JP2812455B2 - Measurement electrode - Google Patents

Measurement electrode

Info

Publication number
JP2812455B2
JP2812455B2 JP2406929A JP40692990A JP2812455B2 JP 2812455 B2 JP2812455 B2 JP 2812455B2 JP 2406929 A JP2406929 A JP 2406929A JP 40692990 A JP40692990 A JP 40692990A JP 2812455 B2 JP2812455 B2 JP 2812455B2
Authority
JP
Japan
Prior art keywords
conductive
support
electrode
filament
measurement electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2406929A
Other languages
Japanese (ja)
Other versions
JPH04223257A (en
Inventor
有一 入谷
明 宮崎
辰生 鈴木
秀雄 泉地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP2406929A priority Critical patent/JP2812455B2/en
Publication of JPH04223257A publication Critical patent/JPH04223257A/en
Application granted granted Critical
Publication of JP2812455B2 publication Critical patent/JP2812455B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は例えば酵素サンサーに用
いられる測定用電極に関し、さらに詳しくは、感度と応
答性とに優れた測定用電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring electrode used for, for example, an enzyme sensor, and more particularly to a measuring electrode having excellent sensitivity and responsiveness.

【0002】[0002]

【従来の技術】従来から、酵素を固定した高分子膜状物
と測定用電極とで電子移行を行なわせ、酵素反応を検出
する酵素センサーが開発されている。
2. Description of the Related Art Conventionally, an enzyme sensor for detecting an enzyme reaction by transferring electrons between a polymer film on which an enzyme is immobilized and a measurement electrode has been developed.

【0003】その測定用電極としては金属製や炭素材料
製の棒状体あるいは筒状体などが用いられているが、こ
のような電極を用いた酵素センサーには応答性や感度の
点で改良の余地が残されている。
As a measuring electrode, a rod or a cylinder made of a metal or a carbon material is used, and an enzyme sensor using such an electrode is improved in terms of responsiveness and sensitivity. Room remains.

【0004】本発明は上記事情に鑑みてなされたもので
ある。
[0004] The present invention has been made in view of the above circumstances.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、より
優れた感度と応答性とを有する測定用電極を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a measuring electrode having higher sensitivity and responsiveness.

【0006】[0006]

【前記課題を解決するための手段】前記目的を達成する
ための本発明は、非導電性の支持体中に複数の導電性フ
ィラメントが平行に埋設されるとともに、該複数の導電
性フィラメントが前記支持体の一端部より突出している
ことを特徴とする測定用電極である。
According to the present invention for achieving the above object, a plurality of conductive filaments are embedded in a non-conductive support in parallel, and the plurality of conductive filaments are embedded in the non-conductive support. It is a measurement electrode which protrudes from one end of the support.

【0007】また、前記導電性フィラメントは、炭素繊
維のフィラメントまたは表面に金属膜を形成した炭素繊
維であるのが好適である。
Preferably, the conductive filament is a carbon fiber filament or a carbon fiber having a metal film formed on the surface.

【0008】[0008]

【作用】本発明の測定用電極は、非導電性の支持体中に
複数の導電性フィラメントが平行に埋設されるととも
に、該複数の導電性フィラメントが前記支持体の一端部
より突出している。
In the measuring electrode of the present invention, a plurality of conductive filaments are embedded in a non-conductive support in parallel, and the plurality of conductive filaments protrude from one end of the support.

【0009】このような測定用電極は、いわば多数のフ
ィラメント状微小電極の集合体であり、例えば酵素セン
サーとして用いると、各導電性フィラメントが作用電極
として作用するので、高速応答性と優れた感度とを発揮
することができる。
Such an electrode for measurement is a so-called aggregate of a large number of filamentary microelectrodes. For example, when used as an enzyme sensor, each conductive filament acts as a working electrode, so that high-speed response and excellent sensitivity are achieved. And can be demonstrated.

【0010】[0010]

【実施例】−測定用電極の構造− 本発明の測定用電極は、図1に示すように、基本的に非
導電性の支持体1中に複数の導電性フィラメント2を平
行に埋設し、かつ該複数の導電性フィラメント2を前記
支持体1の一端部1aより突出させてなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS-Structure of Measurement Electrode-The measurement electrode of the present invention, as shown in FIG. 1, has a plurality of conductive filaments 2 embedded in a non-conductive support 1 in parallel. Further, the plurality of conductive filaments 2 are made to protrude from one end 1 a of the support 1.

【0011】各構成要素の詳細は以下の通りである。The details of each component are as follows.

【0012】−支持体−本発明に用いる支持体として
は、絶縁性を備えている限りその材質に特に制限はな
く、例えばエポキシ、ポリイミド、ポリウレタン、ポリ
エチレン、ポリ塩化ビニルなどの樹脂;シリコン、アル
ミニウム、チタンなどの酸化物、窒化物、炭化物;各種
セラミックスならびに各種サーメットなどを挙げること
ができる。
-Support-The support used in the present invention is not particularly limited as long as it has an insulating property. For example, resins such as epoxy, polyimide, polyurethane, polyethylene and polyvinyl chloride; silicon, aluminum , Oxides such as titanium, nitrides and carbides; various ceramics and various cermets.

【0013】前記支持体の長さ、径、形状については、
測定用電極の使用目的に応じて適宜に設定されるもので
あり、特に制約はない。
Regarding the length, diameter and shape of the support,
It is appropriately set according to the purpose of use of the measurement electrode, and is not particularly limited.

【0014】−導電性フィラメント− 前記支持体に端部を除いて埋設される導電性フィラメン
トとしては、導電性を備えている限り任意の材料のフィ
ラメントを用いることが可能である。
-Conductive Filament- As the conductive filament buried in the support except for the end, a filament of any material can be used as long as it has conductivity.

【0015】その材料を挙げると、炭素繊維;白金や
金、銀等に代表される金属;導電性高分子などがある。
これらのうちでも、炭素繊維が特に好ましい。
Examples of the material include carbon fiber; metals represented by platinum, gold, silver and the like; conductive polymers.
Among these, carbon fibers are particularly preferred.

【0016】炭素繊維が特に好ましい理由としては、導
電性が良好であることに加え、酵素センサーなどに用い
た場合に水素や酸素ガス発生の過電圧が大きいこと、電
極の先端表面から突出したフィラメント間に、酵素や電
子伝達物質等を含む機能性材料を保持・固定し易いこ
と、繊維径を3μmから100 μmと自由に選択すること
ができること、任意の断面形状のものが選べること、な
どを挙げることができる。
The reason why carbon fibers are particularly preferable is that, in addition to good conductivity, a large overvoltage for generating hydrogen or oxygen gas when used in an enzyme sensor, etc. In addition, it is easy to hold and fix functional materials including enzymes and electron mediators, that the fiber diameter can be freely selected from 3 μm to 100 μm, and that any fiber with any cross-sectional shape can be selected. be able to.

【0017】なお、導電性フィラメントとして上記の金
属フィラメントが望ましい場合があるが、細い金属フィ
ラメントでは直径20μm前後にすると、切れ易いとい
う問題がある。
The above-mentioned metal filament may be desirable as the conductive filament in some cases. However, if the diameter of the thin metal filament is about 20 μm, it is easy to break.

【0018】このような場合も、上記炭素繊維の表面に
目的とする金属膜を蒸着、電着あるいは無電解メッキな
どの手段により形成させれば、容易に金属フィラメント
を製作することができる。しかも、この金属フィラメン
トは下地フィラメントが金属である場合と異なり、目的
金属膜のピンホールの有無は問題とならない。
In such a case, a metal filament can be easily manufactured by forming a target metal film on the surface of the carbon fiber by means of vapor deposition, electrodeposition or electroless plating. In addition, unlike the case where the base filament is a metal, the presence or absence of a pinhole in the target metal film does not matter.

【0019】本発明に用いる導電性フィラメントは前述
したように、支持体の一端部より突出しているが、その
突出部分の長さ、導電性フィラメント同士の間隔、導電
性フィラメントの径を目的に応じて制御することが可能
である。
As described above, the conductive filament used in the present invention protrudes from one end of the support, and the length of the protruding portion, the interval between the conductive filaments, and the diameter of the conductive filament are determined according to the purpose. Can be controlled.

【0020】例えば、図1および図3において、各導電
性フィラメントの径をd、導電性フィラメント同士の間
隔をS、突出部分の長さをkとすれば、kおよびdを被
測定物質の拡散層の厚さよりも小さく、Sを被測定物質
の拡散層の厚さよりも大きくすると、高速応答性(π方
向)が得られる。
For example, in FIGS. 1 and 3, if the diameter of each conductive filament is d, the interval between the conductive filaments is S, and the length of the protruding portion is k, k and d are the diffusion of the substance to be measured. When the thickness is smaller than the thickness of the layer and S is larger than the thickness of the diffusion layer of the substance to be measured, high-speed response (π direction) can be obtained.

【0021】また、kがdに比べて大きければ大きい
程、より高い感度を得ることができる。
Further, the higher the value of k is compared with the value of d, the higher the sensitivity can be obtained.

【0022】−測定用電極の応用− 本発明の測定用電極は、例えば酵素サンサーの作用電極
として好適に用いることができる。
-Application of Measurement Electrode- The measurement electrode of the present invention can be suitably used, for example, as a working electrode of an enzyme sensor.

【0023】例えば図4に示す酵素センサーは、作用電
極である本発明の測定用電極Aと、この側面に形成した
対照電極3とを備えている。
For example, the enzyme sensor shown in FIG. 4 includes a measuring electrode A of the present invention, which is a working electrode, and a control electrode 3 formed on this side surface.

【0024】測定用電極Aの先端部1aから突出した導
電性フィラメント2は、機能性材料としての高分子膜状
物4に埋め込まれている。
The conductive filament 2 projecting from the tip 1a of the measurement electrode A is embedded in a polymer film 4 as a functional material.

【0025】高分子膜状物4は、例えば高分子マトリッ
クス中に酵素および/または酸化還元物質を固定してな
るもので、酸化還元物質および/または酵素は、そのま
ま高分子マトリックス中に添加してもよいが、好ましく
は高分子材料に共有結合により固定し、得られる固定粒
子を高分子マトリックス中に配合するのがよい。もちろ
ん、本発明の測定用電極の特徴として、上記酸化還元物
質および/または酵素を導電性フィラメントの表面に直
接固定することも可能である。
The polymer film 4 is formed, for example, by immobilizing an enzyme and / or a redox substance in a polymer matrix. The redox substance and / or the enzyme are directly added to the polymer matrix. However, it is preferable that the particles are fixed to a polymer material by a covalent bond, and the obtained fixed particles are blended in a polymer matrix. Of course, as a feature of the measurement electrode of the present invention, the redox substance and / or the enzyme can be directly immobilized on the surface of the conductive filament.

【0026】かかる酵素センサーによる測定では、まず
被検体中の生化学物質、例えば試料溶液中のグルコース
が前記高分子膜状物中の酸化型の酵素により酵素反応を
受け、グルコノラクトンと水素イオンとに変化する。こ
れにより酵素は還元型酵素に変わる。次に、この還元型
酵素は酸化型の酸化還元物質と反応して、再び酸化型酵
素に変化する一方、酸化型の酸化還元物質は還元型に変
化する。この還元型の酸化還元物質は作用電極に電子を
放出し、再び酸化型に変化する。その結果、作用電極と
対照電極との間にグルコース濃度に比例した電流が流
れ、この電流値によって間接的にグルコース濃度が決定
される。
In the measurement using such an enzyme sensor, first, a biochemical substance in a subject, for example, glucose in a sample solution is subjected to an enzymatic reaction by an oxidized enzyme in the polymer film, and gluconolactone and hydrogen ion To change. This converts the enzyme into a reduced enzyme. Next, the reduced enzyme reacts with the oxidized redox substance and changes to the oxidized enzyme again, while the oxidized redox substance changes to the reduced form. The reduced redox substance emits electrons to the working electrode and changes to the oxidized form again. As a result, a current proportional to the glucose concentration flows between the working electrode and the control electrode, and the glucose value is indirectly determined by the current value.

【0027】[0027]

【発明の効果】本発明の測定用電極は、非導電性の支持
体中に複数の導電性フィラメントを平行に埋設し、該導
電性フィラメントを前記支持体の一端部より突出させる
ものであり、目的に応じてその形状を制御することが可
能であるので、例えば酵素センサーの作用電極として用
いた場合に、優れた感度と応答性とを発揮することがで
きる。
According to the measurement electrode of the present invention, a plurality of conductive filaments are buried in parallel in a non-conductive support, and the conductive filaments protrude from one end of the support. Since the shape can be controlled according to the purpose, when used as a working electrode of an enzyme sensor, for example, excellent sensitivity and responsiveness can be exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の測定用電極の概略的説明図である。FIG. 1 is a schematic explanatory view of a measurement electrode of the present invention.

【図2】本発明の測定用電極の一例を示す斜視図であ
る。
FIG. 2 is a perspective view showing an example of a measurement electrode of the present invention.

【図3】図2のIII −III 線に沿う断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. 2;

【図4】本発明の測定用電極を適用した酵素センサーの
一例を示す断面図である。
FIG. 4 is a sectional view showing an example of an enzyme sensor to which the measurement electrode of the present invention is applied.

【符号の説明】[Explanation of symbols]

1 支持体 1a 支持体の一端部 2 導電性フィラメント DESCRIPTION OF SYMBOLS 1 Support 1a One end of support 2 Conductive filament

───────────────────────────────────────────────────── フロントページの続き (72)発明者 泉地 秀雄 東京都渋谷区恵比寿3丁目43番2号 日 機装株式会社内 (56)参考文献 特開 平2−140656(JP,A) 特開 平1−97852(JP,A) 特開 昭64−44841(JP,A) 特開 平2−110362(JP,A) 特開 平2−1536(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01N 27/30 G01N 27/327──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hideo Izumi 3-43-2 Ebisu, Shibuya-ku, Tokyo Nikkiso Co., Ltd. (56) References JP-A-2-140656 (JP, A) JP-A JP-A-1-97852 (JP, A) JP-A-64-44841 (JP, A) JP-A-2-110362 (JP, A) JP-A-2-1536 (JP, A) (58) Fields investigated (Int .Cl. 6 , DB name) G01N 27/30 G01N 27/327

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 非導電性の支持体中に複数の導電性フィ
ラメントが平行に埋設されるとともに、該複数の導電性
フィラメントが前記支持体の一端部より突出しているこ
とを特徴とする測定用電極。
1. A measuring method, wherein a plurality of conductive filaments are embedded in a non-conductive support in parallel, and the plurality of conductive filaments protrude from one end of the support. electrode.
【請求項2】 前記導電性フィラメントが、炭素繊維の
フィラメントまたは表面に金属膜を形成した炭素繊維で
ある請求項1に記載の測定用電極。
2. The measurement electrode according to claim 1, wherein the conductive filament is a carbon fiber filament or a carbon fiber having a metal film formed on a surface thereof.
JP2406929A 1990-12-26 1990-12-26 Measurement electrode Expired - Fee Related JP2812455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2406929A JP2812455B2 (en) 1990-12-26 1990-12-26 Measurement electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2406929A JP2812455B2 (en) 1990-12-26 1990-12-26 Measurement electrode

Publications (2)

Publication Number Publication Date
JPH04223257A JPH04223257A (en) 1992-08-13
JP2812455B2 true JP2812455B2 (en) 1998-10-22

Family

ID=18516547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2406929A Expired - Fee Related JP2812455B2 (en) 1990-12-26 1990-12-26 Measurement electrode

Country Status (1)

Country Link
JP (1) JP2812455B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995004928A1 (en) * 1993-08-11 1995-02-16 Commonwealth Scientific And Industrial Research Organisation A microelectrode assembly
EP0961932A1 (en) * 1996-05-16 1999-12-08 Sendx Medical, Inc. Sensors with subminiature through holes, and method for fabricating such sensors
DE10229210A1 (en) * 2002-06-28 2004-01-29 november Aktiengesellschaft Gesellschaft für Molekulare Medizin Device for the detection of an analyte
WO2007086268A1 (en) * 2006-01-24 2007-08-02 National Institute Of Advanced Industrial Science And Technology Microelectrode and method for manufacturing same
FI20095232A0 (en) * 2009-03-09 2009-03-09 Oulun Yliopisto Multichannel carbon fiber electrode for measuring electrical and chemical activity in biological tissue and electrode production process
US8721850B2 (en) * 2010-02-02 2014-05-13 Roche Diagnostics Operations, Inc. Biosensor and methods for manufacturing
JP5885193B2 (en) * 2012-02-13 2016-03-15 国立研究開発法人産業技術総合研究所 Manufacturing method of heat and pressure resistant and corrosion resistant microelectrode
DE102013004204A1 (en) * 2013-03-12 2014-09-18 Westfälische Wilhelms-Universität Münster Micro three-electrode fluid measuring cell (MDE)

Also Published As

Publication number Publication date
JPH04223257A (en) 1992-08-13

Similar Documents

Publication Publication Date Title
Lei et al. Oxygen‐rich enzyme biosensor based on superhydrophobic electrode
FI96517C (en) Enzyme electrodes and process for their preparation
Malinski et al. Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor
Hrapovic et al. Picoamperometric detection of glucose at ultrasmall platinum-based biosensors: preparation and characterization
JP2740587B2 (en) Micro composite electrode and method of manufacturing the same
Wang et al. Miniaturized glucose sensors based on electrochemical codeposition of rhodium and glucose oxidase onto carbon-fiber electrodes
KR101188172B1 (en) Electrochemical biosensor and method of fabricating the same
JP5120453B2 (en) Carbon electrode, electrochemical sensor, and carbon electrode manufacturing method
US11035820B2 (en) Carbon nanofiber sensor for non-enzymatic glucose detection and methods of glucose detection using such carbon nanofiber sensor
Karube et al. Microbiosensors for acetylcholine and glucose
GB2353363A (en) Electrochemical gas sensor with diamond-like carbon measuring electrode
JP2812455B2 (en) Measurement electrode
WO2016140543A1 (en) Enzyme-based potentiometric glucose detection sensor and method for manufacturing same
Bilitewski et al. Glucose biosensors based on thick film technology
US5256271A (en) Method of immobilizing biofunctional material, and element prepared thereby, and measurement by using the same element
White et al. Investigations of platinized and rhodinized carbon electrodes for use in glucose sensors
US5269903A (en) Microbioelectrode and method of fabricating the same
JP3913289B2 (en) Glucose biosensor
Suzuki et al. Miniature Clark-type oxygen electrode with a three-electrode configuration
Miserendino et al. Electrochemical characterization of parylene-embedded carbon nanotube nanoelectrode arrays
Dong et al. Cobalt‐porphyrin‐nafion film on carbon microarray electrode to monitor oxygen for enzyme analysis of glucose
JP3647309B2 (en) Electrode, method for producing the same, and electrochemical sensor using the electrode
JPH01153952A (en) Enzyme sensor
Hatami et al. Nanoscale Electrochemical Sensors for Intracellular Measurements at the Single Cell
Cheng et al. High‐performance flexible bioelectrocatalysis bioassay system based on a triphase interface

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980630

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees