JP2815529B2 - Fluorescent glass dosimeter - Google Patents

Fluorescent glass dosimeter

Info

Publication number
JP2815529B2
JP2815529B2 JP5244203A JP24420393A JP2815529B2 JP 2815529 B2 JP2815529 B2 JP 2815529B2 JP 5244203 A JP5244203 A JP 5244203A JP 24420393 A JP24420393 A JP 24420393A JP 2815529 B2 JP2815529 B2 JP 2815529B2
Authority
JP
Japan
Prior art keywords
rays
fluorescent glass
energy
glass element
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5244203A
Other languages
Japanese (ja)
Other versions
JPH0798382A (en
Inventor
秀信 森
石川  達也
Original Assignee
東芝硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝硝子株式会社 filed Critical 東芝硝子株式会社
Priority to JP5244203A priority Critical patent/JP2815529B2/en
Publication of JPH0798382A publication Critical patent/JPH0798382A/en
Application granted granted Critical
Publication of JP2815529B2 publication Critical patent/JP2815529B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、原子力発電所その他の
原子力施設等に従事する作業者また所要とする個所の放
射線被ばく線量を測定する蛍光ガラス線量計に係わり、
特に高エネルギーγ線,X線およびβ線等の放射線量を
高精度に分離測定する蛍光ガラス線量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluorescent glass dosimeter for measuring the radiation exposure dose of a worker engaged in a nuclear power plant or other nuclear facilities, or a required location.
More particularly, the present invention relates to a fluorescent glass dosimeter that separates and measures radiation doses of high energy γ-rays, X-rays, and β-rays with high accuracy.

【0002】[0002]

【従来の技術】一般に、蛍光ガラス線量計は、銀イオン
を含有するリン酸塩ガラスからなる蛍光ガラス素子が用
いられている。この蛍光ガラス素子は、放射線の照射に
よって活性化された後、ある波長例えば300〜400
nmの紫外線励起によって蛍光を発するが、このとき発生
する蛍光量が放射線量に比例することから、当該蛍光量
を検出することにより、蛍光ガラス素子の被ばく放射線
量を測定することができる。
2. Description of the Related Art Generally, a fluorescent glass dosimeter uses a fluorescent glass element made of phosphate glass containing silver ions. After being activated by irradiation with radiation, the fluorescent glass element has a certain wavelength, for example, 300 to 400.
Fluorescence is emitted by excitation of ultraviolet light of nm, and the amount of fluorescence generated at this time is proportional to the amount of radiation. Therefore, by detecting the amount of fluorescence, the amount of exposure radiation of the fluorescent glass element can be measured.

【0003】ところで、蛍光ガラス素子に、あるエネル
ギーのγ線或いはX線を照射したとき、そのエネルギー
領域によっては、当該蛍光量の検出感度に過剰応答性を
示す場合がある。
When a fluorescent glass element is irradiated with γ-rays or X-rays of a certain energy, depending on the energy region, the sensitivity of detecting the amount of the fluorescent light may exhibit an excessive response.

【0004】そこで、現在の蛍光ガラス線量計では、蛍
光ガラス素子と対面する方向にγ線およびX線の各エネ
ルギーを補償するエネルギー補償用フィルタが配置さ
れ、当該γ線およびX線がエネルギー補償用フィルタを
通して蛍光ガラス素子に照射される構成となっている。
Therefore, in the present fluorescent glass dosimeter, an energy compensating filter for compensating each energy of γ-rays and X-rays is arranged in a direction facing the fluorescent glass element, and the γ-rays and X-rays are used for energy compensation. It is configured to irradiate the fluorescent glass element through the filter.

【0005】[0005]

【発明が解決しようとする課題】従って、以上のような
蛍光ガラス線量計では、蛍光ガラス素子の対面方向にエ
ネルギー補償用フィルタを配置してγ線,X線を測定し
ているが、例えば3MeV以上の高エネルギーγ線が照
射されたとき、エネルギー補償用フィルタと高エネルギ
ーγ線との相互作用により2次電子が発生し、それに伴
って蛍光ガラス素子が過剰応答性を示し、エネルギーの
依存性が生じてしまう。すなわち、3MeV以上の高エ
ネルギーγ線に対し、蛍光ガラス素子が過剰応答性を示
し、多くの蛍光量を発生するので、高精度な測定が困難
となる。
Therefore, in such a fluorescent glass dosimeter as described above, a gamma ray and an X-ray are measured by disposing an energy compensating filter in a direction opposite to the fluorescent glass element. When the high-energy γ-rays are irradiated, secondary electrons are generated due to the interaction between the energy-compensating filter and the high-energy γ-rays, and the fluorescent glass element exhibits an over-response with the interaction. Will occur. That is, the fluorescent glass element exhibits an excessive response to high energy γ-rays of 3 MeV or more and generates a large amount of fluorescent light, so that it is difficult to perform highly accurate measurement.

【0006】また、β線量を測定する場合、γ線・X線
のエネルギー依存性が良好であることが重要であり、前
述のごとく3MeV以上の高エネルギーγ線の照射によ
るγ線・X線の高精度測定が難しいことから、β線量の
高精度な分離測定が困難であること。
[0006] When measuring the dose of β, it is important that the energy dependence of γ-rays and X-rays is good. As described above, the irradiation of γ-rays and X-rays by irradiation of high-energy γ-rays of 3 MeV or more is performed as described above. Difficulty in high-precision measurement, so high-precision separation measurement of β-dose is difficult.

【0007】さらに、近年、原子力発電所の原子炉施設
等の普及に伴い、かかる施設内で被ばくの可能性のある
3MeV以上の高エネルギーγ線およびβ線の被ばく線
量を適切に評価測定することが重要な関心事となってい
るが、それに対する対応ができていない。
Further, in recent years, with the spread of nuclear reactor facilities in nuclear power plants, it is necessary to appropriately evaluate and measure exposure doses of high-energy γ-rays and β-rays of 3 MeV or more that may be exposed in such facilities. Has become an important concern, but has not been able to respond to it.

【0008】本発明は上記実情に鑑みてなされたもの
で、高エネルギーγ線,X線およびβ線の各放射線量を
高精度に分離測定可能とする蛍光ガラス線量計を提供す
ることを目的とする。
The present invention has been made in view of the above circumstances, and has as its object to provide a fluorescent glass dosimeter capable of separating and measuring high-energy γ-rays, X-rays, and β-rays with high accuracy. I do.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、請求項1に対応する発明は、放射線の照射によって
活性化され、かつ、紫外線の励起によって蛍光を発する
一体または別体の蛍光ガラス素子本体を用いて所望のγ
線,X線およびβ線を分離測定する蛍光ガラス線量計に
おいて、前記一体の蛍光ガラス素子本体の2個所または
前記別体の2つの蛍光ガラス素子本体と対面する位置に
配置され、γ線およびX線のエネルギー補償を行うエネ
ルギー補償用フィルタと、前記蛍光ガラス素子本体と前
記γ線およびX線のうち少なくとも何れか一方の前記エ
ネルギー補償用フィルタとの間に配設され、3MeV以
上の高エネルギーγ線の照射によって前記エネルギー補
償用フィルタから発生する2次電子を吸収して前記蛍光
ガラス素子本体の過剰応答を抑える2次電子吸収材と、
前記一体の蛍光ガラス素子本体の別の2個所または前記
別体のさらに2つの蛍光ガラス素子本体の両面または片
面に対面する位置に前記β線を分離測定可能に設けられ
3〜50mg/cm2 の樹脂フィルタが張設された窓部と
を設けた蛍光ガラス線量計である。
In order to solve the above-mentioned problems, an invention according to claim 1 is an integrated or separate fluorescent glass which is activated by irradiation of radiation and emits fluorescence by excitation of ultraviolet rays. Using the element body, the desired γ
In a fluorescent glass dosimeter for separately measuring X-rays, X-rays and β-rays, the fluorescent glass dosimeter is disposed at two places of the integrated fluorescent glass element main body or at a position facing the two separate fluorescent glass element main bodies, An energy compensating filter for compensating energy of X-rays, and a high energy γ of 3 MeV or more, which is disposed between the fluorescent glass element body and the energy compensating filter of at least one of the γ-ray and the X-ray. The secondary electrons generated from the energy compensating filter by the irradiation of the X-rays are absorbed to generate the fluorescent light .
A secondary electron absorber that suppresses excessive response of the glass element body ,
The β-ray is provided so as to be able to be separated and measured at another two locations of the integrated fluorescent glass element main body or at a position facing both surfaces or one surface of the two separate fluorescent glass element main bodies.
And a window in which a resin filter of 3 to 50 mg / cm 2 is stretched.

【0010】[0010]

【作用】従って、請求項1に対応する発明は以上のよう
な手段を講じたことにより、蛍光ガラス素子本体とエネ
ルギー補償用フィルタとの間に2次電子吸収材を配置す
ることにより、3MeV以上の高エネルギーγ線が照射
されたとき、前記エネルギー補償用フィルタから2次電
子が発生し過剰応答性を示すが、このエネルギー補償用
フィルタから発生する2次電子を2次電子吸収材で吸収
して過剰応答性を抑えるので、3MeV以上の高エネル
ギーγ線およびX線の各放射線量を高精度に分離測定で
きる。また、同一の蛍光ガラス素子本体の別の2個所ま
たは独立した2つの蛍光ガラス素子本体と対面する位置
に3〜50mg/cmの樹脂フィルタの窓部を設けたことに
より、前記分離測定されたγ線,X線の蛍光検出量とこ
の樹脂フィルタに対応する蛍光ガラス素子本体からの蛍
光検出量とに基づき、或いはβ線に対して異なる感度特
性の樹脂フィルタを設けたときにはこれら両者の感度比
に基づき、β線を高精度に分離測定できる。
Therefore, the invention corresponding to claim 1 takes the above-mentioned means, and by arranging a secondary electron absorbing material between the fluorescent glass element main body and the energy compensating filter, 3 MeV or more can be obtained. When high energy γ-rays are irradiated, secondary electrons are generated from the energy compensating filter and exhibit an excessive response. The secondary electrons generated from the energy compensating filter are absorbed by the secondary electron absorbing material.
As a result, the excess responsiveness is suppressed, so that the radiation doses of high energy γ-rays and X-rays of 3 MeV or more can be separated and measured with high accuracy. In addition, a window portion of a resin filter of 3 to 50 mg / cm is provided at another position of the same fluorescent glass element body or at a position facing two independent fluorescent glass element bodies.
From the above , the fluorescence detection amounts of γ-rays and X-rays separated and measured
From the fluorescent glass element body corresponding to the resin filter of
Different sensitivity characteristics based on the amount of light detected or for β-rays
-Out group Dzu the sensitivity ratio of both of which when provided sexual resin filter can be separated measure β-rays with high accuracy.

【0011】[0011]

【実施例】以下、本発明に係わる蛍光ガラス線量計の一
実施例について図1および図2を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of a fluorescent glass dosimeter according to the present invention will be described below with reference to FIGS.

【0012】図1は蛍光ガラス素子本体および蛍光ガラ
ス素子本体を支持する支持枠体の関係を示す図、図2は
蛍光ガラス素子本体を保持した支持枠体を収納するフィ
ルタケースを示す図である。
FIG. 1 is a view showing the relationship between a fluorescent glass element body and a support frame supporting the fluorescent glass element body, and FIG. 2 is a view showing a filter case for housing the support frame holding the fluorescent glass element body. .

【0013】蛍光ガラス素子10においては、銀イオン
を含有するリン酸塩ガラスなどからなり、例えば4個の
ガラス素子本体(図示せず)または図1に示すような例
えば4個のガラス素子本体に相当する長さを有する蛍光
ガラス素子本体11と、このガラス素子本体11を支持
する1組の支持枠体12,13とによって構成されてい
る。
The fluorescent glass element 10 is made of, for example, phosphate glass containing silver ions, and is formed into, for example, four glass element bodies (not shown) or, for example, four glass element bodies as shown in FIG. It is composed of a fluorescent glass element body 11 having a corresponding length, and a pair of support frames 12 and 13 for supporting the glass element body 11.

【0014】この支持枠体12は、4個の開口部14a
〜14dが形成され、さらにガラス素子本体11の蛍光
発生光路となる部分を除いて枠体周縁部から垂直方向に
素子保持用突起15,…が設けられ、図示矢印方向から
嵌め込まれるガラス素子本体11を素子保持用突起1
5,…で保持する構成となっている。
The support frame 12 has four openings 14a.
.. 14d are formed, and element holding projections 15,... Are provided vertically from the peripheral edge of the frame body except for the part that becomes the fluorescence generating optical path of the glass element body 11, and the glass element body 11 fitted in the direction of the arrow shown in the figure. To the element holding projection 1
.. Are held.

【0015】他方の支持枠体13は、ガラス素子本体1
1を保持する一方の支持枠体12を収納保持する役割を
有し、具体的には前記支持体12と同様に複数の開口部
16a〜16dが形成され、当該枠体13の幅方向両端
部を同一方向に折り曲げてコ字状部17に形成し、さら
に前記開口部16a〜16dと対応する位置関係をもっ
て各コ字状部17の両部にもそれぞれ切欠部18a〜1
8dが設けられている。また、支持枠体13の一端部に
は例えば蛍光ガラス素子10の識別番号を光学的に読み
取るための孔部を形成したガラス素子識別番号部19が
設けられている。
The other support frame 13 is used to hold the glass element body 1
1 has a role of storing and holding one of the support frames 12, and more specifically, a plurality of openings 16a to 16d are formed similarly to the support 12, and both ends in the width direction of the frame 13 Are bent in the same direction to form the U-shaped portions 17, and the notches 18a to 1 are also provided on both sides of each of the U-shaped portions 17 in a positional relationship corresponding to the openings 16a to 16d.
8d are provided. Further, at one end of the support frame 13, for example, a glass element identification number portion 19 having a hole for optically reading the identification number of the fluorescent glass element 10 is provided.

【0016】そして、以上のように蛍光ガラス素子本体
11を一組の支持枠体12,13で支持してなる図2に
示す蛍光ガラス素子10は、放射線作業従事者や利用者
などが携行可能なようにカプセル20に収納される。
The fluorescent glass element 10 shown in FIG. 2 in which the fluorescent glass element main body 11 is supported by the pair of support frames 12 and 13 as described above can be carried by radiation workers and users. How it is stored in the capsule 20.

【0017】この蛍光ガラス素子10の収納後、このカ
プセル20には、支持枠体13の開口部16aに対面す
る位置となる例えば内壁部分にγ線・X線エネルギー補
償フィルタ21と3MeV以上の高エネルギーγ線によ
ってフィルタ21から発生する2次電子を吸収し、か
つ、自身から2次電子を出さない物質(以下、2次電子
吸収材と呼ぶ)22とが積層配設されている。なお、2
次電子吸収材22は単層或いは2層以上の積層構造でも
よい。
After the fluorescent glass element 10 is stored, the capsule 20 has a γ-ray / X-ray energy compensating filter 21 at a position facing the opening 16 a of the support frame 13, for example, at an inner wall, and a high energy of 3 MeV or more. A substance (hereinafter, referred to as a secondary electron absorbing material) 22 that absorbs secondary electrons generated from the filter 21 by energy γ-rays and does not emit secondary electrons from itself is laminated and disposed. In addition, 2
The secondary electron absorbing material 22 may have a single layer or a laminated structure of two or more layers.

【0018】また、支持枠体13の開口部16bと対面
するカプセル20の該当部分にはγ線・X線エルネギー
補償フィルタ23が配設されている。なお、このγ線・
X線エルネギー補償フィルタ23には前記2次電子吸収
材に相当するものを積層してもよく、或いは積層しなく
てもよい。
A γ-ray / X-ray energy compensating filter 23 is provided at a corresponding portion of the capsule 20 facing the opening 16 b of the support frame 13. In addition, this γ-ray
The X-ray energy compensating filter 23 may or may not have a layer corresponding to the secondary electron absorbing material.

【0019】さらに、支持枠体13の開口部16c,1
6dと対面するカプセル20の該当部分にはそれぞれ開
口部が設けられ、この開口部分には3〜50mg/cm2
樹脂フィルタを張設したβ線検出用窓24,25が設け
られている。つまり、一方の窓24(または25)には
β線エネルギーに対してほぼ均一の感度特性を示す樹脂
フィルタを張り付け、他方の窓25(または24)には
β線エネルギーに対して変化する感度特性を示す樹脂フ
ィルタを張り付け、これら両者の感度比を利用してβ線
を求めるものである(特開昭64−86087号公報参
照)。
Further, the openings 16c, 1 of the support frame 13 are provided.
Openings are respectively provided in corresponding portions of the capsule 20 facing 6d, and β-ray detection windows 24 and 25 provided with resin filters of 3 to 50 mg / cm 2 are provided in these openings. That is, a resin filter exhibiting a substantially uniform sensitivity characteristic with respect to β-ray energy is attached to one window 24 (or 25), and a sensitivity characteristic varying with respect to β-ray energy is applied to the other window 25 (or 24). A β-ray is obtained by utilizing the sensitivity ratio of the two (see JP-A-64-86087).

【0020】なお、検出用フィルタや検出用窓を設ける
ことおよびその数は何れの放射線を検出測定するかで決
定される。
The provision of the detection filter and the detection window and the number thereof are determined by which radiation is to be detected and measured.

【0021】次に、本発明に係わる線量計と従来の線量
計とを比較し、その違いを説明する。カプセル20の該
当部分にエネルギー補償用フィルタ21として鉛Pb,
錫Snおよび銅Cuフィルタを設け、また2次電子吸収
材22としてプラスチックPl,アルミニウムAlを設
け、これを3MeV以上の高エネルギーγ線,例えば16
N−γ線(6.1MeV)と、基準とするγ線,例えば
137 Cs−γ線(0.66MeV)とをそれぞれ照射
し、これら両照射による蛍光ガラス素子10から得られ
る蛍光検出量の比を求めると、図3のような結果が得ら
れる。
Next, the difference between the dosimeter according to the present invention and the conventional dosimeter will be described, and the difference will be described. Lead Pb as an energy compensating filter 21
Tin Sn and copper Cu filter is provided, also plastic Pl as a secondary electron absorbing material 22, aluminum Al is provided, which 3MeV more high-energy γ rays, for example, 16
N-γ rays (6.1 MeV) and a reference γ ray, for example,
Irradiation with 137 Cs-γ rays (0.66 MeV) was performed, and the ratio of the amount of fluorescence detected from the fluorescent glass element 10 by the two irradiations was determined. The result shown in FIG. 3 was obtained.

【0022】この図3は、実際の測定状態を模擬してフ
ァントム上に蛍光ガラス線量計を設置した後、16N−γ
線および137 Cs−γ線を同じ線量だけ照射し、16N−
γ線に対応する蛍光検出量と137 Cs−γ線に対応する
蛍光検出量の比,つまり蛍光検出量比を示す図である。
FIG. 3 shows a state in which a fluorescent glass dosimeter is set on a phantom to simulate an actual measurement state, and then the 16 N-γ
And 137 Cs-γ-rays at the same dose, 16 N-
Fluorescence detection of the ratio corresponding to the fluorescence detection amount and the 137 Cs-gamma rays corresponding to gamma rays, that is a diagram illustrating a fluorescence detection amount ratio.

【0023】この図3から明らかなように、サンプルN
O.1〜NO.3のようなエネルギー補償用フィルタの
みの従来の線量計の場合、エネルギー補償用フィルタと
高エネルギーγ線との相互作用によって2次電子が発生
し、蛍光ガラス素子10からの蛍光検出量が増大し、測
定精度の低下を招く問題がある。
As apparent from FIG. 3, the sample N
O. 1 to NO. In the case of the conventional dosimeter having only the energy compensating filter as in No. 3, secondary electrons are generated due to the interaction between the energy compensating filter and the high-energy γ-rays, and the amount of fluorescence detected from the fluorescent glass element 10 increases. However, there is a problem that the measurement accuracy is reduced.

【0024】これに対し、エネルギー補償用フィルタ2
1と蛍光ガラス素子10との間に2次電子吸収材22を
配設した蛍光ガラス素子の場合は、特にサンプルNO.
6,NO.9およびNO.13に示すように、蛍光ガラ
ス素子10の蛍光検出量比が小さいことから、基準γ線
137 Cs−γ線)に対して蛍光検出量の差がなくな
り、高い測定精度が得られていることが分かる。
On the other hand, the energy compensating filter 2
In the case of a fluorescent glass element in which the secondary electron absorbing material 22 is disposed between the fluorescent glass element 10 and the fluorescent glass element 10, the sample NO.
6, NO. 9 and NO. As shown in FIG. 13, since the fluorescence detection ratio of the fluorescent glass element 10 is small, there is no difference in the fluorescence detection amount with respect to the reference γ-ray ( 137 Cs-γ-ray), and high measurement accuracy is obtained I understand.

【0025】なお、以上の実施例では、エネルギー補償
用フィルタとして鉛Pb,錫Snおよび銅Cuの何れ
か、或いはこれらの組合わせを使用し、また2次電子吸
収材22としてプラスチックPl,アルミニウムAlの
何れか、或いはこれらの組合わせを上げたが、これらの
材質,厚さおよび配置方法は設計段階で適宜決定される
ものである。要は、本目的である例えば3MeV以上の
高エネルギーγ線と、基準γ線(137 Cs−γ線)の蛍
光検出量の差がないものであればよい。
In the above embodiment, any one of lead Pb, tin Sn and copper Cu or a combination thereof is used as an energy compensating filter, and plastic Pl and aluminum Al are used as the secondary electron absorbing material 22. Or any combination thereof, but the material, thickness, and arrangement method thereof are appropriately determined at the design stage. In short, it is sufficient that there is no difference between the amount of fluorescence detection of the high-energy γ-ray of 3 MeV or more, which is the object of the present invention, and the reference γ-ray ( 137 Cs-γ-ray).

【0026】次に、β線の検出方法は、先ず、混在する
γ線,X線を前述するフィルタ21,23に対応する蛍
光ガラス素子本体11の蛍光検出量から求めた後、β線
検出用窓24,25に位置する蛍光ガラス素子本体11
からの蛍光検出量から先に求めた蛍光検出量を差し引く
ことにより検出する。
Next, the method of detecting β-rays is as follows. First, mixed γ-rays and X-rays are obtained from the amount of fluorescence detected by the fluorescent glass element body 11 corresponding to the filters 21 and 23 described above. Fluorescent glass element body 11 located at windows 24 and 25
Is detected by subtracting the previously detected fluorescence detection amount from the fluorescence detection amount from

【0027】そして、前述したように一方の窓24(ま
たは25)側には図4の曲線Aに示すようなβ線エネル
ギーに対してほぼ均一の感度特性を示す樹脂フィルタを
張り付け、他方の窓25(または24)側には図4の曲
線Bに示すような感度特性を有する樹脂フィルタを張り
付ければ、これら両者の感度比によってβ線エネルギー
を求めることができる。つまり、このβ線エネルギーに
対する蛍光ガラス素子本体11の感度からβ線を求める
ことが可能である。
As described above, a resin filter exhibiting substantially uniform sensitivity characteristics to β-ray energy as shown by a curve A in FIG. 4 is attached to one window 24 (or 25) side, and the other window 24 (or 25). If a resin filter having a sensitivity characteristic as shown by the curve B in FIG. 4 is attached to the 25 (or 24) side, the β-ray energy can be obtained from the sensitivity ratio of these two. That is, β-rays can be obtained from the sensitivity of the fluorescent glass element body 11 to the β-ray energy.

【0028】ところで、蛍光ガラス線量計においては、
3MeV以上の高エネルギーγ線の線量測定精度だけが
良好であっても、それ以下のエネルギー域のγ線・X線
の線量測定精度が良好でなければ、β線の線量測定精度
が良好でなくなることは言うまでもない。
By the way, in a fluorescent glass dosimeter,
Even if only the dose measurement accuracy of high-energy γ-rays of 3 MeV or more is good, the dose measurement accuracy of β-rays will not be good unless the dose measurement accuracy of γ-rays and X-rays in the lower energy range is good. Needless to say.

【0029】そこで、3MeV以上の高エネルギーγ線
に対応したエネルギー補償用フィルタ21と2次電子吸
収材22とを組合わせた蛍光ガラス線量計を用いて、3
MeV以下のエネルギー域におけるγ線・X線の蛍光検
出量と、基準γ線(137 Cs−γ線)の蛍光検出量との
比が小さいものを調べたところ、図3のサンプルNO.
13の組合わせのフィルタのとき、32keV〜16
(6.1MeV)のγ線・X線エネルギー域におけるγ
線・X線の蛍光検出量と、基準γ線(137 Cs−γ線)
の蛍光検出量との比が±10%以内となり、良好である
ことが確認される。従って、これによってβ線の線量測
定精度も良好な結果が得られる。
Then, using a fluorescent glass dosimeter in which an energy compensating filter 21 and a secondary electron absorbing material 22 corresponding to a high energy γ-ray of 3 MeV or more are combined, a fluorescent glass dosimeter is used.
When the ratio of the fluorescence detection amount of γ-rays and X-rays in the energy range of MeV or lower to the fluorescence detection amount of the reference γ-ray ( 137 Cs-γ-ray) was small, the sample NO.
For a combination of 13 filters, 32 keV to 16 N
Γ in the (6.1 MeV) γ-ray / X-ray energy range
X-ray fluorescence detection amount and reference γ-ray ( 137 Cs-γ-ray)
Is within ± 10%, confirming that it is good. Accordingly, this also provides a result with good β-ray dose measurement accuracy.

【0030】なお、上記実施例では、γ線・X線および
β線の各放射線量の測定に適用したが、それ以外の放射
線の線量測定を含むものであってもよい。
In the above embodiment, the present invention is applied to the measurement of each radiation dose of γ-rays, X-rays, and β-rays.

【0031】その他、本発明はその要旨を逸脱しない範
囲で種々変形して実施できる。
In addition, the present invention can be variously modified and implemented without departing from the gist thereof.

【0032】[0032]

【発明の効果】以上説明したように本発明によれば、少
くとも一個のエネルギー補償用フィルタと蛍光ガラス素
子本体との間に、3MeV以上の高エネルギーγ線に起
因する前記エネルギー補償用フィルタから発生する2次
電子を吸収し、かつ、自身で2次電子を放出しない2次
電子吸収材を単層または複層にわたって配設し、さらに
同一の蛍光ガラス素子本体の別の2個所または独立した
2つの蛍光ガラス素子本体と対面する位置に3〜50mg
/cm2 の樹脂フィルタの窓部を張設したことにより、高
エネルギーγ線,X線およびβの各放射線量を同時に高
精度に分離測定することができる。
As described above, according to the present invention, between at least one energy compensating filter and the fluorescent glass element main body, the energy compensating filter caused by high energy γ-rays of 3 MeV or more is used. A secondary electron absorbing material that absorbs generated secondary electrons and does not emit secondary electrons by itself is disposed over a single layer or a plurality of layers. 3-50mg at the position facing two fluorescent glass elements
Since the resin filter window of / cm 2 is stretched, high-energy γ-rays, X-rays, and β radiation doses can be simultaneously separated and measured with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる蛍光ガラス線量計のうち、蛍光
ガラス素子本体と支持枠体との関係を示す分解斜視図。
FIG. 1 is an exploded perspective view showing a relationship between a fluorescent glass element main body and a support frame in a fluorescent glass dosimeter according to the present invention.

【図2】蛍光ガラス素子を収納するフィルターケースの
外観図。
FIG. 2 is an external view of a filter case accommodating a fluorescent glass element.

【図3】2次電子吸収材の有無における蛍光検出量比を
示す図。
FIG. 3 is a diagram showing a fluorescence detection amount ratio with and without a secondary electron absorbing material.

【図4】各樹脂フィルタの厚さを変えたときの蛍光ガラ
ス素子本体のβ線エネルギーに対する感度特性を示す曲
線図。
FIG. 4 is a curve diagram showing sensitivity characteristics of the fluorescent glass element body to β-ray energy when the thickness of each resin filter is changed.

【符号の説明】[Explanation of symbols]

10…蛍光ガラス素子、11…蛍光ガラス素子本体、1
2,13…支持枠体、14a〜14d,16a〜16d
…開口部、20…カプセル、21…γ線・X線エネルギ
ー補償用フィルタ、22…2次電子吸収材、23…γ線
・X線エネルギー補償用フィルタ、24,25…β線検
出用窓。
10: fluorescent glass element, 11: fluorescent glass element body, 1
2, 13 ... support frame, 14a to 14d, 16a to 16d
... Opening, 20 capsule, 21 γ-ray / X-ray energy compensation filter, 22 secondary electron absorber, 23 γ-ray / X-ray energy compensation filter, 24, 25 β-ray detection window.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 放射線の照射によって活性化され、か
つ、紫外線の励起によって蛍光を発する一体または別体
の蛍光ガラス素子本体を用いて所望のγ線,X線および
β線を分離測定する蛍光ガラス線量計において、 前記一体の蛍光ガラス素子本体の2個所または前記別体
の2つの蛍光ガラス素子本体と対面する位置に配置さ
れ、γ線およびX線のエネルギー補償を行うエネルギー
補償用フィルタと、 前記蛍光ガラス素子本体と前記γ線およびX線のうち
なくとも何れか一方の前記エネルギー補償用フィルタと
の間に配設され、3MeV以上の高エネルギーγ線の照
によって前記エネルギー補償用フィルタから発生する
2次電子を吸収して前記蛍光ガラス素子本体の過剰応答
を抑える2次電子吸収材と、 前記一体の蛍光ガラス素子本体の別の2個所または前記
別体のさらに2つの蛍光ガラス素子本体の両面または片
面に対面する位置に前記β線を分離測定可能に設けられ
3〜50mg/cm2 の樹脂フィルタが張設された窓部
と、 を備えたことを特徴とする蛍光ガラス線量計。
1. A fluorescent glass which is activated by irradiation of radiation and separates and measures desired γ-rays, X-rays and β-rays using an integrated or separate fluorescent glass element body which emits fluorescence by excitation of ultraviolet rays. In the dosimeter, an energy compensating filter arranged at two locations of the integrated fluorescent glass element main body or at a position facing the two separate fluorescent glass element main bodies and performing energy compensation of γ-rays and X-rays, The fluorescent glass element body and a small amount of the γ-rays and X-rays
At least one of the energy-compensating filters, and absorbs secondary electrons generated from the energy-compensating filter by irradiation of high-energy γ-rays of 3 MeV or more to absorb the secondary electrons . Excessive response
A secondary electron absorbing material, and the β ray can be separated and measured at another two places of the integrated fluorescent glass element main body or at a position facing both surfaces or one surface of two separate fluorescent glass element main bodies. Provided
3. A fluorescent glass dosimeter, comprising: a window on which a resin filter of 3 to 50 mg / cm 2 is stretched.
JP5244203A 1993-09-30 1993-09-30 Fluorescent glass dosimeter Expired - Fee Related JP2815529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5244203A JP2815529B2 (en) 1993-09-30 1993-09-30 Fluorescent glass dosimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5244203A JP2815529B2 (en) 1993-09-30 1993-09-30 Fluorescent glass dosimeter

Publications (2)

Publication Number Publication Date
JPH0798382A JPH0798382A (en) 1995-04-11
JP2815529B2 true JP2815529B2 (en) 1998-10-27

Family

ID=17115308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5244203A Expired - Fee Related JP2815529B2 (en) 1993-09-30 1993-09-30 Fluorescent glass dosimeter

Country Status (1)

Country Link
JP (1) JP2815529B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5095254B2 (en) * 2007-04-06 2012-12-12 株式会社千代田テクノル Multilayer radiation measuring instrument
WO2017177338A1 (en) 2016-04-13 2017-10-19 Dalhousie University Tissue-equivalent dosimeter
CN108152853A (en) * 2018-03-08 2018-06-12 北京聚合信机电有限公司 Counting tube energy compensation system
JP2021128114A (en) * 2020-02-17 2021-09-02 日本電気硝子株式会社 Glass dosemeter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6486087A (en) * 1986-06-09 1989-03-30 Toshiba Glass Kk Fluorescent glass dosemeter composite element
JPS6415921A (en) * 1987-07-09 1989-01-19 Sharp Kk X-ray exposure method

Also Published As

Publication number Publication date
JPH0798382A (en) 1995-04-11

Similar Documents

Publication Publication Date Title
Bhatt Thermoluminescence, optically stimulated luminescence and radiophotoluminescence dosimetry: an overall perspective
Flakus Detecting and Measuring Ionizing Radiation- A Short History.
Clark The intrinsic scintillation efficiency of plastic scintillators for 60Co gamma excitation
JP2815529B2 (en) Fluorescent glass dosimeter
US2933605A (en) Fast neutron film dosimeter
Bland et al. Determination of 239Pu and 241Am LX-ray intensities using a Simplex method for fitting peaks
Pruitt et al. Calibration of beta-particle radiation instrumentation and sources
Bernard et al. Silver Metaphosphate Glass for X-ray Measurements in Coexistent Neutron and γ-radiation Fields
US9081101B2 (en) Sensitive charge for passive dosimetry, dosimeter comprising such a sensitive charge and system for reading by illumination for such a sensitive charge
Rajan et al. Radiation monitoring instruments
JP3064538B2 (en) Fluorescent glass dosimeter
Novotny et al. Characterization of the Si (Li) detector for Monte Carlo calculations of beta spectra
Harrison A neutron dosimeter based on 237Np fission
Isaksson Radiometry
Becker Long-term stability of film, TLD, and other integrating dosimeters in warm and humid climates
Bakshi et al. Monitoring of External Neutron Exposures
Ipe et al. Characterisation of the low-energy X ray response of Polish TLDs to synchrotron radiation and the determination of some TLD quantities
Saha Essential Equipment in Radiation Safety
Kathren External beta-photon dosimetry for radiation protection
Ehrlich A photographic personnel dosimeter for X-radiation in the range from 30 KeV to beyond 1 MeV
Brisbane et al. Photographic Dosimetry: An Annotated Bibliography
Carlson et al. Particle size effect in CaF/sub 2: Mn/Teflon TLD response at photon energies from 5-1250 keV
Domenech et al. Measuring Instruments and Methods
Datsko et al. Absolute calibration of X-ray films using synchrotron radiation
Glenn et al. The Hanford Critical Radiation Dosimeter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080814

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080814

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080814

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090814

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100814

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees