JP2801984B2 - Magneto-optical storage element - Google Patents

Magneto-optical storage element

Info

Publication number
JP2801984B2
JP2801984B2 JP24872291A JP24872291A JP2801984B2 JP 2801984 B2 JP2801984 B2 JP 2801984B2 JP 24872291 A JP24872291 A JP 24872291A JP 24872291 A JP24872291 A JP 24872291A JP 2801984 B2 JP2801984 B2 JP 2801984B2
Authority
JP
Japan
Prior art keywords
film
thin film
rare earth
transition metal
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24872291A
Other languages
Japanese (ja)
Other versions
JPH0512734A (en
Inventor
明 高橋
賢司 太田
秀嘉 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17182376&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2801984(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP24872291A priority Critical patent/JP2801984B2/en
Publication of JPH0512734A publication Critical patent/JPH0512734A/en
Application granted granted Critical
Publication of JP2801984B2 publication Critical patent/JP2801984B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明はレーザ光により情報の記
録・再生・消去を行う磁気光学記憶素子に関する。 【0002】 【従来の技術】近年、高密度・大容量・高速アクセス等
種々の要求を満足し得る光メモリ装置の研究開発が活発
に推進されている。 【0003】そして既に実用化に達したものとして、記
憶ディスクに微細ピット列を形成し各ピット部における
光ビームの回折現像を利用して再生信号を得る装置、及
び記憶媒体の反射率変化を利用して再生信号を得る装置
がある。しかしながらこれらの装置は再生専用である
か、又は再生及び情報の追加記憶が可能なものに留どま
り、不要な情報を消去し再記憶可能なものについては未
だ研究開発段階にある。 【0004】本発明は上記した、記憶した情報を消去し
新しい情報を再記憶出来る素子として期待される、記憶
材料として希土類一遷移金属の非晶質薄膜を用いた磁気
光学記憶素子に関するものである。 【0005】 【発明が解決しようとする課題】磁気光学記憶素子は上
記の再記憶できるという利点を有する一方で再生信号レ
ベルが低いという欠点がある。特に磁気光学記憶素子か
らの反射光を利用して情報の再生を行う所謂カー効果再
生方式においてはカー回転角が小さいため信号雑音比
(S/N)を高めることが困難であった。その為従来で
は記憶媒体である磁性材料を改良したり、あるいは記憶
媒体上にSiOやSiO2の誘電体薄膜を形成したりし
てカー回転角を高める工夫がなされていた。後者の例と
して例えばTbFeの磁性体薄膜上にSiO膜を形成す
ることによってカー回転角が0.15度から0.6度に
増大した例が報告されている(IEEE Transa
ction Mag Vol−16 No5,1980
P1194)。 【0006】しかしながら上記SiOやSiO2の誘電
体薄膜では、磁性体に腐食の恐れのある場合はその腐食
の実質的な防御とはなり得なく、又1μm程度の小さな
ほこりやゴミが該誘電体薄膜に付着した場合は記録ビッ
ト径が1μm程度であるためビット検出が不可能にな
り、よって上記SiO,SiO2の誘電体薄膜を形成す
ることは実用に適さなかった。そして前記腐食の防御及
びほこりやゴミに対する対策の為には0.5〜2mm程
度のガラス又は透明樹脂を磁性体に被覆することが望ま
しい。しかしこの被覆材では当然ながらカー回転角の増
大は難しく従ってS/Nの増大の効果を得ることも困難
である。 【0007】 【課題を解決するための手段】上記課題を解決するため
に、本発明は基板と、該基板より屈折率が大きい透明誘
電体膜と、膜厚が150Å近傍以上350Å以下の膜面
に垂直な磁化容易軸を有する希土類−遷移金属非晶質薄
膜と、金属材料からなる反射膜と、をこの順に形成し
前記基板側から入射し前記希土類−遷移金属非晶質薄膜
の表面で反射される光と、前記希土類−遷移金属非晶質
薄膜を通り前記反射膜で反射され再び前記希土類−遷移
金属非晶質薄膜を通り抜けた光と、が合成されることに
よってカー回転角を向上せしめることを特徴とする磁気
光学記憶素子である。 【0008】 【作用】本発明は上記の構成を備えたことによって、光
を入射したときにそのカー回転角が増大され、十分に実
用的な磁気光学記憶素子を得る。 【0009】 【実施例】以下、本発明に係る磁気光学記憶素子の一実
施例を図面を用いて詳細に説明する。 【0010】図1は本発明に係る磁気光学記憶素子の一
実施例の側面断面図である。同図で1はガラス、アクリ
ル樹脂等の基板であり厚さは0.5〜2mm程度であ
る。この基板には図示されない凹凸状のガイドトラック
が形成される。2はGdTbFe,TbDyF,GdD
yFe等の、膜面に垂直な磁化容易軸を有する希土類ー
遷移金属非晶質薄膜である。3はAl,Au,Ag,C
u等の反射膜である。基板1側から入射した入射光は上
記非晶質薄膜2の表面で反射され、かつ上記非晶質薄膜
2を通り上記反射膜3で反射される。その為に上記二種
の反射光が合成されることになりカー効果とファラデー
効果が加わり、見かけのカー回転角は上記反射膜3が存
在しない場合に比べて極めて大きなものが得られる。そ
してその結果としてこの磁気光学記憶素子にレーザ光を
照射して得られる情報のS/Nは向上する。 【0011】上記カー回転角の増大率は、使用するレー
ザ光の波長、上記非晶質薄膜2の種類、該非晶質薄膜2
の膜厚及び上記反射膜3の種類によって変化する。 【0012】図2はGdTbFe非晶質薄膜2の膜厚と
カー回転角との関係を各種反射膜に関して示している。
但し、使用したレーザの波長は6328Åである。同図
において示されるカー回転角の値は、反射膜が無い場合
のGdTbFe非晶質薄膜のカー回転角が0.27°で
あることを考えれば、かなり大きく、反射膜を備えたこ
との優位性を表している。 【0013】又、同図では反射膜として膜厚の十分厚い
Al,Au,Cu,Agを用いた。Ag,Au,Cuを
用いた場合は、Alを用いた場合に比較してカー回転角
が大きくしかも互いに略同等の特性となる。これは反射
膜の屈折率の相違による現像である。 【0014】即ち、使用レーザの波長6328Åに於け
るAlの屈折率は1.6−5.4i,Agの屈折率は
0.18−3.3i,Auの屈折率は0.35−3.1
6i,Cuの屈折率は0.62−3.6iであり、A
g,Au,Cuの屈折率は比較的に近く、Alの屈折率
のみが離れた値を有する。この為、GbTbFe非晶質
薄膜の膜厚が350Å以下で、Ag,Au,Cuのいず
れかの反射膜の設けた場合カー回転角は非常に大きく、
上記非晶質薄膜の膜厚が150Å近傍でカー回転角は極
大値をとる。一方、図2に示されるように、反射膜がA
lの場合は他の金属材料に比べればカー回転角は若干小
さくなるが、これとても、GbTbFe非晶質薄膜の膜
厚が150Å近傍以上350Å以下では反射膜が無い場
合に比較してカー回転角が大きくなる。 【0015】 【0016】ここで図面には示されないが、磁気光学記
憶素子には基板1と非晶質薄膜2の間にSiO,TiO
2等の透明誘電体膜が設けられる。この透明誘電体膜の
屈折率は上記基板の屈折率より大きくされ、この透明誘
電体膜の膜厚は略λ/4n(λ:入射レーザ光の波長、
n:透明誘電体膜の屈折率)とされる。こうすれば上記
基板1より入射した光が上記透明誘電体膜の内部で干渉
しカー回転角が増大しS/Nが向上する。この透明誘電
体膜は基板1がアクリル、ポリカーボ等の樹脂の場合は
基板に水を含有する為、ゴミやホコリに対しては防御可
能だが腐食に対して十分な対応が不可能であるために特
に有効である。 【0017】更に、上記非晶質薄膜2と反射膜3の間に
はSiO,SiO2,TiO2,Si34等の断熱層を設
けることができる。こうして断熱層を設けると、記録時
に反射膜への熱の広がりを防ぎ、記録感度を向上するこ
とができる。 【0018】 【発明の効果】以上の本発明によれば、希土類ー遷移金
属非晶質薄膜の持つ本来の長所である、キューリ点が
低く記録感度が高い(その為小形化に不可欠な半導体レ
ーザによる記録が可能)、非晶質のため結晶粒界ノイ
ズがない(その為信号品質が高い)、という点を生かし
ながら、しかも元々希土類ー遷移金属非晶質薄膜自体で
はカー回転角を十分得ることができないという欠点を、
それまで膜厚の厚いものしか用いられなかった希土類ー
遷移金属非晶質薄膜の膜厚を敢えて150Å近傍以上で
350Å以下という極めて薄い膜としてその背後に反射
膜を設けることによってカー回転角を増大せしめたもの
である。 【0019】更に、その構造に加え基板より入射した光
が上記透明誘電体膜の内部で干渉しカー回転角が増大す
るという効果を有する。 【0020】更に、記録膜としては、上記,の大き
な長所によって希土類ー遷移金属を使うことの有用性に
は著しいものがあるものの、この材料には希少金属であ
る希土類金属が含まれているので、非常に高価なものと
なるが、本発明によればそれまで膜厚の厚いものしか用
いられなかった希土類ー遷移金属非晶質薄膜の膜厚を敢
えて150Å近傍以上で350Å以下という極めて薄い
膜としたので材料コストを極力安価に抑えることができ
る。 【0021】更に、記録膜として希土類ー遷移金属材料
を用いた場合、この材料は酸化、腐食により劣化しやす
いが、希土類遷移金属薄膜を透明誘電体と断熱層との間
に配置することで外気との接触を無くして、上記劣化を
回避でき、信頼性を改善することができる。 【0022】以上のように本発明は磁気光学記憶素子の
全体構造として、性能面、コスト面、信頼性のいずれの
点においても十分満足のいく構造を実現しており磁気光
学記憶素子の実用化に対して多大な貢献をするものであ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical storage element for recording, reproducing and erasing information by using a laser beam. 2. Description of the Related Art In recent years, research and development of optical memory devices capable of satisfying various requirements such as high density, large capacity, and high speed access have been actively promoted. As a device which has already been put to practical use, a device for forming a series of fine pits on a storage disk to obtain a reproduction signal by utilizing diffraction development of a light beam in each pit portion, and utilizing a change in reflectance of a storage medium. There is a device that obtains a reproduced signal by performing the above operation. However, these devices are only for reproduction or capable of reproducing and additionally storing information, and those capable of erasing and restoring unnecessary information are still in the research and development stage. The present invention relates to a magneto-optical memory element using an amorphous thin film of a rare earth-transition metal as a storage material, which is expected to be an element capable of erasing stored information and re-recording new information. . [0005] The magneto-optical storage element has the above-mentioned advantage of being able to be re-stored, but has the disadvantage that the reproduced signal level is low. In particular, in the so-called Kerr effect reproducing system in which information is reproduced using reflected light from a magneto-optical storage element, it is difficult to increase the signal-to-noise ratio (S / N) because the Kerr rotation angle is small. For this reason, conventionally, a device has been devised to increase the Kerr rotation angle by improving a magnetic material as a storage medium or forming a dielectric thin film of SiO or SiO 2 on the storage medium. As an example of the latter, there has been reported an example in which a Kerr rotation angle is increased from 0.15 degrees to 0.6 degrees by forming an SiO film on a magnetic thin film of TbFe (IEEE Transa).
ction Mag Vol-16 No5, 1980
P1194). [0006] However, in the dielectric thin film of the SiO and SiO 2, when there is a risk of corrosion in the magnetic material is not obtained becomes Substantial protection of the corrosion, and 1μm about small dust and dirt dielectric When it adheres to the thin film, the bit detection becomes impossible because the recording bit diameter is about 1 μm. Therefore, forming the dielectric thin film of SiO and SiO 2 was not suitable for practical use. It is desirable to coat the magnetic material with glass or transparent resin of about 0.5 to 2 mm in order to prevent the corrosion and take measures against dust and dirt. However, with this coating material, it is naturally difficult to increase the car rotation angle, and it is also difficult to obtain the effect of increasing the S / N. In order to solve the above-mentioned problems, the present invention provides a substrate, a transparent dielectric film having a larger refractive index than the substrate, and a film surface having a film thickness of about 150 ° or more and 350 ° or less. Forming a rare earth-transition metal amorphous thin film having an easy axis of magnetization perpendicular to and a reflection film made of a metal material in this order ,
The rare earth incident from the substrate side - and the light reflected by the surface of the transition metal amorphous film, the rare earth - reflected the transition metal amorphous film was as the reflective film again the rare earth - transition metal amorphous the light passing through the thin film, a magneto-optical storage elements, characterized in that of improving the Kerr rotation angle by is synthesized. According to the present invention, by providing the above structure, the Kerr rotation angle is increased when light is incident, and a sufficiently practical magneto-optical storage element is obtained. An embodiment of a magneto-optical memory device according to the present invention will be described below in detail with reference to the drawings. FIG. 1 is a side sectional view of an embodiment of a magneto-optical memory device according to the present invention. In FIG. 1, reference numeral 1 denotes a substrate made of glass, acrylic resin, or the like, and has a thickness of about 0.5 to 2 mm. An uneven guide track (not shown) is formed on this substrate. 2 is GdTbFe, TbDyF, GdD
It is a rare earth-transition metal amorphous thin film such as yFe having an easy axis of magnetization perpendicular to the film surface. 3 is Al, Au, Ag, C
u is a reflection film. Incident light incident from the substrate 1 is reflected on the surface of the amorphous thin film 2, passes through the amorphous thin film 2, and is reflected on the reflective film 3. For this reason, the two kinds of reflected light are combined, and the Kerr effect and the Faraday effect are added, so that the apparent Kerr rotation angle can be extremely large as compared with the case where the reflective film 3 does not exist. As a result, the S / N of information obtained by irradiating the magneto-optical storage element with laser light is improved. The rate of increase of the Kerr rotation angle depends on the wavelength of the laser beam used, the type of the amorphous thin film 2 and the amorphous thin film 2.
And the type of the reflective film 3. FIG. 2 shows the relationship between the film thickness of the GdTbFe amorphous thin film 2 and the Kerr rotation angle for various reflection films.
However, the wavelength of the laser used was 6328 °. The value of the Kerr rotation angle shown in the figure is considerably large considering that the GdTbFe amorphous thin film has a Kerr rotation angle of 0.27 ° in the absence of the reflection film, which is superior to the provision of the reflection film. Expresses gender. In FIG. 1, Al, Au, Cu, Ag having a sufficiently large thickness are used as the reflection film. When Ag, Au, and Cu are used, the Kerr rotation angle is larger than when Al is used, and the characteristics are substantially the same as each other. This is development due to the difference in the refractive index of the reflection film. That is, at the wavelength of 6328 ° of the laser used, the refractive index of Al is 1.6-5.4i, the refractive index of Ag is 0.18-3.3i, and the refractive index of Au is 0.35-3. 1
6i, the refractive index of Cu is 0.62-3.6i;
The refractive indices of g, Au, and Cu are relatively close, and only the refractive index of Al has a value apart. Therefore, when the thickness of the GbTbFe amorphous thin film is 350 ° or less and a reflective film of Ag, Au, or Cu is provided, the Kerr rotation angle is very large,
When the thickness of the amorphous thin film is around 150 °, the Kerr rotation angle has a maximum value. On the other hand, as shown in FIG.
In the case of l, the Kerr rotation angle is slightly smaller than that of other metal materials. However, when the thickness of the GbTbFe amorphous thin film is not less than 150 ° and not more than 350 °, the Kerr rotation angle is smaller than that in the case where there is no reflective film. Becomes larger. Here, although not shown in the drawings, the magneto-optical memory element includes SiO, TiO between the substrate 1 and the amorphous thin film 2.
A transparent dielectric film such as 2 is provided. The refractive index of the transparent dielectric film is made larger than the refractive index of the substrate, and the thickness of the transparent dielectric film is approximately λ / 4n (λ: wavelength of incident laser light,
n: refractive index of the transparent dielectric film). In this case, the light incident from the substrate 1 interferes inside the transparent dielectric film, the Kerr rotation angle increases, and the S / N improves. When the substrate 1 is made of a resin such as acrylic or polycarbonate, the transparent dielectric film can protect against dust and dust because the substrate contains water, but cannot sufficiently cope with corrosion. Especially effective. Further, a heat insulating layer of SiO, SiO 2 , TiO 2 , Si 3 N 4 or the like can be provided between the amorphous thin film 2 and the reflective film 3. By providing the heat insulating layer in this way, it is possible to prevent heat from spreading to the reflective film during recording, and to improve recording sensitivity. According to the present invention described above, the inherent advantages of a rare earth-transition metal amorphous thin film are that the Curie point is low and the recording sensitivity is high (thus, a semiconductor laser which is indispensable for miniaturization). Recording is possible), and since it is amorphous, there is no crystal grain boundary noise (therefore, the signal quality is high), and the Kerr rotation angle can be sufficiently obtained from the rare-earth-transition metal amorphous thin film itself. The disadvantage of not being able to do
The Kerr rotation angle is increased by providing a reflective film behind the rare earth-transition metal amorphous thin film, which was previously used only as a thick film, as an extremely thin film of not less than 150 ° and not more than 350 °. It is a hurry. Further, in addition to the above structure, there is an effect that light incident from the substrate interferes inside the transparent dielectric film and the Kerr rotation angle increases. Further, although the usefulness of using a rare earth-transition metal as a recording film is remarkable due to the great advantages described above, since this material contains a rare earth metal which is a rare metal, According to the present invention, the thickness of the rare earth-transition metal amorphous thin film, which is very expensive according to the present invention, has been used only until then. Therefore, the material cost can be kept as low as possible. Further, when a rare earth-transition metal material is used as the recording film, this material is liable to be degraded by oxidation and corrosion. Thus, the above-mentioned deterioration can be avoided and the reliability can be improved. As described above, the present invention realizes a structure that satisfies all aspects of performance, cost and reliability as the overall structure of the magneto-optical storage element. It makes a great contribution to

【図面の簡単な説明】 【図1】本発明に係る磁気光学記憶素子の一実施例の側
面断面図である。 【図2】磁気光学記憶素子の特性を示す図である。 【符号の説明】 1 基板 2 非晶質薄膜 3 反射膜
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side sectional view of an embodiment of a magneto-optical storage element according to the present invention. FIG. 2 is a diagram showing characteristics of a magneto-optical storage element. [Description of Signs] 1 Substrate 2 Amorphous thin film 3 Reflective film

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭52−31703(JP,A) 特公 昭40−2619(JP,B1) 特公 昭39−10805(JP,B1) (58)調査した分野(Int.Cl.6,DB名) G11B 11/10 506 G11B 11/10 523──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-52-31703 (JP, A) JP-B-40-2619 (JP, B1) JP-B-39-10805 (JP, B1) (58) Field (Int.Cl. 6 , DB name) G11B 11/10 506 G11B 11/10 523

Claims (1)

(57)【特許請求の範囲】 1.基板と、 該基板より屈折率が大きい透明誘電体膜と、 膜厚が150Å近傍以上350Å以下の膜面に垂直な磁
化容易軸を有する希土類−遷移金属非晶質薄膜と、金属材料からなる反射膜と、をこの順に形成し、 前記基板側から入射し前記希土類−遷移金属非晶質薄膜
の表面で反射される光と、前記希土類−遷移金属非晶質
薄膜を通り前記反射膜で反射され再び前記希土類−遷移
金属非晶質薄膜を通り抜けた光と、が合成されることに
よってカー回転角を向上せしめることを特徴とする磁気
光学記憶素子。
(57) [Claims] A substrate, a transparent dielectric film having a refractive index larger than that of the substrate, a rare earth-transition metal amorphous thin film having an easy axis perpendicular to a film surface having a thickness of about 150 ° or more and 350 ° or less, and a reflection made of a metal material. and film, were formed in this order, wherein the rare earth is incident from the substrate side - and the light reflected by the surface of the transition metal amorphous film, the rare earth - reflected the transition metal amorphous film was as the reflective layer A magneto-optical storage element characterized by improving the Kerr rotation angle by synthesizing the light that has passed through the rare earth-transition metal amorphous thin film again.
JP24872291A 1991-09-27 1991-09-27 Magneto-optical storage element Expired - Lifetime JP2801984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24872291A JP2801984B2 (en) 1991-09-27 1991-09-27 Magneto-optical storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24872291A JP2801984B2 (en) 1991-09-27 1991-09-27 Magneto-optical storage element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10407181A Division JPS586541A (en) 1981-07-02 1981-07-02 Magnetooptic storage element

Publications (2)

Publication Number Publication Date
JPH0512734A JPH0512734A (en) 1993-01-22
JP2801984B2 true JP2801984B2 (en) 1998-09-21

Family

ID=17182376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24872291A Expired - Lifetime JP2801984B2 (en) 1991-09-27 1991-09-27 Magneto-optical storage element

Country Status (1)

Country Link
JP (1) JP2801984B2 (en)

Also Published As

Publication number Publication date
JPH0512734A (en) 1993-01-22

Similar Documents

Publication Publication Date Title
US4414650A (en) Magneto-optic memory element
US4489139A (en) Magneto-optic memory medium
JPS6227458B2 (en)
JPH0789414B2 (en) Optical storage element
JPS586542A (en) Magnetooptic storage element
JPH0444333B2 (en)
JPH034974B2 (en)
JPH0263262B2 (en)
JP2801984B2 (en) Magneto-optical storage element
JPH02779B2 (en)
JPS5938950A (en) Magneto-optic storage element
JPH0479076B2 (en)
JP2921590B2 (en) Magneto-optical recording medium
JPH0512778B2 (en)
JPS60209947A (en) Optomagnetic recording medium
JPS60209946A (en) Optomagnetic recording medium
JPH06349137A (en) Amorphous or quasi-amorphous film structure for optical or magneto-optical data storage medium, optical data storage device and its manufacture
JPH034973B2 (en)
JPH0458662B2 (en)
JPH04318346A (en) Magneto-optical recording medium
JP2908911B2 (en) Magneto-optical storage element
JP2565884B2 (en) Magneto-optical storage element
JP2959645B2 (en) Optical information recording medium
JP2972901B2 (en) Magneto-optical recording medium
JP2787070B2 (en) Magneto-optical recording medium