JP2819141B2 - Constant speed exhaust device and control method of constant speed exhaust device - Google Patents

Constant speed exhaust device and control method of constant speed exhaust device

Info

Publication number
JP2819141B2
JP2819141B2 JP1031111A JP3111189A JP2819141B2 JP 2819141 B2 JP2819141 B2 JP 2819141B2 JP 1031111 A JP1031111 A JP 1031111A JP 3111189 A JP3111189 A JP 3111189A JP 2819141 B2 JP2819141 B2 JP 2819141B2
Authority
JP
Japan
Prior art keywords
piezoelectric element
exhaust
valve
speed
operating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1031111A
Other languages
Japanese (ja)
Other versions
JPH02211121A (en
Inventor
博之 横井
健司 貫井
洪林 咸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&D Co Ltd
Original Assignee
A&D Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&D Co Ltd filed Critical A&D Co Ltd
Priority to JP1031111A priority Critical patent/JP2819141B2/en
Publication of JPH02211121A publication Critical patent/JPH02211121A/en
Application granted granted Critical
Publication of JP2819141B2 publication Critical patent/JP2819141B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は特定の空間内に圧送した気体を定速で排出す
る装置及び同装置に係わる方法に関し、特に自動血圧計
に好適に利用できる定速排気装置および同装置の制御方
法に関する。
Description: BACKGROUND OF THE INVENTION The present invention relates to a device for discharging gas pumped into a specific space at a constant speed and a method related to the device, and more particularly to a device suitable for use in an automatic sphygmomanometer. The present invention relates to a quick exhaust device and a control method for the device.

〔従来の技術および発明が解決しようとする課題〕[Problems to be solved by conventional technology and invention]

自動血圧計では腕帯に対する空気の圧送及び、血圧測
定用の定速排気共に自動的に行われる。
The automatic sphygmomanometer automatically performs both the air supply to the arm band and the constant-speed exhaust for measuring the blood pressure.

まず定速排気機構の一つとして、ゴム円筒に対してス
リットを形成し、加圧された腕帯側の圧力とゴム円筒の
弾性とをバランスさせることにより定速排気を行い、血
圧測定が終了した後は電磁弁を用いて腕帯内の空気を急
速に放出する機構がある。
First, as one of constant-speed exhaust mechanisms, a slit is formed in the rubber cylinder, and constant-pressure exhaust is performed by balancing the pressure of the pressurized arm band and the elasticity of the rubber cylinder, and the blood pressure measurement is completed. After that, there is a mechanism to rapidly release the air in the arm band using an electromagnetic valve.

第12図はこの機構の構成概念を示す。 FIG. 12 shows the configuration of this mechanism.

血圧被測定者の腕に腕帯53を装着したならばポンプ駆
動回路51は中央処理装置50の指令によりポンプ52を駆動
させ、腕帯53に対して空気を圧送する。圧力センサ54は
腕帯53内の圧力をモニターし、圧力信号を中央処理装置
50に送っている。腕帯内圧力が予め設定した値になった
ならば中央処理装置50は定速排気弁55を作動させ、腕帯
内の空気を定速で排気し、この間に血圧の測定を行う。
次に血圧測定が終了したならば電磁弁駆動回路56を介し
て急速排気の電磁弁57を作動させ、腕帯53内に残留する
空気を急速に排出する。しかしこの定速排気機構では次
のような問題がある。
When the arm band 53 is attached to the arm of the blood pressure measurement subject, the pump drive circuit 51 drives the pump 52 in accordance with a command from the central processing unit 50 to pump air to the arm band 53. The pressure sensor 54 monitors the pressure in the cuff 53 and centrally processes the pressure signal.
Sent to 50. When the pressure in the arm band becomes a preset value, the central processing unit 50 operates the constant-speed exhaust valve 55 to exhaust the air in the arm band at a constant speed, and measures the blood pressure during this time.
Next, when the blood pressure measurement is completed, the electromagnetic valve 57 for quick exhaust is operated via the electromagnetic valve drive circuit 56, and the air remaining in the arm band 53 is rapidly discharged. However, this constant speed exhaust mechanism has the following problems.

即ち被測定者の腕の太さの違いによって、より具体的
には腕の太さき違いに基づく腕帯容量の相違によって定
速排気時の排気速度が相違してしまい、これにより血圧
測定精度に悪影響を与えてしまうという問題がある。
That is, due to the difference in the thickness of the arm of the subject, more specifically, the pumping speed at the time of constant-speed pumping differs due to the difference in the arm band capacity based on the difference in the arm thickness, thereby reducing the blood pressure measurement accuracy. There is a problem of having an adverse effect.

第13図はこの排気速度の相違を示し、同図から明らか
なように、ポンプをOFFして定速排気を行う際、腕が細
い場合には排気速度が高くなり、太い場合にその速度が
低下する。第14図は腕帯容量を小容量(300cc)と大容
量(600cc)に分けた場合の排気速度の相違を実測した
ものであるが、容量の大小により排気速度が大幅に相違
することが確認できた。またこのような問題の外に、機
構の構成上、定速排気用の機構とは別個に急速排気用に
電磁弁を設けているため、装置全体が複雑かつ高価とな
っている。
Fig. 13 shows the difference in the pumping speed.As is clear from the figure, when the pump is turned off and constant-speed pumping is performed, the pumping speed increases when the arm is thin and increases when the arm is thick. descend. Fig. 14 shows the actual measurement of the difference in pumping speed when the cuff capacity is divided into a small capacity (300cc) and a large capacity (600cc). It was confirmed that the pumping speed greatly differs depending on the size of the capacity. did it. In addition to such a problem, since the solenoid valve is provided for rapid exhaust separately from the constant-speed exhaust mechanism due to the structure of the mechanism, the entire apparatus is complicated and expensive.

これに対して上述の機構の問題点を改善するものとし
て、排気装置は電磁弁のみとし、この電磁弁により定速
・急速の両方の排気を行うようにした機構が提案されて
いる。
On the other hand, in order to improve the above-mentioned problem of the mechanism, there has been proposed a mechanism in which only an electromagnetic valve is used as the exhaust device, and the electromagnetic valve performs both constant-speed and rapid exhaust.

第15図はこの定速・急速排気共用方式の機構を示す。
この図において、中央処理装置50の指令によりポンプ52
が作動すると同時に定排/急排共用型の電磁弁61は閉と
なり、ポンプ52から圧送された空気は容量タンク58を経
て腕帯53に供給される。腕帯内圧力が所定の値となった
ならばポンプ52はOFFとなり、以後定速排気モードとな
る。この場合電磁弁作動の特性上、同電磁弁61のON・OF
F作動により段階的な排気59を行うことにより定速排気
を実施せざるを得ない。この段階的排気59(第16図参
照)を行う行程において、電磁弁を開として空気を抜い
た後同弁を閉とする時に空気圧の不安定状態(空気圧リ
ップル)が生じ、この現象がコロトコフ音、オシロメト
リック法の何れの方法によるとを問わず、血圧値判定精
度に悪影響を与えていた。このため圧力センサ54側に対
する空気圧リップルの伝達量を少なくするよう小径部R
を形成したり、さらには前記空圧リップルを可能な限り
吸収するための容量タンク58を配置したりせねばならな
らず、これらメカニカルフィルターを設けるため結局こ
の構成でも機構の単純化は事実上達成できていない。ま
た更に各種機構部の制御および空気圧リップルのソフト
ウエア的除去処理等のため、機構制御を含めたソフトウ
ェア部分の負担が大きくなるという問題もある。
FIG. 15 shows the mechanism of the constant speed / rapid exhaust system.
In this figure, the pump 52 is controlled by a command from the central processing unit 50.
At the same time as the operation, the constant discharge / rapid discharge shared electromagnetic valve 61 is closed, and the air pumped from the pump 52 is supplied to the arm band 53 via the capacity tank 58. When the pressure in the cuff reaches a predetermined value, the pump 52 is turned off, and thereafter, enters the constant-speed exhaust mode. In this case, due to the characteristics of the solenoid valve operation, ON / OF of the solenoid valve 61
By performing the stepwise exhaust 59 by the F operation, constant-speed exhaust must be performed. In the step of performing the stepwise exhaust 59 (see FIG. 16), when the solenoid valve is opened to evacuate the air and then closes the valve, an unstable state of the air pressure (air pressure ripple) occurs, and this phenomenon is caused by the Korotkoff noise. And the oscillometric method had an adverse effect on the blood pressure value determination accuracy. For this reason, the small-diameter portion R
In addition, it is necessary to arrange a capacity tank 58 for absorbing the pneumatic ripple as much as possible. Not done. In addition, there is a problem that the load on the software including the mechanism control is increased due to the control of various mechanisms and the software removal processing of the pneumatic ripple.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は以上に示した従来構成の問題点に鑑み構成し
たものである。
The present invention has been made in view of the problems of the conventional structure described above.

即ち、本発明は後述の従来構成の如く排気に用いる弁
機構は一種類とし、この弁機構により定速排気、急速排
気の何れも行えるよう構成し、電磁弁の場合と相違して
定速排気を非段階的に滑らかに行え、さらに排気速度を
自由に調節できるようにすることにより腕帯容量の如何
に係わりなく正確な血圧値測定を可能とするように構成
する。
That is, the present invention employs one type of valve mechanism used for exhaust as in the conventional configuration described later, and is configured to perform both constant-speed exhaust and rapid exhaust by this valve mechanism. Is performed steplessly and smoothly, and the exhaust speed can be freely adjusted to enable accurate blood pressure measurement regardless of the armband capacity.

以上の技術目的を達成するため、弁機構の開閉機構と
して圧電素子等の一対の圧電素子を用い、かつ一対の圧
電セラミックの分極方向を従来型バイモルフとは逆に設
定することによりバイモルフの変形範囲を広げ、一つの
作動体で定速排気およびその排出量調整、急速排気およ
びその排気量調整等を自由に行えるよう構成する。
In order to achieve the above technical object, a pair of piezoelectric elements such as a piezoelectric element is used as an opening / closing mechanism of a valve mechanism, and the polarization direction of the pair of piezoelectric ceramics is set to be opposite to that of a conventional bimorph, so that the deformation range of the bimorph is changed. So that a single operating body can freely perform constant-speed exhaust and its discharge amount adjustment, rapid exhaust and its exhaust amount adjustment, and the like.

〔作用〕[Action]

弁駆動部であるバイモルフを構成する一対の圧電素子
の何れか一方に電圧を印加することによりバイモルフを
所定の方向に変形させ、もって弁開度を自由に調節す
る。腕帯側からの空気は弁開度に合わせて排出されるの
で、定速排気時、急速排気時を問わず排気速度は中央処
理装置の命令通りに行われ、正確な血圧値判定を達成す
る。
The bimorph is deformed in a predetermined direction by applying a voltage to one of the pair of piezoelectric elements constituting the bimorph serving as the valve driving unit, and the valve opening can be freely adjusted. Since the air from the arm band side is discharged according to the valve opening, the pumping speed is performed as instructed by the central processing unit regardless of the constant speed exhaustion or the rapid exhaustion, and achieves accurate blood pressure value determination. .

〔実施例〕〔Example〕

以下本発明の実施例を説明する。 Hereinafter, embodiments of the present invention will be described.

先ず第1図および第2図を用いて、本発明の中心的機
構である弁開閉装置を構成するバイモルフ(以下「圧電
素子作動部材」または単に「作動部材」と称する)につ
いて説明する。
First, a bimorph (hereinafter, referred to as a "piezoelectric element operating member" or simply as an "operating member") constituting a valve opening / closing device which is a central mechanism of the present invention will be described with reference to FIGS.

第1図は一般型バイモルフの、第2図は発明の弁駆動
装置である圧電素子作動部材の作動状態を各々示す。
FIG. 1 shows an operating state of a general-purpose bimorph, and FIG. 2 shows an operating state of a piezoelectric element operating member which is a valve driving device of the invention.

先ず第1図により従来構成およびその作動状態を示
す。
First, FIG. 1 shows a conventional configuration and an operation state thereof.

1′および2′は圧電セラミック等の圧電素子(以下
「圧電セラミック」とする)、3′はこれら圧電セラミ
ック1′と2′の間に配置した金属板である。この部分
の一方の圧電セラミック1′に電圧を印加するとこの圧
電セラミック1′は伸び、部材全体としてはF1方向に変
位する。また圧電セラミック2′は前記圧電セラミック
1′と分極方向をあわせて張り合わせてある。従って圧
電セラミック1′に電圧を印加すると部材全体はF1方向
に変位し、圧電セラミック2′にも電圧を印加するとこ
の圧電セラミック2′は収縮するため部材全体としては
その変形が更に大きくなるという作動特性を有してい
る。
Reference numerals 1 'and 2' denote piezoelectric elements such as piezoelectric ceramics (hereinafter referred to as "piezoelectric ceramics") and 3 'denotes a metal plate disposed between the piezoelectric ceramics 1' and 2 '. When a voltage is applied to one of the piezoelectric ceramics 1 'in this portion, the piezoelectric ceramic 1' expands, and the whole member is displaced in the F1 direction. The piezoelectric ceramic 2 'is bonded to the piezoelectric ceramic 1' in the same polarization direction. Therefore, when a voltage is applied to the piezoelectric ceramic 1 ', the entire member is displaced in the F1 direction, and when a voltage is also applied to the piezoelectric ceramic 2', the piezoelectric ceramic 2 'contracts, so that the deformation of the entire member further increases. Has characteristics.

第2図の圧電素子作動部材は、圧電セラミック1およ
び2の間に金属板3を介在配置して一体的に形成してあ
り、その構成自体は第1図のものと同じである。但し圧
電セラミック1および2ともに、電圧を印加すると伸び
るよう従来構成とは分極方向が逆になるように各々配置
してある。このため圧電セラミック1に対して電圧を印
加するとこの圧電セラミック1が伸びるため圧電素子作
動部材全体ではF1方向に変位する。反対に圧電セラミッ
ク2に対して電圧を印加するとこの圧電セラミック2が
伸びて圧電素子作動部材全体ではF2方向に変位すること
になる。また何れの方向に対する変位でも印加する電圧
を調整することによりその変位量を調整することが可能
である。
The piezoelectric element operating member of FIG. 2 is integrally formed with a metal plate 3 interposed between piezoelectric ceramics 1 and 2, and the structure itself is the same as that of FIG. However, both the piezoelectric ceramics 1 and 2 are arranged so that the polarization directions are opposite to those of the conventional configuration so that the piezoelectric ceramics 1 and 2 expand when a voltage is applied. Therefore, when a voltage is applied to the piezoelectric ceramic 1, the piezoelectric ceramic 1 expands, and the entire piezoelectric element operating member is displaced in the F1 direction. Conversely, when a voltage is applied to the piezoelectric ceramic 2, the piezoelectric ceramic 2 expands, and the entire piezoelectric element operating member is displaced in the F2 direction. In addition, it is possible to adjust the amount of displacement by adjusting the applied voltage in any direction of displacement.

第3図および第4図は第2図に示す圧電素子作動部材
を弁作動部材として用いた排気装置の構成および作動状
態を示す。
FIGS. 3 and 4 show the configuration and operating state of an exhaust device using the piezoelectric element operating member shown in FIG. 2 as a valve operating member.

符号4は圧電素子作動部材であり、その構成は第2図
に示すように各々電圧を印加することにより伸びるよう
にそれぞれ分極方向を設定した圧電セラミック1及び2
と、その間に配置した金属板3とにより一体的に構成し
てある。この圧電素子作動部材4の一端は装置本体側に
固定され(図示せず)、電圧を印加してもその位置が変
化しないようになっている。一方他端にはゴム等の密閉
性の良好な材料から成る弁5が取り付けてある。6はこ
の弁5にその開口部が対向位置する排気ポートであり、
他端はゴム管等を介して腕帯53側に連通している。
Reference numeral 4 denotes a piezoelectric element operating member, which has piezoelectric ceramics 1 and 2 whose polarization directions are set so as to extend by applying a voltage as shown in FIG.
And the metal plate 3 disposed therebetween. One end of the piezoelectric element operating member 4 is fixed to the apparatus main body side (not shown) so that its position does not change even when a voltage is applied. On the other hand, a valve 5 made of a material having a good sealing property such as rubber is attached to the other end. Reference numeral 6 denotes an exhaust port whose opening is located opposite the valve 5,
The other end communicates with the arm band 53 via a rubber tube or the like.

第3図に示す圧電素子作動部材は定速排気中の状態を
示す、第4図は急速排気中の状態を示す。
The piezoelectric element operating member shown in FIG. 3 shows a state during constant-speed exhaust, and FIG. 4 shows a state during rapid exhaust.

先ず定速排気状態では圧電セラミック1側に電圧を印
加することにより圧電素子作動部材4を下側に変位さ
せ、その先端に位置する弁5を排気ポート6の開口部に
近接位置させ、腕帯53から流出して来る空気Aを予め設
定した速度で排出する。この場合圧電セラミック1に対
して印加する電圧を調整して圧電素子作動部材4の変位
量を調整し、これにより排気ポート6の開口と弁5との
間隙を調整し、以て排気速度を調整する。図中の符号W1
は定速排気通の弁の調整範囲を示し、その範囲は一般的
に数十μmである。
First, in the constant-speed exhaust state, the piezoelectric element operating member 4 is displaced downward by applying a voltage to the piezoelectric ceramic 1 side, and the valve 5 located at the tip thereof is positioned close to the opening of the exhaust port 6, and the arm band The air A flowing out of 53 is discharged at a preset speed. In this case, the displacement applied to the piezoelectric element operating member 4 is adjusted by adjusting the voltage applied to the piezoelectric ceramic 1, thereby adjusting the gap between the opening of the exhaust port 6 and the valve 5, thereby adjusting the exhaust speed. I do. Symbol W1 in the figure
Indicates the adjustment range of the constant-speed exhaust valve, and the range is generally several tens of μm.

第4図は急速排気中の圧電素子作動部材の変位状態を
示す。
FIG. 4 shows the displacement state of the piezoelectric element operating member during rapid exhaust.

血圧測定が終了し、腕帯53内に残留する空気を急速に
排気する場合には、圧電素子作動部材4の圧電セラミッ
ク2に対して電圧を印加し、圧電素子作動部材4全体を
上方に反り返らせて弁5と排気ポート開口との間隙を大
きく設定する。これにより腕帯53側から流出する空気を
急速に排出する。なおこの場合も必要があれば圧電セラ
ミック2に印加する電圧を調節することよりその間隙を
調整することは可能である。
When the blood pressure measurement is completed and the air remaining in the arm band 53 is rapidly exhausted, a voltage is applied to the piezoelectric ceramic 2 of the piezoelectric element operating member 4 to warp the entire piezoelectric element operating member 4 upward. By returning, the gap between the valve 5 and the exhaust port opening is set large. Thereby, the air flowing out from the arm band 53 side is rapidly discharged. In this case, if necessary, the gap can be adjusted by adjusting the voltage applied to the piezoelectric ceramic 2.

第5図は以上に示した圧電素子作動部材からなる排気
装置の作動を制御する機構を示す。
FIG. 5 shows a mechanism for controlling the operation of the exhaust device comprising the above-described piezoelectric element operating member.

先ず、血圧の被測定者が腕帯を装着し血圧測定可能な
状態となり、血圧計のスイッチ(図示せず)をONとした
ならば中央処理装置7は定速排気コントロール回路8に
対して指令信号を発し、圧電素子作動部材4の圧電セラ
ミック1に対して電圧を印加して圧電素子作動部材4を
変位さる。これにより弁5を排気ポート6の開口に圧接
し、排気ポート6を密閉する。続いてポンプ駆動回路9
を介してポンプ10を作動させて空気を腕帯53に圧送す
る。腕帯53の圧力は常時圧力センサ11で監視され、その
測定値は中央処理装置7に出力される。中央処理装置7
は腕落部53内の圧力が設定した値となったならばポンプ
10の作動を停止して血圧測定モードに入る。
First, when the person to be measured for blood pressure puts on the arm band and is ready for blood pressure measurement, and turns on a switch (not shown) of the sphygmomanometer, the central processing unit 7 issues a command to the constant-speed exhaust control circuit 8. A signal is issued, and a voltage is applied to the piezoelectric ceramic 1 of the piezoelectric element operation member 4 to displace the piezoelectric element operation member 4. As a result, the valve 5 is pressed against the opening of the exhaust port 6 to seal the exhaust port 6. Subsequently, the pump drive circuit 9
, The pump 10 is operated to pump air to the arm band 53. The pressure of the arm band 53 is constantly monitored by the pressure sensor 11, and the measured value is output to the central processing unit 7. Central processing unit 7
Is the pump when the pressure in the arm dropping part 53 reaches the set value
Stop the operation of 10 and enter the blood pressure measurement mode.

血圧測定モードに入ったならば、中央処理装置7は定
速排気コントロール回路8を介して圧電素子作動部材4
を変位させて弁5と排気ポート6と間に間隙を形成し
て、腕帯53側の空気を予め設定した速度で排気する。こ
の場合も圧力センサ11は腕帯53内の圧力を監視し、その
測定値を中央処理装置7に出力している。中央処理装置
7はこのフィードバックされた測定値に基づいて実際の
排気速度をリアルタイムで求め、排気速度が設定値にな
るよう弁5の開度調整を行う。
When the blood pressure measurement mode is entered, the central processing unit 7 controls the piezoelectric element operating member 4 via the constant speed exhaust control circuit 8.
Is displaced to form a gap between the valve 5 and the exhaust port 6, and the air on the arm band 53 side is exhausted at a preset speed. Also in this case, the pressure sensor 11 monitors the pressure in the arm band 53, and outputs the measured value to the central processing unit 7. The central processing unit 7 obtains the actual exhaust speed in real time based on the feedback measured value, and adjusts the opening degree of the valve 5 so that the exhaust speed becomes a set value.

このようにして予め設定したとおりに正確に定速排気
を行い、この間に血圧値の判定を行う。続いて血圧値の
判定が終了したならば、中央処理装置7は急速排気コン
トロール回路12を介して圧電素子作動部材4の圧電セラ
ミック2に対して電圧を印加することにより弁5を大き
く開き、腕帯53に残留している空気を急速に放出する。
In this manner, constant-speed exhaust is performed accurately as set in advance, and during this time, the blood pressure value is determined. Subsequently, when the determination of the blood pressure value is completed, the central processing unit 7 applies a voltage to the piezoelectric ceramic 2 of the piezoelectric element operating member 4 via the rapid exhaust control circuit 12 to open the valve 5 greatly, and The air remaining in the belt 53 is rapidly released.

第6図は以上の装置を用いた場合の排気状態を示す。
この図からも明らかなとおりポンプOFF後、定速排気を
行う場合、第12図に示す従来型のゴム円筒を用いた装置
同様に滑らかに定速排気をすることができる。
FIG. 6 shows an exhaust state when the above apparatus is used.
As is clear from this figure, when the constant-speed exhaust is performed after the pump is turned off, the constant-speed exhaust can be performed smoothly as in the conventional apparatus using a rubber cylinder shown in FIG.

次にこの装置による定速排気状態を実測した試験結果
を第8図に示す。
Next, FIG. 8 shows a test result obtained by actually measuring a constant-speed exhaust state by this apparatus.

この試験は第14図の従来装置の場合と同様、腕帯容量
を小容量(300cc)と大容量(600cc)に分けた場合の排
気速度の相違を実測したものであるが、従来装置が容量
の大小により排気速度が大幅に相違したのに対して、本
装置ではその速度に殆ど差が生じないことが確認でき
た。なお、排気速度は4mmHg/secとした。
In this test, as in the case of the conventional device in Fig. 14, the difference in pumping speed when the armband capacity was divided into a small capacity (300cc) and a large capacity (600cc) was actually measured. It was confirmed that the exhaust speed was largely different depending on the size of the exhaust gas, but the speed was hardly changed in the present apparatus. The pumping speed was 4 mmHg / sec.

また第9図は血圧計としての吸気量および排気量を測
定した結果を示す。図中符号G1は腕帯に対する加圧時状
態を、G2は定速排気状態を、G3は急速排気状態を各々示
すが、この図からも明らかなとおり定速排気状態G2にお
いて非常に安定した定速排気が実現しており、且つ血圧
値測定後の急速排気も非常に迅速に行えることが確認で
きた。
FIG. 9 shows the results of measuring the intake and exhaust air volumes as a sphygmomanometer. In the figure, reference symbol G1 indicates a pressurized state on the arm band, G2 indicates a constant-speed exhaust state, and G3 indicates a rapid exhaust state. As is clear from this figure, the extremely stable constant in the constant-speed exhaust state G2. It was confirmed that quick exhaust was realized and that rapid exhaust after blood pressure measurement could be performed very quickly.

第7図は以上に示した圧電素子作動部材を血圧計に組
み込む場合の構成の一例を示す。
FIG. 7 shows an example of a configuration in which the above-described piezoelectric element operating member is incorporated in a sphygmomanometer.

14は取り付け台であり、この台自体は血圧計本体内に
固定される。圧電素子作動部材4の後端部(図の右側)
には上下の圧電セラミック1および2の間に配置されて
金属板3が突出しており、この金属板3の突出部3aを取
り付け台14の段部14aに配置する。この状態で係合部材1
2を取り付け台14に対して螺子等の固定手段で固定する
ことにより前記突出部3aを挟持し、以て圧電素子作動部
材4全体を片持に支持する。圧電素子作動部材4の下部
には弁5が取り付けてあり、圧電素子作動部材4を所定
の位置に配置することよりこの弁5は取り付け台14を挿
通して開口している排気ポート6の開口部に近接位置
し、圧電素子作動部材4の作動により弁の開閉動作を行
う。
Reference numeral 14 denotes a mounting base, which is itself fixed in the main body of the sphygmomanometer. Rear end of piezoelectric element operating member 4 (right side in figure)
The metal plate 3 is disposed between the upper and lower piezoelectric ceramics 1 and 2 and protrudes. The protruding portion 3a of the metal plate 3 is disposed on the step 14a of the mounting base 14. In this state, the engaging member 1
2 is fixed to the mounting base 14 by a fixing means such as a screw, so that the protruding portion 3a is sandwiched, thereby supporting the entire piezoelectric element operating member 4 in a cantilever manner. A valve 5 is attached to the lower part of the piezoelectric element operating member 4. By arranging the piezoelectric element operating member 4 at a predetermined position, the valve 5 is opened through an exhaust port 6 that is inserted through the mounting base 14. The opening and closing operation of the valve is performed by the operation of the piezoelectric element operating member 4.

なお、圧電素子作動部材4の配置等、定速排気装置の
構成は図示のものに限る必要はなく、血圧計の構成によ
り、排気ポートを圧電素子作動部材の上部に配置するな
ど、その構成は適宜変更可能である。
The configuration of the constant-speed exhaust device such as the arrangement of the piezoelectric element operating member 4 does not need to be limited to the one shown in the figure. The configuration of the sphygmomanometer is such that an exhaust port is arranged above the piezoelectric element operating member. It can be changed as appropriate.

第10図及び第11図は前記圧電素子作動部材を用いた血
圧計の定速排気制御の一例を示す。
10 and 11 show an example of constant-speed exhaust control of a sphygmomanometer using the piezoelectric element operating member.

この制御装置は基本的には、第10図に示すように空気
量を直接調整する作動部材である圧電素子作動部材4、
弁5及び排気ポート6の組み合わせと、圧力センサ11
と、中央処理装置7と、この中央処理装置7の指令によ
りデジタル信号をアナログ化し、DC電圧を圧電素子作動
部材4に印加するDA変換部13とから構成されている。
This control device basically includes a piezoelectric element operating member 4, which is an operating member for directly adjusting the air amount, as shown in FIG.
The combination of the valve 5 and the exhaust port 6 and the pressure sensor 11
, A central processing unit 7, and a DA conversion unit 13 that converts a digital signal into an analog signal according to a command from the central processing unit 7 and applies a DC voltage to the piezoelectric element operating member 4.

先ず腕帯を被測定者の腕に装着し、ポンプ10により空
気を圧送して腕腕53内呑圧力を所定の値とし、続いて血
圧値測定動作を行う。
First, the arm band is attached to the arm of the subject, and air is pumped by the pump 10 to set the swallow pressure of the arm / arm 53 to a predetermined value, and then a blood pressure value measurement operation is performed.

第10図および第11図において、血圧値測定に当たっ
て、先ず中央処理装置7は、圧力センサ11を介して一定
時間(例えば1秒間または1心泊)腕帯53内の圧力をモ
ニターし、予め設定してある排気速度となるよう圧電素
子作動部材4の弁5と排気ポート6との間隙を設定す
る。この設定された間隙は中央処理装置7内で演算処理
されてその設定間隙に対応する圧電素子が作動部材の変
形量が設定され、圧電素子変形信号がデジタル出力され
る。このデジタル信号はD/A変換部13において直流(D
C)電圧としてアナログ出力される。このDC電圧により
圧電素子作動部材4は変形して弁5の開度を設定し定速
排気を行う。この定速排気は圧力センサ11によりモニタ
ーされており、その測定結果は中央処理装置7にフィー
ドバックされ、定速排気が設定値で行われていれば血圧
値の測定を行う。血圧値の測定が終了したならば圧電素
子作動部材4を反対方向に変位させ、腕帯内の残存空気
を急速に排出する。
10 and 11, in measuring the blood pressure value, first, the central processing unit 7 monitors the pressure in the arm band 53 through the pressure sensor 11 for a certain time (for example, one second or one heart per night) and sets the pressure in advance. The clearance between the valve 5 of the piezoelectric element operating member 4 and the exhaust port 6 is set so that the exhaust speed is set as described above. The set gap is subjected to arithmetic processing in the central processing unit 7, the deformation amount of the piezoelectric element corresponding to the set gap is set for the operating member, and a piezoelectric element deformation signal is digitally output. This digital signal is converted to a direct current (D
C) Analog output as voltage. The piezoelectric element operating member 4 is deformed by the DC voltage to set the opening degree of the valve 5 and perform constant-speed exhaust. The constant-speed exhaust is monitored by the pressure sensor 11, and the measurement result is fed back to the central processing unit 7, and if the constant-speed exhaust is performed at a set value, the blood pressure value is measured. When the measurement of the blood pressure value is completed, the piezoelectric element operating member 4 is displaced in the opposite direction, and the remaining air in the arm band is rapidly discharged.

〔効果〕〔effect〕

本発明は以上に説明した如く、弁の開閉機構として圧
電セラミック等の圧電素子を用い、かつ一対の圧電セラ
ミックの分極方向を従来型バイモルフとは逆に設定する
よう構成して弁作動部材を構成したので、その作動部材
の変形範囲が広く、一つの作動体で定速排気及び急速排
気を確実に行え、かつ定速排気中の排気量調整、急速排
気量の排出量調整も自由に実施することができ、特にこ
の装置を自動血圧計に用いた場合は、血圧値の測定を迅
速且つ正確に行うことができる。
As described above, the present invention uses a piezoelectric element such as a piezoelectric ceramic as a valve opening / closing mechanism, and configures a valve operating member by setting a polarization direction of a pair of piezoelectric ceramics to be opposite to that of a conventional bimorph. As a result, the deformation range of the operating member is wide, the constant-speed exhaust and the rapid exhaust can be reliably performed by one operating body, and the exhaust amount adjustment during the constant-speed exhaust and the exhaust amount adjustment of the rapid exhaust amount are also freely performed. In particular, when this device is used for an automatic sphygmomanometer, the blood pressure value can be measured quickly and accurately.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の圧電素子作動部材との比較のために示
すバイモルフの作動原理図、第2図は本発明の圧電素子
作動部材の作動原理図、第3図は圧電素子作動部材を用
いた定速排気装置の定速排気状態における主要部縦断面
図、第4図は第3図に示す定速排気装置の急速排気状態
を示す主要部縦断面図、第5図は定速排気装置の構成例
を示すブロック図、第6図は第5図に示す装置の排気状
態を示す線図、第7図は定速排気装置の弁開閉部の構成
例を示す分解斜視図、第8図は異なる腕帯容量に於ける
第5図に示す装置の定速排気状態を示す線図、第9図は
同装置の加圧/定速排気/急速排気の状態を示す線図、
第10図は定速排気装置の制御状態の一例を示すブロック
図、第11図は第10図に示す装置の制御方法を示すフロー
図、第12図は定速排気弁と急速排気弁とを有する従来装
置のブロック図、第13図は第12図に示す装置を用いた場
合の異なる腕帯容量における定速排気状態を示す線図、
第14図は同装置の異なる腕帯容量における定速排気状態
の実測値を示す線図、第15図は定速排気と急速排気を一
つの電磁弁で行う別の従来装置のブロック図、第16図は
第15図に示す装置の定速排気状態を示す線図である。 1、2……圧電セラミック 3……金属板、4……圧電素子作動部材 5……弁、6……排気ポート 7……中央処理装置、8……定速排気コントロール回
路、10……ポンプ 11……圧力センサ、12……急速排気コントロール回路、
13……D/A変換装置 14……取り付け台、53……腕帯
FIG. 1 is a diagram illustrating the operation principle of a bimorph for comparison with the piezoelectric element operating member of the present invention, FIG. 2 is a diagram illustrating the operating principle of the piezoelectric element operating member of the present invention, and FIG. FIG. 4 is a vertical sectional view of a main portion of the constant-speed exhaust device in a constant-speed exhaust state, FIG. 4 is a vertical sectional view of a main portion showing a rapid exhaust state of the constant-speed exhaust device shown in FIG. 3, and FIG. FIG. 6 is a block diagram showing an exhaust state of the apparatus shown in FIG. 5, FIG. 7 is an exploded perspective view showing an example of the structure of a valve opening / closing section of the constant-speed exhaust apparatus, and FIG. FIG. 9 is a diagram showing a constant-speed exhaust state of the apparatus shown in FIG. 5 at different armband capacities; FIG. 9 is a diagram showing a pressurization / constant-speed exhaust / rapid exhaust state of the apparatus;
10 is a block diagram showing an example of a control state of the constant-speed exhaust device, FIG. 11 is a flowchart showing a control method of the device shown in FIG. 10, and FIG. 12 shows a constant-speed exhaust valve and a rapid exhaust valve. 13 is a block diagram of a conventional device having, FIG. 13 is a diagram showing a constant-speed exhaust state in different arm band capacity when using the device shown in FIG. 12,
FIG. 14 is a diagram showing measured values in a constant-speed exhaust state at different arm band capacities of the same device. FIG. 15 is a block diagram of another conventional device that performs constant-speed exhaust and rapid exhaust with one solenoid valve. FIG. 16 is a diagram showing a constant-speed exhaust state of the apparatus shown in FIG. 1, 2, piezoelectric ceramic 3, metal plate 4, piezoelectric element operating member 5, valve 6, exhaust port 7, central processing unit 8, constant speed exhaust control circuit 10, pump 11… Pressure sensor, 12… Quick exhaust control circuit,
13 …… D / A converter 14 …… Mounting stand, 53 …… Cuff

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−81328(JP,A) 実開 昭58−168305(JP,U) (58)調査した分野(Int.Cl.6,DB名) A61B 5/02 F04B 49/00 F16K 31/02──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-57-81328 (JP, A) JP-A-58-168305 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) A61B 5/02 F04B 49/00 F16K 31/02

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧電素子の変形によって弁の開度を調節
し、腕帯等の加圧気体を充填した空間から気体を所定の
速度で排出する装置において、弁開度調節用の圧電素子
は一対設けられ、これら圧電素子は電圧を印加すること
よりそれぞれが伸びるような分極方向をもって直接に、
または金属板等の部材を介して間接に張り合わされるこ
とにより圧電素子作動部材として構成され、この圧電素
子作動部材に取り付けられた弁は前記加圧空間の気体を
排出する排気部に近接配置され、圧電素子作動部材の各
圧電素子に対して個別に電圧を印加し、かつこの印加す
る電圧を変化させることにより圧電素子作動部材の変形
を調整して弁の開度の微調整および急速開閉を行い、定
速排気および急速排気の何れをも行えるよう構成した弁
機構を有することを特徴とする定速排気装置。
In a device for adjusting the opening of a valve by deformation of a piezoelectric element and discharging gas at a predetermined speed from a space filled with pressurized gas such as an arm band, a piezoelectric element for adjusting the valve opening is provided. A pair is provided, and these piezoelectric elements are directly extended with a polarization direction such that each piezoelectric element extends by applying a voltage,
Or, it is configured as a piezoelectric element operating member by being indirectly bonded via a member such as a metal plate, and a valve attached to the piezoelectric element operating member is disposed in proximity to an exhaust portion that discharges gas in the pressurized space. A voltage is individually applied to each piezoelectric element of the piezoelectric element operating member, and by changing the applied voltage, the deformation of the piezoelectric element operating member is adjusted to finely adjust the opening degree of the valve and quickly open and close. A constant-speed exhaust device having a valve mechanism configured to perform both constant-speed exhaust and rapid exhaust.
【請求項2】圧電素子作動部材の一対の圧電素子のうち
一方に電圧を印加することにより弁を前記排気部に近接
させ、さらにこの印加した電圧を変化させることにより
排気弁と弁との間隙の調整を行って定速排気中の排気速
度の調整を行う制御部と、他方の圧電素子に電圧を印加
することにより弁を排気部から離間させて両者の間隙を
大きくし、以て急速排気を行う制御部とを有することを
特徴とする特許請求の範囲第(1)項記載の定速排気装
置。
2. A valve is brought closer to the exhaust portion by applying a voltage to one of a pair of piezoelectric elements of a piezoelectric element operating member, and further, the gap between the exhaust valve and the valve is changed by changing the applied voltage. And a control unit that adjusts the pumping speed during constant-speed pumping by applying a voltage to the other piezoelectric element to separate the valve from the pumping unit, thereby increasing the gap between them, thereby rapidly pumping. The constant-speed exhaust device according to claim 1, further comprising a control unit that performs the control.
【請求項3】圧電素子の変形によって弁の開度を調節
し、腕帯等の加圧気体を充填した空間から気体を所定の
速度で排出し、かつ当該弁開度調節用の圧電素子は一対
設けられ、これら圧電素子は電圧を印加することよりそ
れぞれが伸びるような分極方向をもって張り合わされて
圧電素子作動部材として構成され、圧電素子作動部材に
取り付けられた弁が前記加圧空間の気体を排出する排気
部に近接配置され、この圧電素子作動部材の各圧電素子
に対して個別に電圧を印加し、かつこの印加する電圧を
変化させることにより圧電素子作動部材の変形を調整し
て弁の開度を調節するよう構成した弁機構を有する定速
排気装置を制御する方法であって、先ず加圧空間から排
出される気体の排気速度を設定し、次にこの設定排気速
度に対応する弁と排気部との間隙を設定し、設定した間
隙に対応する弁の移動量を実現するための電圧を圧電素
子作動部材に印加することを特徴とする定速排気装置の
制御方法。
3. The valve opening is adjusted by deforming the piezoelectric element, the gas is discharged at a predetermined speed from a space filled with pressurized gas such as an arm band, and the piezoelectric element for adjusting the valve opening is provided. A pair is provided, and these piezoelectric elements are laminated as a piezoelectric element operating member by applying a voltage so that each of them extends in a polarization direction such that each of them extends. A voltage is individually applied to each of the piezoelectric elements of the piezoelectric element operating member, and the deformation of the piezoelectric element operating member is adjusted by changing the applied voltage. A method for controlling a constant-speed exhaust device having a valve mechanism configured to adjust an opening degree, wherein the exhaust speed of gas discharged from a pressurized space is first set, and then a valve corresponding to the set exhaust speed is set. And exhaust Set the gap between the parts, the control method of the normal exhaust system which is characterized in applying a voltage to realize the amount of movement of the valve corresponding to the gap which is set to the piezoelectric element actuating member.
【請求項4】前記設定した間隙に対応する圧電素子作動
部材の移動量を圧電素子変形信号としてデジタル出力
し、このデジタル出力を直流電圧値にアナログ出力し、
この直流電圧により圧電素子作動部材を変形させ、さら
に実際の排気速度を制御部にフィードバックするように
したことを特徴とする特許請求の範囲第(3)項記載の
定速排気装置の制御方法。
4. A digital output of a moving amount of the piezoelectric element operating member corresponding to the set gap as a piezoelectric element deformation signal, and an analog output of the digital output to a DC voltage value;
The control method for a constant-speed exhaust device according to claim 3, wherein the piezoelectric element operating member is deformed by the DC voltage, and the actual exhaust speed is fed back to the control unit.
JP1031111A 1989-02-13 1989-02-13 Constant speed exhaust device and control method of constant speed exhaust device Expired - Lifetime JP2819141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1031111A JP2819141B2 (en) 1989-02-13 1989-02-13 Constant speed exhaust device and control method of constant speed exhaust device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1031111A JP2819141B2 (en) 1989-02-13 1989-02-13 Constant speed exhaust device and control method of constant speed exhaust device

Publications (2)

Publication Number Publication Date
JPH02211121A JPH02211121A (en) 1990-08-22
JP2819141B2 true JP2819141B2 (en) 1998-10-30

Family

ID=12322290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1031111A Expired - Lifetime JP2819141B2 (en) 1989-02-13 1989-02-13 Constant speed exhaust device and control method of constant speed exhaust device

Country Status (1)

Country Link
JP (1) JP2819141B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016525658A (en) * 2013-05-10 2016-08-25 マシューズ リソーシズ、インコーポレイテッド Cantilevered support microvalve and ink jet printer using the valve
US10994535B2 (en) 2018-05-11 2021-05-04 Matthews International Corporation Systems and methods for controlling operation of micro-valves for use in jetting assemblies
US11186084B2 (en) 2018-05-11 2021-11-30 Matthews International Corporation Electrode structures for micro-valves for use in jetting assemblies
US11479041B2 (en) 2018-05-11 2022-10-25 Matthews International Corporation Systems and methods for sealing micro-valves for use in jetting assemblies
US11639057B2 (en) 2018-05-11 2023-05-02 Matthews International Corporation Methods of fabricating micro-valves and jetting assemblies including such micro-valves
US11794476B2 (en) 2018-05-11 2023-10-24 Matthews International Corporation Micro-valves for use in jetting assemblies

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4562580B2 (en) * 2005-04-07 2010-10-13 日本電信電話株式会社 Sphygmomanometer and control method of sphygmomanometer
JP6234145B2 (en) * 2013-10-03 2017-11-22 シチズン時計株式会社 Sphygmomanometer
FR3018389B1 (en) * 2014-03-06 2017-09-01 St Microelectronics Sa METHOD FOR MANUFACTURING BISTABLE BLADES OF DIFFERENT CURVES

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8005145A (en) * 1980-09-12 1982-04-01 Tno DEVICE FOR INDIRECT, NON-INVASIVE, CONTINUOUS MEASUREMENT OF BLOOD PRESSURE.
JPS58168305U (en) * 1982-05-04 1983-11-10 オムロン株式会社 Blood pressure monitor exhaust control device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016525658A (en) * 2013-05-10 2016-08-25 マシューズ リソーシズ、インコーポレイテッド Cantilevered support microvalve and ink jet printer using the valve
US10994535B2 (en) 2018-05-11 2021-05-04 Matthews International Corporation Systems and methods for controlling operation of micro-valves for use in jetting assemblies
US11186084B2 (en) 2018-05-11 2021-11-30 Matthews International Corporation Electrode structures for micro-valves for use in jetting assemblies
US11479041B2 (en) 2018-05-11 2022-10-25 Matthews International Corporation Systems and methods for sealing micro-valves for use in jetting assemblies
US11639057B2 (en) 2018-05-11 2023-05-02 Matthews International Corporation Methods of fabricating micro-valves and jetting assemblies including such micro-valves
US11660861B2 (en) 2018-05-11 2023-05-30 Matthews International Corporation Systems and methods for controlling operation of micro-valves for use in jetting assemblies
US11794476B2 (en) 2018-05-11 2023-10-24 Matthews International Corporation Micro-valves for use in jetting assemblies
US11938733B2 (en) 2018-05-11 2024-03-26 Matthews International Corporation Systems and methods for sealing micro-valves for use in jetting assemblies

Also Published As

Publication number Publication date
JPH02211121A (en) 1990-08-22

Similar Documents

Publication Publication Date Title
JP2819141B2 (en) Constant speed exhaust device and control method of constant speed exhaust device
JP3952321B2 (en) Suck back valve
TWI437975B (en) Blood pressure measuring device capable of accurately measuring blood pressure
US8715198B2 (en) Sphygmomanometer exhaust valve and sphygmomanometer using the same
EP0576328B1 (en) Automatic sphygmomanometer
FI80198C (en) Pressure control system and device for automatic noninvasive blood pressure cuff
EP1897489A1 (en) Pulse wave measuring instrument manufacturable at suppressed cost
JP2721240B2 (en) Method and apparatus for controlling cuff pressure in a sphygmomanometer
US5632278A (en) Device for automatically measuring the blood pressure
JPH06159539A (en) Blood pressure measuring device
JPH07145874A (en) Exhauster
JPH0479651B2 (en)
JPS63292939A (en) Pressure pump
JPH039727A (en) Pressure drop rate controller of pressure cuff and bag for blood pressure measuring apparatus
JPH105183A (en) Hemadynamometer exhauster
JP2582436Y2 (en) Cable cylinder position control device
JPH10252906A (en) Exhaust valve and electronic hemodynamometer with it
JPS6158482A (en) Displacement amount controlling method of piezoelectric vibrator
JPH09144919A (en) Check valve and automatic hemomanometer equipped therewith
JPH0281974A (en) Piezoelectric pump
JP2994269B2 (en) Sphygmomanometer
EP1514511A1 (en) Air pressure adjusting device
JPH0461661B2 (en)
US20040176693A1 (en) Air pressure adjusting device
JPH04131207U (en) automatic exhaust valve