JP2823076B2 - Warm magnet - Google Patents

Warm magnet

Info

Publication number
JP2823076B2
JP2823076B2 JP1106509A JP10650989A JP2823076B2 JP 2823076 B2 JP2823076 B2 JP 2823076B2 JP 1106509 A JP1106509 A JP 1106509A JP 10650989 A JP10650989 A JP 10650989A JP 2823076 B2 JP2823076 B2 JP 2823076B2
Authority
JP
Japan
Prior art keywords
warm
magnet
weight
worked
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1106509A
Other languages
Japanese (ja)
Other versions
JPH02285604A (en
Inventor
茂穂 谷川
克典 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP1106509A priority Critical patent/JP2823076B2/en
Publication of JPH02285604A publication Critical patent/JPH02285604A/en
Application granted granted Critical
Publication of JP2823076B2 publication Critical patent/JP2823076B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Description

【発明の詳細な説明】 本発明は、例えばコンピューターの外部記憶装置であ
るハードディスク、フロッピーディスクあるいは、各種
端末装置等に用いられる、希土類元素、遷移金属、硼
素、炭素を必須構成元素とすることにより温間加工性を
改善し割れが無くかつ結晶配向性を向上して良好な磁気
特性を有するようにした温間加工磁石に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a hard disk, a floppy disk as an external storage device of a computer, or a rare earth element, a transition metal, boron, or carbon used as an essential constituent element for various terminal devices. The present invention relates to a warm-worked magnet having improved warm workability, no cracks, and improved crystal orientation to have good magnetic properties.

〔従来の技術〕[Conventional technology]

希土類元素、遷移金属、硼素から実質的になる永久磁
石(以下R−T−B磁石と呼ぶ)は、安価でかつ高磁気
特性を有する永久磁石として注目を集めている。正方晶
系の結晶構造を持ったR2T14Bで表される金属間化合物が
優れた磁気特性を発現するからである。この金属間化合
物は室温で正方形の一辺が0.878nmでその面に垂直なC
軸方向の格子定数が1.218nmである。この金属間化合物
は、C軸方向に強い磁気異方性を有している。
2. Description of the Related Art A permanent magnet (hereinafter, referred to as an RTB magnet) substantially made of a rare earth element, a transition metal, and boron has attracted attention as a permanent magnet that is inexpensive and has high magnetic properties. This is because an intermetallic compound represented by R 2 T 14 B having a tetragonal crystal structure exhibits excellent magnetic properties. At room temperature, this intermetallic compound has a square of 0.878 nm on one side and a C
The lattice constant in the axial direction is 1.218 nm. This intermetallic compound has strong magnetic anisotropy in the C-axis direction.

この金属間化合物を利用した磁石の工業的な製造方法
としては、粉末冶金法による焼結磁石と超急冷法による
温間塑性加工磁石に大別される。焼結磁石は、所望の組
成に調整溶解、鋳造して得られるインゴットを粗粉砕、
微粉砕して得られる3〜5μmの微粉末を磁場中で成形
し焼結、熱処理することにより得られる。焼結磁石の場
合、微粉砕あるいはその後の焼結、熱処理工程中に雰囲
気からの酸素の浸入が避けられず、通常焼結体中には、
3000〜8000ppmの酸素が不純物として含有される。この
不純物酸素は、合金中の希土類成分と結合し酸化物とし
て存在する。この非磁性酸化物は、永久磁石の飽和磁気
モーメントを低下させると伴に永久磁石に反転磁界を励
磁した場合、反転磁区の核生成サイトとして働く為、保
磁力を低下させる要因となる。焼結磁石のこの問題点を
解消する為に種々の発明が提案されている。例えば、最
も一般的に用いられる方法としては、R成分中の重希土
類成分(例えばDy,Tb)の比率を高めることである。し
かしながら、この方法では重希土類成分の全角運動量
と、Feのスピン角運動量が反平行に結合する為に、重希
土類成分の比率を多くすればする程、合金の飽和磁気モ
ーメントは低下するという欠点を有する。あるいは、微
量の添加元素例えば、Al,Nb,Ga等を添加し保磁力を向上
させるという提案もなされているが、前記重希土類成分
を用いる場合に比較して効果は小さい。また、プロセス
中での酸素の浸入を抑制し、磁気特性を改善する試みも
なされているが、設備が大がかりとなり、製造コストが
高くなる為工業上問題点が多い。
Industrial methods for manufacturing magnets using this intermetallic compound are roughly classified into sintered magnets by a powder metallurgy method and warm plastically processed magnets by a super-quenching method. Sintered magnet is adjusted to the desired composition, melted, coarsely pulverized ingot obtained by casting,
It is obtained by molding, sintering and heat-treating fine powder of 3 to 5 μm obtained by pulverization in a magnetic field. In the case of a sintered magnet, infiltration of oxygen from the atmosphere during fine pulverization or subsequent sintering and heat treatment steps is inevitable, and usually in a sintered body,
3000-8000 ppm oxygen is contained as an impurity. This impurity oxygen combines with the rare earth component in the alloy and exists as an oxide. This non-magnetic oxide acts as a nucleation site for the reversal magnetic domain when the reversal magnetic field is excited in the permanent magnet while reducing the saturation magnetic moment of the permanent magnet, and thus becomes a factor for reducing the coercive force. Various inventions have been proposed to solve this problem of the sintered magnet. For example, the most commonly used method is to increase the ratio of heavy rare earth components (for example, Dy, Tb) in the R component. However, in this method, since the total angular momentum of the heavy rare earth component and the spin angular momentum of Fe are coupled antiparallel, the larger the ratio of the heavy rare earth component, the lower the saturation magnetic moment of the alloy. Have. Alternatively, a proposal has been made to improve the coercive force by adding a small amount of an additional element, for example, Al, Nb, Ga or the like, but the effect is small as compared with the case where the heavy rare earth component is used. Attempts have also been made to suppress the infiltration of oxygen during the process and improve the magnetic properties, but there are many industrial problems because the equipment is large and the manufacturing cost is high.

一方、超急冷法においては、メルトスピニング法ある
いはその他の超急冷法で得られた非晶質又は微細な結晶
質あるいは両者の混合物で形成される、薄帯又は粉末を
温間でホットプレスによりち密化した後、引き続き塑性
加工により異方性化し、製造される。本方法では工程中
に微粉砕工程を含まないため、不純物酸素量を通常2000
ppm以下に抑制することが可能であり、したがって高い
飽和磁気モーメントが期待出来る。また、高温での焼結
工程を必要としないことから、温間塑性加工を施し得ら
れる最終製品の結晶粒径は0.02〜1.0μmと微細であり
特に好ましい温度領域で温間加工された磁石の平均粒径
は0.1〜0.5μmと本系磁石の単磁区臨界寸法0.3μmに
近く本質的に高い保磁力が得られる。温間加工磁石にお
いては塑性流動と直角な方向の磁気的な結晶配列状態の
密接な相関が重要である。すなわち塑性流動を被加工物
の全体に均一に充分行わせることが磁気特性に関係する
結晶配向度の向上に必要である。また、温間塑性加工時
の粒子間あるいは薄帯間の摩擦は不均一変形をもたらす
と伴に引張応力を発生させ、クラックを生じさせる要因
となる。このことは、工業製品としての永久磁石を得よ
うとする場合には大きな問題点である。温間加工の際に
印加される加工力の大部分は塑性仕事に使われるが、一
部はダイスとワークの摩擦あるいは、ワーク内の粒子間
の摩擦に浪費される。従って、温間加工時の加工性を向
上させ、クラックのない永久磁石を得る為に種々の外部
潤滑剤が提案されている。例えば特開昭60−100402号公
報には温間加工に用いるダイス表面に黒鉛を外部潤滑剤
としてライニングした例が記載されている。しかし、こ
の場合には磁石体内部の粒子間摩擦による不均一な塑性
流動を改善する作用効果は無い。
On the other hand, in the ultra-quenching method, a ribbon or powder formed of an amorphous or fine crystalline material obtained by a melt spinning method or another ultra-quenching method or a mixture of both is densified by hot pressing in a warm state. After the formation, it is subsequently anisotropically formed by plastic working and manufactured. Since this method does not include a pulverization step in the process, the amount of impurity oxygen
It can be suppressed to below ppm, and therefore a high saturation magnetic moment can be expected. Also, since the sintering process at a high temperature is not required, the crystal grain size of the final product obtained by performing the warm plastic working is as fine as 0.02 to 1.0 μm, and the magnet which is warm-worked in a particularly preferable temperature range is used. The average particle size is 0.1 to 0.5 μm, which is close to the critical dimension of a single magnetic domain of the present system of 0.3 μm, and an essentially high coercive force can be obtained. In a warm-worked magnet, the close correlation between the plastic flow and the magnetic crystal orientation in the direction perpendicular to the plastic flow is important. That is, it is necessary to uniformly and sufficiently perform plastic flow on the entire workpiece to improve the degree of crystal orientation related to magnetic properties. In addition, friction between particles or ribbons during warm plastic working causes non-uniform deformation, generates tensile stress, and causes cracks. This is a serious problem when trying to obtain a permanent magnet as an industrial product. Most of the working force applied during warm working is used for plastic work, but a part is wasted due to friction between the die and the work or between particles in the work. Therefore, various external lubricants have been proposed in order to improve workability during warm working and obtain a permanent magnet without cracks. For example, JP-A-60-100402 describes an example in which graphite is lined as an external lubricant on a die surface used for warm working. However, in this case, there is no effect of improving the non-uniform plastic flow due to friction between particles inside the magnet body.

温間加工時の粒子間あるいは、薄帯間の摩擦による不
均一な、塑性流動を改善することを目的としてMoS2,C,B
N等の微粉末を添加することにより塑性流動を容易に
し、割れのない温間加工磁石を得る技術が提案されてい
る。この方法によると磁石粉末あるいは薄帯間で添加し
た微粉末間あるいは薄帯間の摩擦を緩和することによ
り、クラックの抑制と配向度の向上に顕著な効果を及ぼ
す。しかしながら、上記発明の効果も超急冷磁石を構成
する固々の粒子間にまでは及ばない為限界がある。
MoS 2 , C, B with the aim of improving non-uniform plastic flow due to friction between particles or ribbons during warm working
There has been proposed a technique for facilitating plastic flow by adding a fine powder such as N to obtain a hot-worked magnet without cracks. According to this method, the friction between fine powders or thin strips added between the magnet powders or thin strips is relieved, thereby significantly suppressing cracks and improving the degree of orientation. However, the effect of the present invention is limited because it does not extend to the solid particles constituting the super-quenched magnet.

本発明は、上記問題点を解消し、塑性加工が容易でか
つ磁気的な結晶配向が均一で磁気特性に優れたR−T−
B−C系の温間加工磁石を提供することを目的とする。
The present invention solves the above-mentioned problems, and provides an R-T- which is easy in plastic working, has a uniform magnetic crystal orientation, and has excellent magnetic properties.
An object of the present invention is to provide a BC-based warm-worked magnet.

〔課題を解決する為の手段〕[Means for solving the problem]

本発明は、遷移金属T(TはFeまたはFeの一部をCoで
置換したもの)、希土類元素R(Rはイットリウムを希
土類元素の1種または2種以上)、硼素B、炭素Cを含
有するR−T−B−C系合金からなる温間加工磁石であ
って、磁気異方性を有し、平均結晶粒径が0.02〜1μm
であるとともに、R28〜40重量%、B0.5〜1.5重量%、C
0.8〜2重量%、残部Tから実質的になる温間加工磁石
である。R−T−B−C系合金の磁気的な性質について
は例えば、J.Appl.Phys.61(8)P3574においてFe77Nd9
Dy6B0.9C7.2なる組成により8KOeの保磁力が得られるこ
とが報告されている。また、J.Mag.and Mag.Mat.72(19
88)P167では、R2Fe14C化合物における基本的な磁気的
な性質が報告されている。しかしながら、これ等の合金
系に対する塑性加工条件に関する研究はなされていな
い。本発明は、超急冷法により得られる非晶質又は微細
な結晶質あるいはそれ等の混合物を温間で塑性加工して
得られるR−T−B−C系異方性永久磁石に関し、温間
加工時の自己潤滑性に優れ、高いエネルギー積を有する
永久磁石合金を提供することを目的としている。従来、
R−T−B系永久磁石合金を温間で塑性変形する場合、
外部より印加された圧力の一部は、ワークと工具間の摩
擦、薄帯間あるいは粒子間の摩擦により消費される為、
ワーク内に均一な塑性歪を与えることが困難であり、そ
の結果得られる、異方性永久磁石の結晶配向度すなわち
異方性化度は微粉末を磁場中で配向させ焼結して得られ
る焼結磁石と比較し劣るという問題点があった。
The present invention includes a transition metal T (T is Fe or a part of Fe substituted with Co), a rare earth element R (R is one or more of yttrium as a rare earth element), boron B, and carbon C. A warm-worked magnet made of an RTBC-based alloy having magnetic anisotropy and an average crystal grain size of 0.02 to 1 μm.
And R28-40% by weight, B0.5-1.5% by weight, C
A warm-worked magnet consisting essentially of 0.8 to 2% by weight, with the balance being T. Regarding the magnetic properties of the RTBC-based alloy, for example, in J. Appl. Phys. 61 (8) P3574, Fe 77 Nd 9
It has been reported that a composition of Dy 6 B 0.9 C 7.2 can provide a coercive force of 8 KOe. Also, J.Mag.and Mag.Mat.72 (19
88) P167 reports basic magnetic properties of R 2 Fe 14 C compounds. However, no study has been made on the plastic working conditions for these alloy systems. The present invention relates to an RTB-C-based anisotropic permanent magnet obtained by plastically working an amorphous or fine crystalline material or a mixture thereof obtained by a rapid quenching method, It is an object of the present invention to provide a permanent magnet alloy having excellent self-lubricating property during processing and having a high energy product. Conventionally,
When the RTB-based permanent magnet alloy is plastically deformed in a warm state,
Some of the externally applied pressure is consumed by friction between the workpiece and the tool, between the ribbons or between the particles,
It is difficult to give uniform plastic strain in the work, and as a result, the degree of crystal orientation of the anisotropic permanent magnet, that is, the degree of anisotropy, is obtained by orienting and sintering fine powder in a magnetic field. There is a problem that it is inferior to a sintered magnet.

このような問題点を克服する為、外部潤滑材、あるい
は無機有機の内部潤滑材を塗布又は混合し、異方性化度
を改善する提案がなされているものの、これ等の手法
は、R−T−B系合金固有の機械的性質を改善するもの
ではなく、その効果には限界があった。また、これ等の
手法によると、塑性変形に関する個々の粒子ひとつ、ひ
とつにまでは及ばないという問題点もある。本発明者等
は、このような従来技術の問題点を解決する為にR−T
−B系合金に適量のCを含有させることによって温間で
の機械的性質の改質を試み本発明に至った。
In order to overcome such problems, it has been proposed to apply or mix an external lubricant or an inorganic / organic internal lubricant to improve the degree of anisotropy. It does not improve the mechanical properties inherent to the TB alloy, and its effect is limited. Further, according to these methods, there is also a problem that individual particles relating to plastic deformation do not reach even one particle. The present inventors have proposed RT-T to solve such a problem of the prior art.
An attempt was made to improve the mechanical properties in the warm state by adding an appropriate amount of C to the -B-based alloy, and the present invention was achieved.

すなわち、R−T−B系合金に微量なCを添加するこ
とにより、温間での塑性加工性が改善され結晶配向度が
大巾に改善されることを見出した。ここで微量添加され
たCは、合金中のNd及び若干のFe成分と結合し、いわゆ
るNdリッチ相を形成する。ここで形成されたNdリッチ相
は、本系合金で永久磁石特性を現出するNd2Fe14B相の粒
子を取り巻くように存在し、温間加工時の自己潤滑剤と
して働くと伴に、外部より印加された圧力を有効に塑性
仕事に変換する媒体となる。本発明では、C含有量を0.
8〜2.0重量%とすることによって、Ndリッチ相の粘性が
低く、圧力媒体としての役割りが不十分であり、高い異
方性を得ることが出来ないという従来の問題を解決し
た。また、Cが2.0重量%を越えると、CがNd2Fe14B相
中のBと置換する為、余剰のBにより機械的に脆性なB
リッチ相が形成され、材料自体の変形抵抗が著しく高く
なり、十分な塑性変形を付与することが困難となると伴
に保磁力も低下するため好ましくない。本発明において
平均結晶粒径が0.02μm未満の微結晶を工業的に安定し
て得ることは、現時点の技術においては、極めて困難で
あり、1.0μmを越える場合には、保磁力が低下して好
ましくない。ここで、平均結晶粒径の測定は、顕微鏡写
真における切断法による。すなわち、写真に任意に線分
を引いたとき線分を切断する結晶粒の数で線分長さを除
した値を結晶粒径とし、少なくとも20個以上について求
めた平均値を平均粒径とする。ここで注意すべきこと
は、温間加工磁石においては結晶のC軸に垂直な面に偏
平な形状をしており、C軸を含む面で切断するときは平
板の厚み方向となる。従って、前述の平均結晶粒径はC
軸に垂直な面上のものをいう。また、本発明に係る合金
は遷移金属を主成分としイットリウムを含む希土類元素
R及び硼素、炭素を含有する。本発明で遷移金属とは、
鉄を主体とし、一部Co,Ni,Ru,Rh,Pd,Os,Ir,Ptの狭義の
遷移金属のみならず原子番号21〜29、39〜47、72〜79、
89以上の元素を全て含む広義の遷移金属をいう。
That is, it has been found that by adding a small amount of C to the RTB-based alloy, the plastic workability in a warm state is improved and the degree of crystal orientation is greatly improved. Here, a small amount of C is combined with Nd and some Fe components in the alloy to form a so-called Nd-rich phase. The Nd-rich phase formed here exists so as to surround the particles of the Nd 2 Fe 14 B phase that exhibits permanent magnet properties in this alloy, and acts as a self-lubricating agent during warm working, It is a medium that effectively converts externally applied pressure into plastic work. In the present invention, the C content is set to 0.
By setting the content to 8 to 2.0% by weight, the conventional problem that the viscosity of the Nd-rich phase is low, the role as a pressure medium is insufficient, and high anisotropy cannot be obtained. If C exceeds 2.0% by weight, C replaces B in the Nd 2 Fe 14 B phase, so that excess B causes mechanically brittle B.
Since a rich phase is formed, the deformation resistance of the material itself becomes extremely high, and it becomes difficult to impart sufficient plastic deformation, and the coercive force also decreases, which is not preferable. In the present invention, it is extremely difficult to obtain microcrystals having an average crystal grain size of less than 0.02 μm in an industrially stable manner with the current technology, and if it exceeds 1.0 μm, the coercive force decreases. Not preferred. Here, the average crystal grain size is measured by a cutting method in a micrograph. That is, the value obtained by dividing the line segment length by the number of crystal grains that cut the line segment when the line segment is arbitrarily drawn in the photograph is defined as the crystal grain size, and the average value obtained for at least 20 or more is the average particle size. I do. It should be noted here that the warm-worked magnet has a flat shape in a plane perpendicular to the C-axis of the crystal, and when cut along a plane including the C-axis, it is in the thickness direction of the flat plate. Therefore, the above-mentioned average grain size is C
On a plane perpendicular to the axis. Further, the alloy according to the present invention contains a transition metal as a main component, a rare earth element R containing yttrium, boron, and carbon. In the present invention, the transition metal is
Mainly iron, not only transition metals in the narrow sense of Co, Ni, Ru, Rh, Pd, Os, Ir, Pt but also atomic numbers 21 to 29, 39 to 47, 72 to 79,
A transition metal in a broad sense containing all 89 or more elements.

またGaの添加は本発明者等が既に発表したように温間
加工磁石において保磁力を顕著に向上する効果があるた
め、必要に応じて添加すると効果的である。更に、公知
の添加元素を目的に応じて添加することも本発明の効果
を逸脱するものではない。希土類元素RもNd,Prを主体
とし公知の通り、コスト低減の目的にはCe、ジジム等に
よる一部置換、温度特性を改善する目的には重希土類成
分等による一部置換ができることは言うまでもない。本
発明に係るRの組成範囲は28〜40重量%であり、Rの含
有量が28重量%未満の場合はFeリッチなNd2Fe17相が形
成され保磁力を著しく低下させる為、高いエネルギー積
は得られない。またRが40重量%を越えると合金中のNd
リッチ相の割合が多くなり過ぎて、微量なCによる効果
を十分に発揮することが出来ない。遷移金属Tの含有量
は60〜70重量%が好ましく、60重量%未満では、飽和磁
気モーメントが低下し、70重量%を越えると保磁力が低
下する。Bの含有量は、0.5重量%未満では、Nd2Fe14B
相の形成が十分でなく、1.5重量%を越えると、Bリッ
チ相が多量に形成される為、塑性加工性を著しく阻害す
る為好ましくない。本発明に係るX線回折によって求め
られる結晶配向度の指標である、角度分散値は以下のよ
うに定義される。まず、等方性の試料においてディフラ
クトメータ法で各回折面のX線回折強度を測定し、次い
で異方性化した温間加工磁石から切り出した試料の各回
折面のX線回折強度を測定し、その強度を等方性試料の
各回折強度で規格化する。次いで規格化した値すなわち
相対強度を各回折面がC面となる角度に対してプロット
し、得られた点群を、C面を中心とするガウス分布で近
似しその分散を求める。この分散の値が結晶配向性の指
標となる。
Further, since the addition of Ga has the effect of significantly improving the coercive force in a warm-worked magnet as already announced by the present inventors, it is effective to add Ga as needed. Furthermore, addition of a known additive element according to the purpose does not depart from the effects of the present invention. It is needless to say that the rare earth element R is also mainly composed of Nd and Pr, and as is well known, can be partially substituted with Ce, dymium or the like for the purpose of cost reduction, and partially substituted with a heavy rare earth component or the like for the purpose of improving temperature characteristics. . The composition range of R according to the present invention is 28 to 40% by weight. When the content of R is less than 28% by weight, a Fe-rich Nd 2 Fe 17 phase is formed and the coercive force is remarkably reduced. No product is obtained. If R exceeds 40% by weight, Nd
Since the ratio of the rich phase is too large, the effect of a small amount of C cannot be sufficiently exerted. The content of the transition metal T is preferably from 60 to 70% by weight. If the content is less than 60% by weight, the saturation magnetic moment decreases, and if it exceeds 70% by weight, the coercive force decreases. If the content of B is less than 0.5% by weight, Nd 2 Fe 14 B
If the formation of the phase is not sufficient and exceeds 1.5% by weight, a large amount of the B-rich phase is formed, which unfavorably impairs plastic workability. The angle dispersion value, which is an index of the degree of crystal orientation determined by X-ray diffraction according to the present invention, is defined as follows. First, the X-ray diffraction intensity of each diffraction surface of an isotropic sample is measured by a diffractometer method, and then the X-ray diffraction intensity of each diffraction surface of a sample cut from a warmed anisotropic magnet is measured. Then, the intensity is normalized by each diffraction intensity of the isotropic sample. Next, the normalized value, that is, the relative intensity, is plotted with respect to the angle at which each diffraction plane is the C plane, and the obtained point group is approximated by a Gaussian distribution centered on the C plane to obtain its variance. The value of the dispersion serves as an index of the crystal orientation.

本発明の温間加工磁石は結晶のC軸からの角度分散値
が30度未満という顕著は配向度の向上を実現したもので
ある。従来の温間加工磁石においては磁石表面での角度
分散値が30度以上となるため磁気配向が揃わず磁気特性
が不十分であった。
In the warm-worked magnet of the present invention, the remarkable fact that the angular dispersion value of the crystal from the C-axis is less than 30 degrees is an improvement in the degree of orientation. In conventional warm-worked magnets, the magnetic dispersion was not uniform because the angular dispersion value on the magnet surface was 30 degrees or more, and the magnetic properties were insufficient.

本発明の温間加工磁石は温間での塑性加工によって得
られその手段として押出し、スエージング、圧延、据込
み加工等の塑性加工が用いられる。特に据込み加工が異
方性付与の効率が良い。
The warm-worked magnet of the present invention is obtained by warm plastic working, and as the means, plastic working such as extrusion, swaging, rolling, and upsetting is used. In particular, upsetting is effective in providing anisotropy.

本発明に係る炭素を添加剤として添加した温間加工磁
石の特徴は、変形が均一であって、その結果断面内にお
ける歪分布が均一であることである。
A feature of the warm-worked magnet according to the present invention to which carbon is added as an additive is that the deformation is uniform, and as a result, the strain distribution in the cross section is uniform.

〔実施例〕〔Example〕

(参考例1) 参考例1として重量%でNd29,Fe69.5,B1,C0.5なる合
金と、比較例として重量%でNd29,Fe70,B1なる合金を、
アーク溶解にて溶製しボタンインゴットとした。得られ
たボタンインゴットをAr中で高周波溶解し、周速が30m/
sで回転する単ロール上に射出し、約30μmの厚さを持
った不定形の薄片を作製した。次いで、フレーク状の薄
片を500μm以下に粉砕し粉末状とし成形圧3トン/cm2
で磁場を印加せずに冷間で成形し密度が5.7g/cc、で直
径28mm、高さ47mmの圧粉体を作製した。
(Reference Example 1) An alloy consisting of Nd29, Fe69.5, B1, and C0.5 in weight% as a reference example, and an alloy consisting of Nd29, Fe70, and B1 in weight% as a comparative example,
A button ingot was produced by arc melting. The obtained button ingot is melted by high frequency in Ar, and the peripheral speed is 30m /
Injection was performed on a single roll rotating at a speed of s to produce an amorphous thin piece having a thickness of about 30 μm. Next, the flake-like flakes are pulverized to 500 μm or less to form a powder, and a molding pressure of 3 tons / cm 2
The compact was cold molded without applying a magnetic field to produce a green compact having a density of 5.7 g / cc, a diameter of 28 mm and a height of 47 mm.

得られた圧粉体を700℃で1トン/cm2でホットプレス
し、密度が約7.5g/ccの圧密体とし、この圧密体を引き
続き700℃で圧縮比(据込み前の高さを据込み後の高さ
で除した値)が4となるように据込み加工によって温間
加工して磁気異方性を付与した。
The obtained green compact is hot-pressed at 700 ° C. at 1 ton / cm 2 to obtain a compact having a density of about 7.5 g / cc, and the compact is continuously compressed at 700 ° C. (having a height before upsetting). The magnetic anisotropy was imparted by warm working by upsetting so that the value (value divided by the height after upsetting) was 4.

第1図に参考例1および比較例における据込み加工時
の真応力−真歪線図を示す。Cを0.5重量%含有した参
考例1のものでは真応力は低い歪量にて立ち上るが、以
後の歪量では真応力はほぼ一定で変形が進行する。
FIG. 1 shows a true stress-true strain diagram during upsetting in Reference Example 1 and Comparative Example. In the case of Reference Example 1 containing 0.5% by weight of C, the true stress rises at a low strain amount, but with the subsequent strain amount, the true stress is almost constant and the deformation proceeds.

一方、Cを含まない比較例においては、初期歪領域で
の真応力の立ち上りは低く、高歪域で真応力が急激に立
ち上る。
On the other hand, in the comparative example containing no C, the rise of the true stress in the initial strain region is low, and the true stress rises sharply in the high strain region.

又、第1表に据込み加工後の材料から切り出した試料
の磁気特性とX線回折により求めた角度分散値を示す。
第1表より、Cを0.5重量%含有した参考例1のものの
磁気特性、結晶配向度が改善されている。
Table 1 shows the magnetic properties of samples cut out from the material after the upsetting and the angular dispersion values obtained by X-ray diffraction.
Table 1 shows that the magnetic properties and crystal orientation of Reference Example 1 containing 0.5% by weight of C are improved.

(参考例2) 重量%でNd30.5,Fe67.9,B0.9,Ga0.5,C0.2なる合金を
アーク溶解で溶製し、以後参考例1と同様に据込み加工
し、磁気特性と結晶配向度を測定した。得られた磁気特
性は、Br12.8KG,Hci17.5KOe,(BH)m40.2MGOeであり、
X線回折により求めた角度分散値は17度となり、C添加
による顕著な効果が認められた。
(Reference Example 2) An alloy consisting of Nd30.5, Fe67.9, B0.9, Ga0.5, and C0.2 in weight% was melted by arc melting, and then upset as in Reference Example 1; The properties and the degree of crystal orientation were measured. The obtained magnetic properties are Br12.8KG, Hci17.5KOe, (BH) m40.2MGOe,
The angular dispersion value obtained by X-ray diffraction was 17 degrees, and a remarkable effect by adding C was recognized.

(実施例1) 参考例1と同様の方法により、重量%でNd30.5−Feba
l−B0.9−Ga0.5−Cxからなる合金を温間据込み加工によ
り異方性化し、磁気特性のC量に対する依存性を調べ
た。結果を第2表に示す。第2表において、C量が1.0
重量%において(BH)mの最大値と角度分散値の最小値
が得られた。また、C量が1.0,2.0重量%において角度
分散値が30度未満となっており、35MGOe以上の良好な磁
気特性が得られた。
(Example 1) In the same manner as in Reference Example 1, Nd30.5-Feba
The alloy consisting of l-B0.9-Ga0.5-Cx was anisotropic by warm upsetting, and the dependence of magnetic properties on the C content was investigated. The results are shown in Table 2. In Table 2, the amount of C is 1.0
The maximum value of (BH) m and the minimum value of the angular dispersion value were obtained in weight%. Further, when the C content was 1.0 and 2.0% by weight, the angular dispersion value was less than 30 degrees, and good magnetic properties of 35 MGOe or more were obtained.

(参考例3) C量を一定とし、Nd,Fe,B量を種々代えた異方性据込
み磁石を、参考例1と同様の方法で作製し、磁気特性と
角度分散値による結晶配向性を評価した。結果を第3、
4表に示す。第3,4表より、Cを0.2重量%添加した場合
に高い(BH)mと小さな角度分散値が得られた。
(Reference Example 3) Anisotropic upset magnets in which the amounts of Nd, Fe, and B were variously changed while the amount of C was kept constant were produced in the same manner as in Reference Example 1, and the magnetic properties and the crystal orientation based on the angular dispersion value were used. Was evaluated. The third result
The results are shown in Table 4. From Tables 3 and 4, high (BH) m and small angular dispersion values were obtained when 0.2% by weight of C was added.

(発明の効果) (The invention's effect)

【図面の簡単な説明】[Brief description of the drawings]

第1図は参考例1および比較例に係る温間加工磁石と比
較例の場合の据込み加工時の真応力・真歪線図を示す。
FIG. 1 shows a true stress / true strain diagram at the time of upsetting for the warm-worked magnets according to the reference example 1 and the comparative example and the comparative example.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01F 1/04 C22C 38/00──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) H01F 1/04 C22C 38/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】遷移金属T(TはFeまたはFeの一部をCoで
置換したもの)、希土類元素R(Rはイットリウムを含
む希土類元素の1種または2種以上)、硼素B、炭素C
を含有するR−T−B−C系合金からなる温間加工磁石
であって、 磁気異方性を有し、平均結晶粒径が0.02〜1μmである
とともに、R28〜40重量%、B0.5〜1.5重量%、C0.8〜2
重量%、残部Tから実質的になることを特徴とする温間
加工磁石。
1. A transition metal T (T is Fe or a part of Fe substituted with Co), a rare earth element R (R is one or more of rare earth elements including yttrium), boron B, carbon C
A warm-worked magnet comprising an RTBC-based alloy containing: having magnetic anisotropy, having an average crystal grain size of 0.02 to 1 μm, R28 to 40% by weight, and B0. 5 to 1.5% by weight, C0.8 to 2
A warm-worked magnet characterized in that the magnet consists essentially of weight% and the balance T.
【請求項2】X線回折により測定した結晶配向度のC軸
からの角度分散値が30度未満である請求項1に記載の温
間加工磁石。
2. The warm-worked magnet according to claim 1, wherein the degree of angular dispersion from the C-axis of the degree of crystal orientation measured by X-ray diffraction is less than 30 degrees.
JP1106509A 1989-04-26 1989-04-26 Warm magnet Expired - Lifetime JP2823076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1106509A JP2823076B2 (en) 1989-04-26 1989-04-26 Warm magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1106509A JP2823076B2 (en) 1989-04-26 1989-04-26 Warm magnet

Publications (2)

Publication Number Publication Date
JPH02285604A JPH02285604A (en) 1990-11-22
JP2823076B2 true JP2823076B2 (en) 1998-11-11

Family

ID=14435398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1106509A Expired - Lifetime JP2823076B2 (en) 1989-04-26 1989-04-26 Warm magnet

Country Status (1)

Country Link
JP (1) JP2823076B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010263172A (en) * 2008-07-04 2010-11-18 Daido Steel Co Ltd Rare earth magnet and manufacturing method of the same
CN110942878B (en) * 2019-12-24 2021-03-26 厦门钨业股份有限公司 R-T-B series permanent magnetic material and preparation method and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2731150B2 (en) * 1986-10-14 1998-03-25 日立金属株式会社 Magnetic anisotropic bonded magnet, magnetic anisotropic magnetic powder used therefor, method for producing the same, and magnetic anisotropic powder magnet

Also Published As

Publication number Publication date
JPH02285604A (en) 1990-11-22

Similar Documents

Publication Publication Date Title
US5085715A (en) Magnetically anisotropic bond magnet, magnetic powder for the magnet and manufacturing method of the powder
US9551052B2 (en) Rare earth sintered magnet and method for production thereof
US20110233455A1 (en) Sintered nd-fe-b permanent magnet with high coercivity for high temperature applications
JP2596835B2 (en) Rare earth anisotropic powder and rare earth anisotropic magnet
JP3084748B2 (en) Manufacturing method of rare earth permanent magnet
WO1988006797A1 (en) Rare earth element-iron base permanent magnet and process for its production
JPH01219143A (en) Sintered permanent magnet material and its production
US5536334A (en) Permanent magnet and a manufacturing method thereof
JPH0551656B2 (en)
JPH0320046B2 (en)
JP3135120B2 (en) Manufacturing method of warm-worked magnet
JP2823076B2 (en) Warm magnet
JPH01100242A (en) Permanent magnetic material
KR900006533B1 (en) Anisotropic magnetic materials and magnets made with it and making method for it
JPS63178505A (en) Anisotropic r-fe-b-m system permanent magnet
US5211766A (en) Anisotropic neodymium-iron-boron permanent magnets formed at reduced hot working temperatures
JP3037917B2 (en) Radial anisotropic bonded magnet
JPH045739B2 (en)
JP2002285276A (en) R-t-b-c based sintered magnet and production method therefor
JP3092673B2 (en) Rare earth-Fe-B based anisotropic magnet
JP7409285B2 (en) Rare earth magnet and its manufacturing method
JPH045738B2 (en)
JPH01274401A (en) Permanent magnet
JP2581179B2 (en) Method for producing rare earth-B-Fe sintered magnet with excellent corrosion resistance
JPH044383B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080904

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080904

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090904

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090904

Year of fee payment: 11