すれば良い事を見出した。
Therefore, the excellent HAZ together with the excellent arrest property of the base material
As a result of examining the manufacturing method when a steel material having toughness is required, the steel material obtained from the material was strictly adhered to the unrecrystallized zone rolling start temperature which governs the substantial rolling without depending on the addition of Nb.
I found that it was good to do phase rolling.

この時の未再結晶域圧延は、Nbを添加する時も又添加
しない時も、過去の実績から得た未再結晶域を構成する
成分と温度条件に基づき、所要の圧延を実質的に行う圧
延開始温度を未再結晶域に定め、且つ該実質的な圧延を
終了する厳格な制御圧延を行わねばならない事を知見し
た。
The unrecrystallized area rolling at this time, when Nb is added or not added, the necessary rolling is substantially performed based on the components and temperature conditions constituting the unrecrystallized area obtained from past results. It has been found that the rolling start temperature must be set in the non-recrystallized region and strict controlled rolling must be performed to end the substantial rolling.

これ等の知見を第1図乃至第7図に示す。 These findings are shown in FIGS. 1 to 7.

第1図はKca≧400kgf/mm1.5となる温度、つまりTKca4
50値と、未再結晶域圧延の開始温度及び仕上げ温度の関
係を整理したものである。
Fig. 1 shows the temperature at which Kca ≧ 400kgf / mm 1.5 , that is, TKca4
This table summarizes the relationship between the 50 value and the starting temperature and finishing temperature of the non-recrystallization zone rolling.

これによって、本発明者等は、圧延終了温度を従来か
ら効果があると知見されているAr3点に設定しても、圧
延開始温度が高くなって実質的な圧延が未再結晶域を外
れると、TKca450値は−10℃〜−30℃程度となり、一方
圧延の開始温度が未再結晶域内にあり、歪みの回復が進
行しない間に所要の圧延が実質的に完了していると、TK
ca450値が−40〜−50に達する事を知見した。
Thereby, the present inventors, even if the rolling end temperature is set to the Ar 3 point which has been conventionally found to be effective, the rolling start temperature is increased and substantial rolling is out of the unrecrystallized region. And the TKca450 value is about −10 ° C. to −30 ° C., on the other hand, if the rolling start temperature is in the non-recrystallized region and the required rolling is substantially completed before the recovery of strain progresses,
It was found that the ca450 value reached -40 to -50.

又このTKca450値が−40〜−50に達した鋼材に2層域
圧延を加えると、図示の如くTKca450値は更に向上して
−60〜−70に達する事を知見した。
Further, it was found that when two-layer rolling was performed on the steel material having the TKca450 value of -40 to -50, the TKca450 value was further improved to reach -60 to -70 as shown in the figure.

同様にTKca450値が−10℃〜−30℃程度の再結晶域圧
延材に2層域圧延を加えてもTKca450値は−30〜−40程
度にしか達しない事を知見した。
Similarly, it has been found that the TKca450 value reaches only about -30 to -40 even when the two-layer zone rolling is added to the recrystallization zone rolled material having a TKca450 value of about -10 to -30 ° C.

第2図は未再結晶域圧延の圧下率と、TKca450kgf/mm
1.5値の関係を整理したもので、これによりTKca450kgf/
mm1.5値は圧下率50%以上になると−40℃以下と好転す
る事を見出した。
Fig. 2 shows the rolling reduction of unrecrystallized zone rolling and TKca450kgf / mm
This is a summary of the relationship between 1.5 values.
It was found that the mm 1.5 value improved to -40 ° C or less when the rolling reduction was 50% or more.

第3図は2相域圧延の開始温度及び圧下率とアレスト
特性TKca450kgf/mm1.5の関係を整理したもので、これに
よりTKca450kgf/mm1.5は2相域圧延の開始温度が低温に
なる程、又圧下率が30%以上となると向上する事を見出
した。
Figure 3 is obtained by organizing the relationship between the 2-phase region rolling start temperature and rolling reduction and arrest characteristics TKca450kgf / mm 1.5, thereby TKca450kgf / mm 1.5 is higher the onset temperature of 2 phase region rolling is low, and It was found that when the rolling reduction was 30% or more, it improved.

これについて本発明者等がその要因を調査した結果、
700℃〜750℃で圧延した2相域圧延鋼は通常の圧延で得
られるγ1相域圧延鋼と異なり、R方向の異方性が一段
と増大され、この鋼材の有する表面エネルギー(亀裂の
伝播を抑制する抵抗エネルギー)γP-2は、第4図中に
実線で示す如く、L方向(圧延方向)及びC方向(圧延
と直角方向)が増大されR方向(L及びCの中間方向の
45°方向)が通常のγ1相域圧延鋼のレベルに維持され
て最も小さく、従って脆性亀裂が発生し伝播が始まって
も、亀裂は相対的に表面エネルギーγP-2の最も小さい
R方向を選んで伝播し、その結果該亀裂の進行は第5図
に示す様に亀裂1が母材2内をジクザク状に伝播し、こ
れによって伝播エネルギーが吸収され停止する事が判明
した。
As a result of investigating the factor by the present inventors about this,
Unlike the γ1 phase rolled steel obtained by normal rolling, the dual phase rolled steel rolled at 700 ° C to 750 ° C has a further increase in the anisotropy in the R direction, and the surface energy (crack propagation As shown by the solid line in FIG. 4, the resistance energy γ P-2 is increased in the L direction (rolling direction) and the C direction (direction perpendicular to the rolling direction), and is increased in the R direction (the intermediate direction between L and C).
45 ° direction) is maintained at the level of a normal γ1 phase-rolled steel and is the smallest, so even if a brittle crack occurs and propagation starts, the crack has a relative R direction with the smallest surface energy γ P-2. As a result, as shown in FIG. 5, it was found that the crack 1 propagated in the base material 2 in a zigzag manner, whereby the propagation energy was absorbed and stopped.

これに対し、γ1相域圧延鋼の表面エネルギーγP-1
は第4図中に点線で示す如く、異方性がないので脆性亀
裂は主応力と直角方向に真っ直ぐに伝播する。
On the other hand, the surface energy of γ1 phase-rolled steel γ P-1
As shown by the dotted line in FIG. 4, since there is no anisotropy, the brittle crack propagates straight in the direction perpendicular to the main stress.

そのため、前記した各従来技術は第4図中にaで示す
γP-1の低いベーナイト又はbで示すセメンタイトを生
成させ、そこに脆性亀裂伝播時に先行するセパレーショ
ンを多発させて亀裂伝播エネルギーを吸収して脆性亀裂
を停止させている。
Therefore, each of the prior arts described above generates bainite having a low γ P-1 shown in FIG. 4 or cementite shown in b in FIG. 4, and generates a large number of separations at the time of brittle crack propagation to absorb crack propagation energy. To stop brittle cracks.

従って表面エネルギーγP-1は図に明らかな様に表面
エネルギーγP-2の50%程度で、換言すると2相域圧延
鋼の表面エネルギーγP-2はγ1相域圧延鋼の表面エネ
ルギーγP-1の約2倍で、アレスト特性が格段に向上す
る要因を形成している事を見出した。
Therefore the surface energy gamma P-1 is 50% of the surface energy gamma P-2 As is apparent in the figure, the surface energy gamma P-2 of the other words the 2-phase region rolling steel surface energy of the γ1 phase region rolled steel gamma About twice as large as P-1 , it was found that the arrest characteristics formed a factor that markedly improved.

これは従来技術が使用した各セパレーションとは全く
異なる機構による亀裂停止機能で、その亀裂停止能は高
位に安定している事を知見した。
This is a crack stop function by a completely different mechanism from each separation used in the prior art, and it has been found that the crack stop ability is highly stable.

第6図は2相域圧延の開始温度及び圧下率と母材靱性
の関係を整理したもので、これにより圧延開始温度が低
下して700℃未満となり、圧下率が50%を越えると加工
硬化により母材靱性が低下する事を見出した。
Fig. 6 summarizes the relationship between the starting temperature and rolling reduction of the two-phase zone rolling and the base material toughness. As a result, the rolling starting temperature decreases to less than 700 ° C, and when the rolling reduction exceeds 50%, work hardening occurs. It has been found that the base material toughness is lowered by the treatment.

第7図は実施例及び比較例に示す各種の製造方法から
得た鋼材に対し、靱性向上のために偏析拡散処理を行っ
たものと、無処理のもののKca値を整理したもので、セ
メンタイト(C等のミクロ偏析等)の導入によるセパレ
ーションを利用してアレスト特性を向上させる方法で
は、HAZ靱性を向上するために有効な偏析拡散処理を実
施するとアレスト特性は著しく劣化する。
FIG. 7 shows the Kca values of the steel materials obtained from the various production methods shown in the examples and comparative examples, which were subjected to the segregation diffusion treatment for improving the toughness and the untreated steel materials. In the method of improving arrest characteristics by using separation by introducing micro segregation such as C, etc., if effective segregation diffusion treatment is performed to improve HAZ toughness, arrest characteristics are significantly deteriorated.

しかしながら本発明の製造方法は前記した従来の知見
とはアレスト特性向上のメカニズムが異なるため偏析拡
散処理によるKca値の低下は殆ど見られない事を知見し
た。
However, it has been found that the production method of the present invention hardly reduces the Kca value due to the segregation diffusion treatment because the mechanism for improving the arrest characteristic is different from the above-mentioned conventional knowledge.

以上の知見から、本発明者等は上述した本発明の製造
方法によって、構造用鋼を始めとして広くこの種産業分
野に用いられる前記各鋼材のアレスト特性を母材及びHA
Zの靱性を劣化させる事なく格段に向上し得る事を見出
した。
From the above findings, the present inventors, by the manufacturing method of the present invention described above, the arrest characteristics of each steel material widely used in this kind of industrial field including structural steel, base material and HA
It has been found that Z can be significantly improved without deteriorating its toughness.

本発明は上記知見を基になされたものである。 The present invention has been made based on the above findings.

〈実施例〉 (1)供試鋼の化学成分(表1に示す。) 本発明は、前記した構造用鋼(溶接構造用鋼を含む)
及びラインパイプ用鋼、溶接構造用高張力鋼等の元素と
各元素量であれば何れの組み合わせでも良いが、それぞ
れの代表的な化学成分を有する鋼を表1に示す如く準備
した。
<Examples> (1) Chemical composition of test steel (shown in Table 1) The present invention relates to the structural steel (including welded structural steel) described above.
Any combination of elements such as steel for line pipes, high-strength steels for welded structures, and other elements may be used. Steels having typical chemical components are prepared as shown in Table 1.

圧延条件、偏析均熱拡散処理の有無、及び得られた材
質を表2,3に示す。
Tables 2 and 3 show the rolling conditions, the presence or absence of the segregation soaking diffusion treatment, and the obtained materials.

(2)鋳造条件 鋳造方法 連続鋳造方法 凝固鋼片寸法 厚み42/250mm×幅1800mm (3)一次圧延条件(有無)(表2,3に示す。) (4)保定条件 (有無)(表2,3に示す。) (5)未再結晶域圧延の条件(表2,3に示す。) (6)2相域圧延の条件 (表2,3に示す。) (7)アレスト特性 (表2,3に示す。) アレスト特性の評価試験 =温度勾配型ESSO試験法 (8)HAZ靱性 (表2,3に示す。) (9)母材靱性 (表2,3に示す。) 本発明例の鋼番a13〜a24は、表2に示す様に−50℃の
Kca値は≧680であった。
(2) Casting conditions Casting method Continuous casting method Solidified billet dimensions Thickness 42 / 250mm x width 1800mm (3) Primary rolling conditions (presence / absence) (shown in Tables 2 and 3) (4) Holding conditions (presence / absence) (Table 2) (3) (5) Conditions for unrecrystallized zone rolling (shown in Tables 2 and 3) (6) Conditions for two-phase zone rolling (shown in Tables 2 and 3) (7) Arrest characteristics (Table Arrest property evaluation test = Temperature gradient type ESSO test method (8) HAZ toughness (shown in Tables 2 and 3) (9) Base material toughness (shown in Tables 2 and 3) As shown in Table 2, the steel numbers a13 to a24 of the
The Kca value was ≧ 680.

特に本発明例でTi、Bを添加した鋼種3、4を用いた
鋼番a13〜a24は、−50℃のKca値が、740〜865、母材靱
性が−75〜−95℃、大入熱溶接におけるHAZ靱性(継手
靱性)vE-60#が17.1〜24.3kgf・mと共に高く、アレス
ト特性と靱性が共に優れている事を示した。
In particular, in the examples of the present invention, steel numbers a13 to a24 using steel types 3 and 4 to which Ti and B are added have a Kca value at −50 ° C. of 740 to 865, a base material toughness of −75 to −95 ° C., and a large inlet. The HAZ toughness (joint toughness) vE- 60 # in thermal welding was high with 17.1 to 24.3 kgf · m, indicating that both arrest characteristics and toughness were excellent.

これに対し比較例の鋼番b1〜b8は−50℃のKca値は185
〜330で、且つ母材の靱性vTrsは−42〜−62℃と低く、
母材靱性が低いためHAZ靱性も表3に示す様に低かっ
た。
On the other hand, the steel numbers b1 to b8 of the comparative examples have a Kca value of −185 at −50 ° C.
~ 330, and the base material toughness vTrs is as low as -42 to -62 ° C,
Since the base metal toughness was low, the HAZ toughness was also low as shown in Table 3.

〈発明の効果〉 本発明は、構造用鋼の凝固鋼片を未再結晶域で50%以
上の圧下率で圧延を行い、更に2相域における700℃〜7
50℃で圧下率30%以上50%以下の圧延を行ってR方向の
異方性を形成し、これにより、脆性亀裂が発生すると、
脆性亀裂は形成されたR方向の低表面エネルギー部を選
択的に伝播して脆性亀裂の伝播エネルギーを此処で吸収
されて消滅するので、母材及びHAZの各靱性の低下を伴
う事なく、アレスト特性の優れた鋼材を良好な生産性、
経済性の下に効率良く製造する事を可能としたもので、
この種産業分野に多大の効果をもたらすものである。
<Effect of the Invention> The present invention is to roll a solidified steel slab of a structural steel at a rolling reduction of 50% or more in a non-recrystallized region, and further, at 700 ° C to 7 ° C in a two-phase region.
Rolling at 50 ° C. at a rolling reduction of 30% or more and 50% or less to form anisotropy in the R direction, whereby when a brittle crack occurs,
Since the brittle crack selectively propagates through the formed low surface energy portion in the R direction and absorbs the brittle crack propagation energy here and disappears, the arresting without reducing the toughness of each of the base material and the HAZ. Good productivity of steel with excellent properties,
It is possible to manufacture efficiently under economical efficiency,
This has a great effect on this kind of industrial field.

【図面の簡単な説明】[Brief description of the drawings]

第1図はKca=450kgf/mm1.5となる温度、つまりTKca450
値と2次圧延の開始温度との関係を示す。 第2図はTKca450値と未再結晶域圧延の圧下率との関係
を示す。 第3図はTKca450kgf/mm1.5(℃)と2相域圧延の開始温
度及び圧下率との関係を示す。 第4図は本発明方法で製造した鋼材の異方性の作用を示
す。 第5図は第4図に示す鋼材に発生した脆性亀裂の伝播状
況を示す。 第6図は2相域圧延の開始温度及び圧下率と母材靱性の
関係を示す。 第7図は偏析拡散熱処理の有無とKca値の関係を示すも
のである。
Fig. 1 shows the temperature at which Kca = 450 kgf / mm 1.5 , that is, TKca450.
The relation between the value and the starting temperature of the secondary rolling is shown. FIG. 2 shows the relationship between the TKca450 value and the rolling reduction in the non-recrystallization zone rolling. FIG. 3 shows the relationship between TKca 450 kgf / mm 1.5 (° C.), the starting temperature of two-phase rolling, and the rolling reduction. FIG. 4 shows the anisotropic action of the steel material produced by the method of the present invention. FIG. 5 shows the state of propagation of a brittle crack generated in the steel material shown in FIG. FIG. 6 shows the relationship between the starting temperature and rolling reduction of the two-phase region rolling and the base material toughness. FIG. 7 shows the relationship between the presence or absence of the segregation diffusion heat treatment and the Kca value.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 土師 利昭 大分県大分市大字西ノ洲1番地 新日本 製鐵株式会社大分製鐵所内 (72)発明者 今野 敬治 大分県大分市大字西ノ洲1番地 新日本 製鐵株式会社大分製鐵所内 (72)発明者 間淵 秀里 大分県大分市大字西ノ洲1番地 新日本 製鐵株式会社大分製鐵所内 (56)参考文献 特開 昭57−104624(JP,A) 特開 昭58−19431(JP,A) 特開 平1−156424(JP,A) (58)調査した分野(Int.Cl.6,DB名) C21D 8/02──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Toshiaki Hashi Oita, Oita City, Oita, Nishi-no-su, 1 Nippon Steel Corporation Oita Works (72) Inventor Keiji Konno, Oita, Oita, O-shi, O-shi 1 Inside the Oita Works of Steel Corporation (72) Inventor Hidesato Mabuchi 1 at Nishinosu, Oita, Oita City, Oita Prefecture Nippon Steel Corporation Oita Works (56) References JP-A-57-104624 (JP, A) JP-A-58-19431 (JP, A) JP-A-1-156424 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C21D 8/02

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で、 C:0.02〜0.18% Si≦0.5% Mn:0.4〜1.8% Al:0.007〜0.1% S:0.001〜0.02% P≦0.015% N≦0.004% Ti:0,003〜0.02% B≦0.003% を含有し、残部がFeおよび不可避的不純物からなる構造
用鋼を鋳型に注入して凝固し、該凝固完了鋼片を未再結
晶終了温度からAr3点温度迄の範囲で圧下率50%以上の
未再結晶域圧延を行い、続いて700℃以上750℃以下の範
囲で圧下率30%以上50%以下の2相域圧延を行う事を特
徴とするアレスト特性の優れた鋼材の製造方法。
C: 0.02-0.18% Si≤0.5% Mn: 0.4-1.8% Al: 0.007-0.1% S: 0.001-0.02% P≤0.015% N≤0.004% Ti: 0,003-0.02% by weight % B ≦ 0.003%, the balance being Fe and unavoidable impurities, and injecting it into a mold for solidification, and solidifying the solidified steel slab in the range from the unrecrystallization end temperature to the Ar 3 point temperature. Excellent arrest characteristics characterized by rolling in the non-recrystallized region with a reduction of 50% or more, and then performing two-phase rolling with a reduction of 30% to 50% in the range of 700 ° C to 750 ° C. Method of manufacturing steel.
【請求項2】構造用鋼が、さらに、 Ta:0.003〜0.02% Zr:0.003〜0.02% のうちの1種又は2種以上を含有する事を特徴とする請
求項1に記載のアレスト特性の優れた鋼材の製造方法。
2. The arrest characteristic according to claim 1, wherein the structural steel further contains one or more of Ta: 0.003 to 0.02% and Zr: 0.003 to 0.02%. Excellent steel production method.
【請求項3】構造用鋼が、さらに、 Cu≦1.0% Mo≦0.5% Cr≦0.5% V≦0.1% のうちの1種又は2種以上を含有する事を特徴とする請
求項1と請求項2の何れかに記載のアレスト特性の優れ
た鋼材の製造方法。
3. The structural steel according to claim 1, further comprising one or more of Cu ≦ 1.0% Mo ≦ 0.5% Cr ≦ 0.5% V ≦ 0.1%. Item 4. The method for producing a steel material having excellent arrest characteristics according to any one of Items 2.
【請求項4】構造用鋼が、さらに、 Ca≦0.003% Mg≦0.003% REM≦0.003% のうちの1種又は2種以上を含有する事を特徴とする請
求項1から請求項3の何れか1つに記載のアレスト特性
の優れた鋼材の製造方法。
4. The steel according to claim 1, wherein the structural steel further contains one or more of Ca ≦ 0.003% Mg ≦ 0.003% REM ≦ 0.003%. The method for producing a steel material excellent in arrest characteristics according to any one of the first to third aspects.
【請求項5】前記構造用鋼を鋳型に注入して凝固し、そ
の後、該凝固完了鋼片を1250℃以上で2時問以上5時間
未満保定することを特徴とする請求項1から請求項4の
何れか1つに記載のアレスト特性の優れた鋼材の製造方
法。
5. The method according to claim 1, wherein the structural steel is poured into a mold and solidified, and then the solidified slab is kept at 1250 ° C. or more for 2 hours or more and less than 5 hours. 5. The method for producing a steel material having excellent arrest characteristics according to any one of 4.
JP63282892A 1988-11-08 1988-11-08 Method for producing steel with excellent arrest characteristics Expired - Lifetime JP2825827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63282892A JP2825827B2 (en) 1988-11-08 1988-11-08 Method for producing steel with excellent arrest characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63282892A JP2825827B2 (en) 1988-11-08 1988-11-08 Method for producing steel with excellent arrest characteristics

Publications (2)

Publication Number Publication Date
JPH02129318A JPH02129318A (en) 1990-05-17
JP2825827B2 true JP2825827B2 (en) 1998-11-18

Family

ID=17658453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63282892A Expired - Lifetime JP2825827B2 (en) 1988-11-08 1988-11-08 Method for producing steel with excellent arrest characteristics

Country Status (1)

Country Link
JP (1) JP2825827B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2579708B2 (en) * 1991-11-29 1997-02-12 新日本製鐵株式会社 Steel sheet excellent in fatigue characteristics and method for producing the same
KR100482188B1 (en) * 2000-11-28 2005-04-21 주식회사 포스코 Method for manufacturing high strength steel plate having superior toughness in weld heat-affected zone by recrystallization controlled rolling
KR100711466B1 (en) * 2005-12-21 2007-04-24 주식회사 포스코 A manufacturing method of plate for linepipe having excellent strength, toughness and yield ratio
JP4515429B2 (en) * 2006-09-29 2010-07-28 株式会社神戸製鋼所 Steel with excellent toughness and brittle crack stopping characteristics in weld heat affected zone and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104624A (en) * 1980-12-22 1982-06-29 Kawasaki Steel Corp Manufacture of nonrefined high strength steel with superior weldability and superior toughness at low temperature
JPS5819431A (en) * 1981-07-24 1983-02-04 Nippon Steel Corp Manufacture of steel for line pipe with superior characteristic of stopping propagation of brittle crack
JPH01156424A (en) * 1987-12-14 1989-06-20 Kawasaki Steel Corp Manufacture of non-tempered high strength steel plate having excellent low temperature toughness

Also Published As

Publication number Publication date
JPH02129318A (en) 1990-05-17

Similar Documents

Publication Publication Date Title
JP4410741B2 (en) High strength thin steel sheet with excellent formability and method for producing the same
EP2735622B1 (en) Low-yield-ratio high-strength hot-rolled steel plate with excellent low-temperature toughness and process for producing same
JP2007070661A (en) High strength thin steel sheet having excellent elongation and hole expandability, and method for producing the same
JPH11140580A (en) Continuously cast slab for high strength steel excellent in toughness at low temperature, its production, and high strength steel excellent in toughness at low temperature
JP7010418B1 (en) High-strength hot-rolled steel sheet and its manufacturing method
WO2014175122A1 (en) H-shaped steel and method for producing same
JP2017078212A (en) Low yield ratio steel sheet and method for producing the same
JPH0453929B2 (en)
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JP2002129281A (en) High tensile strength steel for welding structure excellent in fatigue resistance in weld zone and its production method
JP2647302B2 (en) Method for producing high-strength steel sheet with excellent resistance to hydrogen-induced cracking
JP3569314B2 (en) Steel plate for welded structure excellent in fatigue strength of welded joint and method of manufacturing the same
JP2825827B2 (en) Method for producing steel with excellent arrest characteristics
JPH0987798A (en) High tensile strength hot rolled steel plate, having superfine grain and excellent in ductility, toughness, fatigue characteristic, and strength-ductility balance, and its production
JPS621456B2 (en)
JPH1180833A (en) Production of steel sheet for high strength line pipe excellent in hic resistance
JPS624826A (en) Manufacture of high strength and toughness steel plate for line pipe superior in characteristic for stopping unstable ductility fracture propagation
JP3009558B2 (en) Manufacturing method of thin high-strength steel sheet with excellent sour resistance
JP2004323966A (en) Steel sheet superior in quake resistance and weldability, and manufacturing method therefor
JP3212344B2 (en) Manufacturing method of structural steel plate for welding with excellent toughness at low temperature
JP3854412B2 (en) Sour-resistant steel plate with excellent weld heat-affected zone toughness and its manufacturing method
KR0143478B1 (en) The making method of coil strip with ductile
JP2003226922A (en) Manufacturing method for high strength steel sheet having excellent hic resistance
JP3009568B2 (en) Manufacturing method of high strength steel sheet with excellent hydrogen induced cracking resistance and low temperature toughness
JP2002105586A (en) Shape steel having excellent collision resistance and its production method