JP2798681B2 - Optical fiber transmission line - Google Patents

Optical fiber transmission line

Info

Publication number
JP2798681B2
JP2798681B2 JP63247445A JP24744588A JP2798681B2 JP 2798681 B2 JP2798681 B2 JP 2798681B2 JP 63247445 A JP63247445 A JP 63247445A JP 24744588 A JP24744588 A JP 24744588A JP 2798681 B2 JP2798681 B2 JP 2798681B2
Authority
JP
Japan
Prior art keywords
optical
optical fiber
soliton
transmission line
end side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63247445A
Other languages
Japanese (ja)
Other versions
JPH0296120A (en
Inventor
正俊 猿渡
岩月  勝美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63247445A priority Critical patent/JP2798681B2/en
Publication of JPH0296120A publication Critical patent/JPH0296120A/en
Application granted granted Critical
Publication of JP2798681B2 publication Critical patent/JP2798681B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光ファイバ損失による光ソリトンの崩壊を
防ぎ、光ソリトンの長距離伝搬を可能とした光ファイバ
伝送路に関するものである。
Description: TECHNICAL FIELD The present invention relates to an optical fiber transmission line that prevents optical solitons from collapsing due to optical fiber loss and enables long-distance propagation of optical solitons.

(従来の技術) 光ファイバのもつ非線形性を積極的に用いて、光パル
スの波長分散による波形劣化が補償された光ソリトン
は、将来の超長距離、超高速光通信への応用が期待され
ている。しかしながら、光ソリトンは光ファイバのもつ
損失により崩壊してしまうことが知られている。そこ
で、誘導ラマン増幅用の励起光源を伝送路途中にある間
隔で配設し、光ファイバの損失を補償する手法が提案さ
れている(L.F.Mollenauer et al.,IEEF vol QE−22,p1
57,1986参照)。
(Prior art) An optical soliton in which waveform degradation due to chromatic dispersion of an optical pulse is compensated by actively using the nonlinearity of an optical fiber is expected to be applied to future ultra-long distance and ultra-high-speed optical communication. ing. However, it is known that optical solitons are destroyed by the loss of an optical fiber. Therefore, a method has been proposed in which a pumping light source for stimulated Raman amplification is arranged at an interval in the middle of the transmission line to compensate for the loss of the optical fiber (LFMollenauer et al., IEEF vol QE-22, p1).
57, 1986).

実際、100mW程度の出力をもつCW励起光源を40kmおき
に光ファイバ伝送路途中に配設することで、光ソリトン
を6000km劣化させることなく伝搬させることに成功して
いる(L.F.Mollenauer et al.,XVI International Conf
erence on Quantum Electonics p460,1988参照)。
In fact, by arranging a CW pump light source with an output of about 100 mW in the middle of an optical fiber transmission line at intervals of 40 km, the optical soliton has been successfully propagated without deteriorating 6000 km (LFMollenauer et al., XVI). International Conf
erence on Quantum Electonics p460, 1988).

(発明が解決しようとする課題) しかしながら、上記手法によれば、励起光源を光ファ
イバ伝送路途中に配設するために、この手法を例えば、
海底光通信システムに応用した場合等、システムの信頼
性、保守性等に難点を生じるという問題点がある。
(Problems to be solved by the invention) However, according to the above-mentioned method, in order to dispose an excitation light source in the middle of an optical fiber transmission line, this method is used, for example.
When applied to a submarine optical communication system, for example, there is a problem that the reliability and maintainability of the system are difficult.

本発明の目的は、上記問題点に鑑み、励起光源を伝送
路途中に配設することなく、光ソリトンを長距離伝搬さ
せることのできる光ファイバ伝送路を提供することにあ
る。
In view of the above problems, an object of the present invention is to provide an optical fiber transmission line that can propagate an optical soliton over a long distance without disposing an excitation light source in the middle of the transmission line.

(課題を解決するための手段) 上記目的を達成するため、請求項(1)では、光ソリ
トンが伝搬可能で損失を有する異常分散光ファイバと、
光ソリトンが伝搬可能で光増幅機能を付与した光増幅異
常分散光ファイバとを交互に接続してなる光ファイバ伝
送路において、光ソリトンの入射端側に、励起光源によ
る励起光と光ソリトンを合分波しかつ励起光を該入射端
側から当該伝送路に入射する光合分波手段を設けるとと
もに、光増幅用異常分散光ファイバ長を光ソリトンの入
射端から出射端に向かって順次、長尺化した。
(Means for Solving the Problems) In order to achieve the above object, in claim (1), an anomalous dispersion optical fiber capable of transmitting an optical soliton and having a loss,
In an optical fiber transmission line consisting of alternately connected optically amplified anomalous dispersion optical fibers capable of propagating optical solitons and having an optical amplification function, the pumping light from the pumping light source and the optical soliton are combined at the input end of the optical soliton. An optical multiplexing / demultiplexing means for splitting and exciting the pump light from the incident end side to the transmission line is provided, and the length of the optical amplification extraordinary dispersion optical fiber is sequentially increased from the input end to the output end of the optical soliton. It has become.

また、請求項(2)では、光ソリトンが伝搬可能で損
失を有する異常分散光ファイバと、光ソリトンが伝搬可
能で光増幅機能を付与した光増幅用異常分散光ファイバ
とを交互に接続してなる光ファイバ伝送路において、光
ソリトンの出射端側に、励起光源による励起光と光ソリ
トンを合分波しかつ励起光を該出射端側から当該伝送路
に入射する光合分波手段を設けるとともに、光増幅用異
常分散光ファイバ長を光ソリトンの出射端から入射端に
向かって順次、長尺化した。
In claim (2), an extraordinary dispersion optical fiber capable of transmitting optical solitons and having a loss and an extraordinary dispersion optical fiber capable of transmitting optical solitons and having an optical amplification function are alternately connected. In the optical fiber transmission line, on the emission end side of the optical soliton, there is provided an optical multiplexing / demultiplexing means for multiplexing / demultiplexing the excitation light and the optical soliton by the excitation light source and for inputting the excitation light from the emission end side to the transmission line. The length of the extraordinary dispersion optical fiber for optical amplification was sequentially increased from the exit end to the entrance end of the optical soliton.

また、請求項(3)では、光ソリトンが伝搬可能で損
失を有する異常分散光ファイバと、光ソリトンが伝搬可
能で光増幅機能を付与した光増幅用異常分散光ファイバ
とを交互に接続してなる光ファイバ伝送路において、光
ソリトンの入射端側及び出射端側の各々に、励起光源に
よる励起光と光ソリトンを合分波しかつ励起光を入射端
側及び出射端側の各々から当該伝送路に入射する光合分
波手段を設けるとともに、光増幅用異常分散光ファイバ
長を光ソリトンの入射端及び出射端の各々から伝送路中
央部に向かって順次、長尺化した。
In claim (3), an extraordinary dispersion optical fiber capable of transmitting an optical soliton and having a loss and an extraordinary dispersion optical fiber capable of transmitting an optical soliton and having an optical amplification function are alternately connected. In the optical fiber transmission line, the excitation light from the excitation light source and the optical soliton are multiplexed and demultiplexed on each of the input end side and the output end side of the optical soliton, and the excitation light is transmitted from each of the incident end side and the output end side. In addition to providing an optical multiplexing / demultiplexing means to be incident on the optical path, the length of the extraordinary dispersion optical fiber for optical amplification is sequentially increased from each of the input end and the output end of the optical soliton toward the center of the transmission line.

(作 用) 請求項(1)によれば、光ソリトンパルスと励起光源
による励起光が光合波手段で合波されて、伝送路の光ソ
リトン入射端側の異常分散光ファイバに入射する。光ソ
リトンパルスは、この異常分散光ファイバを伝搬中に減
衰し、次に光増幅用異常分散光ファイバに入射する。減
衰した光ソリトンパルスは、この光増幅用異常分散光フ
ァイバを伝搬中に増幅されて、次の異常分散光ファイバ
に入射し減衰作用を受け、続いて光増幅用異常分散光フ
ァイバに入射し増幅作用を受ける。このように、光ソリ
トンパルスは、減衰作用と増幅作用を交互に繰り返し受
け、当該伝送路中を崩壊することなくその性質を保持し
ながら長距離を伝搬される。
(Operation) According to claim (1), the optical soliton pulse and the pumping light from the pumping light source are multiplexed by the optical multiplexing means, and are incident on the anomalous dispersion optical fiber on the optical soliton incident end side of the transmission line. The optical soliton pulse is attenuated during propagation through the extraordinary dispersion optical fiber, and then enters the extraordinary dispersion optical fiber for optical amplification. The attenuated optical soliton pulse is amplified while propagating through the extraordinary dispersion optical fiber for optical amplification, enters the next extraordinary dispersion optical fiber, undergoes attenuation, and subsequently enters the extraordinary dispersion optical fiber for optical amplification and is amplified. Be affected. As described above, the optical soliton pulse repeatedly undergoes the attenuating action and the amplifying action alternately, and propagates over a long distance while maintaining its properties without collapsing in the transmission path.

この際、励起光ファイバを伝搬するにつれ減衰するの
で、これを防止するために、光増幅用異常分散光ファイ
バ長が順次長くなるように選定される。
At this time, since the light is attenuated as it propagates through the pumping optical fiber, in order to prevent this, the length of the extraordinary dispersion optical fiber for optical amplification is selected so as to be gradually increased.

この選定される光増幅用異常分散光ファイバ長を第2
図に基づいて説明する。第2図において、Sは光ソリト
ンパルス、Pは励起光、Laは異常分散光ファイバ長、L
PNは光増幅用異常分散光ファイバ長である。ここで、利
得係数をr、入力する励起光パワーをPo、光ソリトンパ
ルスSに対する光ファイバの損失をαs、励起光Pに対
する光ファイバの損失をαp、i番目の光増幅用異常分
散光ファイバ長をLpi、光ファイバの有効コア断面積をA
effとすると、N番目の光増幅用異常分散光ファイバ長
LPNは、次の(1)式で表すことができる。
The length of the selected extraordinary dispersion optical fiber for optical amplification is set to the second
Description will be made based on the drawings. In FIG. 2, S is an optical soliton pulse, P is pump light, La is an anomalous dispersion optical fiber length, and L is
PN is the length of the extraordinary dispersion optical fiber for optical amplification. Here, the gain coefficient is r, the input pump light power is Po, the loss of the optical fiber with respect to the optical soliton pulse S is αs, the loss of the optical fiber with respect to the pump light P is αp, and the length of the ith anomalous dispersion optical fiber for optical amplification. Is Lpi, and the effective core area of the optical fiber is A
Assuming eff, the Nth anomalous dispersion optical fiber length LPN for optical amplification can be expressed by the following equation (1).

また、当該光ファイバ伝送路の最大伝送路長Zmax[
NLa+ΣLpi]は、Lpn>0の条件から次の(2)式によ
り求めることができる。
Also, the maximum transmission line length Zmax [
NLa + ΣLpi] can be obtained by the following equation (2) from the condition of Lpn> 0.

上記(2)式で典型値として、αs=αp=0.046m-1
(0.2dB/kmに相当)、r=2x1010m/W、Aeff=100μm2
Po=10Wとすると、最大伝送路長Zmaxは380kmとなる。
As a typical value in the above equation (2), αs = αp = 0.046 m −1
(Corresponding to 0.2 dB / km), r = 2 × 10 10 m / W, Aeff = 100 μm 2 ,
If Po = 10W, the maximum transmission path length Zmax is 380km.

また、請求項(2)によれば、光ソリトンパルスは第
2図において励起光の出射端側から入射されることにな
るが、請求項(1)の場合と同様な減衰作用と増幅作用
を交互に受け、崩壊することなくその性質を保持しなが
ら長い距離にわたって伝搬される。
According to claim (2), the optical soliton pulse is incident from the emission end side of the excitation light in FIG. 2, but has the same attenuating action and amplifying action as in claim (1). Received alternately and propagated over long distances while retaining its properties without collapse.

また、請求項(3)によれば、第2図に示した光ファ
イバ伝送路を上記Zmaxで対称に折り返し、当該伝送路の
光ソリトン出射端側からも励起光Pを注入することによ
り、約800kmと上記の2倍の無中継伝送が可能となる。
According to claim (3), the optical fiber transmission line shown in FIG. 2 is folded symmetrically at the above Zmax, and the pumping light P is injected from the optical soliton emission end side of the transmission line. It is 800 km and twice as many times as the above is possible.

(実施例) 第1図は、本発明による光ファイバ伝送路の一実施例
を示す構成図である。第1図において、1は通常の異常
分散を有するシングルモード光ファイバ(以下、単に光
ファイバと称す)で、これらを伝搬する光ソリトンが崩
壊し、その性質を失わない程度にその長さを選定してあ
る。2はErあるいはGe等の元素をドーピングして光増幅
機能を付与した異常分散を有する光増幅用シングルモー
ド光ファイバ(以下、単に光増幅用光ファイバと称す)
で、励起光Pが当該光ファイバ伝送路を伝搬するにつれ
減衰するので、これを防止するために、その長さを光ソ
リトンパルスSの入射端並びに出射端の各々から伝送路
中央部に向って順次に長くなるように選定してある。こ
れら複数の光ファイバ1と光増幅用光ファイバ2は、光
コネクタ3によって交互に接続してある。4a,4bは励起
光源、5a,5bはダイクロイックミラーで、光ソリトンパ
ルスSの波長を透過し励起光Pの波長を反復するものを
選択してあり、光ソリトンパルスSと励起光Pを合分波
する。これら励起光源4a及びダイクロイックミラー5aは
光ソリトンパルスSの入射端側に配設され、励起光源4b
及びダイクロイックミラー5bは光ソリトンパルスSの出
射端側に配設されて、当該光ファイバ伝送路の両端から
励起光Pが注入されるように構成されている。
(Embodiment) FIG. 1 is a configuration diagram showing an embodiment of an optical fiber transmission line according to the present invention. In FIG. 1, reference numeral 1 denotes a single-mode optical fiber having ordinary anomalous dispersion (hereinafter, simply referred to as an optical fiber) whose length is selected so that the optical soliton propagating through the fiber does not collapse and lose its properties. I have. Reference numeral 2 denotes a single mode optical fiber for optical amplification having anomalous dispersion provided with an optical amplification function by doping an element such as Er or Ge (hereinafter, simply referred to as an optical fiber for optical amplification).
Since the pumping light P is attenuated as it propagates through the optical fiber transmission line, in order to prevent this, the length of the pumping light P is increased from each of the input end and the output end of the optical soliton pulse S toward the center of the transmission line. They are selected so that they become longer sequentially. The plurality of optical fibers 1 and the optical amplification optical fibers 2 are alternately connected by an optical connector 3. 4a and 4b are excitation light sources, 5a and 5b are dichroic mirrors that transmit the wavelength of the optical soliton pulse S and repeat the wavelength of the excitation light P, and combine the optical soliton pulse S and the excitation light P. Waves. The excitation light source 4a and the dichroic mirror 5a are disposed on the incident end side of the optical soliton pulse S, and the excitation light source 4b
The dichroic mirror 5b is disposed on the emission end side of the optical soliton pulse S, and is configured so that the excitation light P is injected from both ends of the optical fiber transmission line.

なお、光増幅用光ファイバ2にEr元素をドーピングし
て光増幅機能を付与した場合には、光ソリトンパルスS
及び励起光Pの波長はそれぞれ、1.55μm,0.53μmとな
る。また、Ge元素をドーピングした場合は、光ソリトン
パルスS及び励起光Pの波長はそれぞれ、1.55μm,1.47
μmとなる。
When the optical amplification optical fiber 2 is doped with an Er element to provide an optical amplification function, the optical soliton pulse S
And the wavelengths of the excitation light P are 1.55 μm and 0.53 μm, respectively. When the Ge element is doped, the wavelengths of the optical soliton pulse S and the excitation light P are 1.55 μm and 1.47 μm, respectively.
μm.

次に、上記構成による動作を説明する。 Next, the operation of the above configuration will be described.

光ソリトンパルスSと励起光源4aによる励起光Pがダ
イクロイックミラー5aで合波されて、伝送路の入射端側
の光ファイバ1に入射する。このとき、出射端側の光フ
ァイバ1にはダイクロイックミラー5bで反射された励起
光源4bによる励起光Pが入射する。
The optical soliton pulse S and the pumping light P from the pumping light source 4a are multiplexed by the dichroic mirror 5a and enter the optical fiber 1 on the incident end side of the transmission path. At this time, the excitation light P from the excitation light source 4b reflected by the dichroic mirror 5b enters the optical fiber 1 on the emission end side.

入射端側の光ファイバ1に入射した光ソリトンパルス
Sは、この光ファイバ1を伝搬中に減衰作用を受けて、
次に光増幅用光ファイバ2に入射する。光ファイバ1を
伝搬中に減衰した光ソリトンパルスSは、この光増幅用
光ファイバ2を伝搬中に増幅されて、次の光ファイバ1
に入射し、減衰作用を受け、続いて光増幅用光ファイバ
2に入射し増幅作用を受ける。
The optical soliton pulse S incident on the optical fiber 1 on the incident end side is attenuated while propagating through the optical fiber 1, and
Next, the light enters the optical fiber 2 for optical amplification. The optical soliton pulse S attenuated while propagating through the optical fiber 1 is amplified while propagating through the optical amplifying optical fiber 2, and
And undergoes an attenuating action, and subsequently enters the optical fiber for optical amplification 2 and undergoes an amplifying action.

このように、光ソリトンパルスSは、減衰作用と増幅
作用を交互に繰り返し受け、光ファイバ1で失われたエ
ネルギーを光増幅用光ファイバ2で補給して、その性質
を崩壊されることなく保持されながら当該光ファイバ伝
送路を伝搬され、出射端側の光ファイバ1から出射し、
さらにダイクロイックミラー5bを透過して出力される。
As described above, the optical soliton pulse S repeatedly receives the attenuation function and the amplification function alternately, replenishes the energy lost in the optical fiber 1 with the optical fiber 2 for optical amplification, and retains its property without being destroyed. While being propagated through the optical fiber transmission line, and emitted from the optical fiber 1 on the emission end side,
The light is further transmitted through the dichroic mirror 5b and output.

以上のように、本実施によれば、損失を有する光ファ
イバ1と光増幅機能を付与した光増幅用光ファイバ2を
交互に接続して、光ソリトンパルスSの光ファイバ1で
失われたエネルギーを光増幅用光ファイバ2で補給しな
がら伝送路を伝搬させ、かつ、励起光源を光ソリトンパ
ルスSの入出射端に配設したので、伝送路途中には励起
光源を配設することなく、無中継の超長距離光ソリトン
伝送を実現でき、信頼性の高い、しかも保守性の優れた
光通信システムを構成できる。
As described above, according to the present embodiment, the energy lost in the optical fiber 1 of the optical soliton pulse S by alternately connecting the optical fiber 1 having the loss and the optical amplification optical fiber 2 provided with the optical amplification function. Is propagated through the transmission path while being supplied by the optical amplification optical fiber 2, and the pumping light source is disposed at the input / output end of the optical soliton pulse S, so that no pumping light source is disposed in the middle of the transmission path. An ultra-long-distance optical soliton transmission without repeaters can be realized, and an optical communication system with high reliability and excellent maintainability can be configured.

(発明の効果) 以上説明したように、請求項(1)及び(2)によれ
ば、交互に接続した、損失を有する異常分散光ファイバ
と光増幅機能を付与した光増幅用異常分散光ファイバと
により、光ソリトンに対し減衰作用と増幅作用を交互に
繰り返し与え、この際、励起光の減衰に合わせて光増幅
用異常分散光ファイバ長を順次、長尺化したことによ
り、増幅作用のみが衰えるの効果的に防止できるため、
伝送路中に励起光源を配設することなく、保守性に優
れ、高い信頼性を得ることのできる超高速、かつ超長距
離の光ソリトン用光ファイバ伝送路を実現できる。
(Effects of the Invention) As described above, according to claims (1) and (2), an extraordinary dispersion optical fiber having a loss and an extraordinary dispersion optical fiber for optical amplification provided with an optical amplification function are connected alternately. With this, the attenuation function and the amplification function are alternately and repeatedly applied to the optical soliton, and at this time, the length of the extraordinary dispersion optical fiber for optical amplification is sequentially increased in accordance with the attenuation of the excitation light, so that only the amplification function is achieved. Because it can be effectively prevented from declining,
An ultra-high-speed and ultra-long-distance optical fiber transmission line for optical solitons, which is excellent in maintainability and high in reliability, can be realized without disposing an excitation light source in the transmission line.

また、請求項(3)によれば、請求項(1)又は
(2)の場合に比べて、さらにほぼ2倍の無中継長距離
伝送を実現できる。
According to claim (3), relayless long-distance transmission can be realized almost twice as compared with the case of claim (1) or (2).

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明による光ファイバ伝送路の一実施例を示
す構成図、第2図は本発明に係る光ファイバの接続状態
の説明図である。 図中、1……シングルモード光ファイバ、2……光増幅
用シングルモード光ファイバ、3光コネクタ、4a,4b…
…励起光源、5a,5b……ダイクロイックミラー、S……
光ソリトンパルス、P……励起光。
FIG. 1 is a configuration diagram showing an embodiment of an optical fiber transmission line according to the present invention, and FIG. 2 is an explanatory diagram of a connection state of an optical fiber according to the present invention. In the figure, 1 ... Single mode optical fiber, 2 ... Single mode optical fiber for optical amplification, 3 optical connectors, 4a, 4b ...
... Excitation light source, 5a, 5b ... Dichroic mirror, S ...
Optical soliton pulse, P ... excitation light.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光ソリトンが伝搬可能で損失を有する異常
分散光ファイバと、光ソリトンが伝搬可能で光増幅機能
を付与した光増幅用異常分散光ファイバとを交互に接続
してなる光ファイバ伝送路において、 光ソリトンの入射端側に、励起光源による励起光と光ソ
リトンを合分波しかつ励起光を該入射端側から当該伝送
路に入射する光合分波手段を設けるとともに、 光増幅用異常分散光ファイバ長を光ソリトンの入射端か
ら出射端に向かって順次、長尺化した ことを特徴とする光ファイバ伝送路。
1. An optical fiber transmission system in which an extraordinary dispersion optical fiber capable of propagating an optical soliton and having a loss and an extraordinary dispersion optical fiber capable of propagating an optical soliton and having an optical amplification function are alternately connected. A light multiplexing / demultiplexing means for multiplexing / demultiplexing the pumping light from the pumping light source and the optical soliton on the incident end side of the optical soliton and for inputting the pumping light from the incident end side to the transmission line; An optical fiber transmission line characterized in that the length of the extraordinary dispersion optical fiber is sequentially increased from the input end to the output end of the optical soliton.
【請求項2】光ソリトンが伝搬可能で損失を有する異常
分散光ファイバと、光ソリトンが伝搬可能で光増幅機能
を付与した光増幅用異常分散光ファイバとを交互に接続
してなる光ファイバ伝送路において、 光ソリトンの出射端側に、励起光源による励起光と光ソ
リトンを合分波しかつ励起光を該出射端側から当該伝送
路に入射する光合分波手段を設けるとともに、 光増幅用異常分散光ファイバ長を光ソリトンの出射端か
ら入射端に向かって順次、長尺化した ことを特徴とする光ファイバ伝送路。
2. An optical fiber transmission system in which an extraordinary dispersion optical fiber capable of propagating optical solitons and having a loss and an extraordinary dispersion optical fiber capable of propagating optical solitons and having an optical amplification function are alternately connected. A light multiplexing / demultiplexing means for multiplexing / demultiplexing the excitation light and the optical soliton by the pumping light source and for inputting the pumping light from the emission end side to the transmission line on the output end side of the optical soliton; An optical fiber transmission line characterized in that the length of the anomalous dispersion optical fiber is sequentially increased from the output end to the input end of the optical soliton.
【請求項3】光ソリトンが伝搬可能で損失を有する異常
分散光ファイバと、光ソリトンが伝搬可能で光増幅機能
を付与した光増幅用異常分散光ファイバとを交互に接続
してなる光ファイバ伝送路において、 光ソリトンの入射端側及び出射端側の各々に、励起光源
による励起光と光ソリトンを合分波しかつ励起光を入射
端側及び出射端側の各々から当該伝送路に入射する光合
分波手段を設けるとともに、 光増幅用異常分散光ファイバ長を光ソリトンの入射端及
び出射端の各々から伝送路中央部に向かって順次、長尺
化した ことを特徴とする光ファイバ伝送路。
3. An optical fiber transmission system in which an extraordinary dispersion optical fiber capable of propagating optical solitons and having a loss and an extraordinary dispersion optical fiber capable of propagating optical solitons and having an optical amplification function are alternately connected. In the optical path, the excitation light from the excitation light source and the optical soliton are multiplexed / demultiplexed on each of the input end side and the output end side of the optical soliton, and the excitation light is incident on the transmission path from each of the incident end side and the output end side. An optical fiber transmission line characterized by providing optical multiplexing / demultiplexing means and increasing the length of the extraordinary dispersion optical fiber for optical amplification from each of the input end and the output end of the optical soliton toward the center of the transmission line. .
JP63247445A 1988-10-03 1988-10-03 Optical fiber transmission line Expired - Fee Related JP2798681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63247445A JP2798681B2 (en) 1988-10-03 1988-10-03 Optical fiber transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63247445A JP2798681B2 (en) 1988-10-03 1988-10-03 Optical fiber transmission line

Publications (2)

Publication Number Publication Date
JPH0296120A JPH0296120A (en) 1990-04-06
JP2798681B2 true JP2798681B2 (en) 1998-09-17

Family

ID=17163552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63247445A Expired - Fee Related JP2798681B2 (en) 1988-10-03 1988-10-03 Optical fiber transmission line

Country Status (1)

Country Link
JP (1) JP2798681B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2700901B1 (en) * 1993-01-28 1995-02-24 Alcatel Nv Soliton transmission system and method.
US6680787B1 (en) 1995-05-17 2004-01-20 Btg International Limited Optical communication systems
GB9524203D0 (en) 1995-11-27 1996-01-31 British Tech Group Optical communications
GB9716230D0 (en) 1997-07-31 1997-10-08 British Tech Group Optical fibre communication system
US7314967B2 (en) * 2004-05-26 2008-01-01 The Procter & Gamble Company Moisture responsive sealing members in disposable absorbent articles
CN111983871B (en) * 2020-09-03 2022-05-20 山西大学 All-optical amplification method of optical soliton pulse train

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157233A (en) * 1982-02-25 1983-09-19 ウエスターン エレクトリック カムパニー インコーポレーテッド Optical fiber remote communication device
JPS60115277A (en) * 1983-09-30 1985-06-21 ザ・ボ−ド・オブ・トラステイ−ズ・オブ・ザ・レランド・スタンフオ−ド・ジユニア・ユニバ−シテイ Fiber optical amplifier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157233A (en) * 1982-02-25 1983-09-19 ウエスターン エレクトリック カムパニー インコーポレーテッド Optical fiber remote communication device
JPS60115277A (en) * 1983-09-30 1985-06-21 ザ・ボ−ド・オブ・トラステイ−ズ・オブ・ザ・レランド・スタンフオ−ド・ジユニア・ユニバ−シテイ Fiber optical amplifier

Also Published As

Publication number Publication date
JPH0296120A (en) 1990-04-06

Similar Documents

Publication Publication Date Title
US6263139B1 (en) Optical transmission system with group velocity dispersion compensation
US6178038B1 (en) Optical amplifier having an improved noise figure
JP2813145B2 (en) Optical fiber amplification system
EP1441454B1 (en) Optical amplifier having polarization mode dispersion compensation function
US6819477B2 (en) Raman amplifier module and optical transmission system using the same
JPH06222412A (en) Optical transmission device
JP2001223420A (en) Raman amplifier, optical transmission system and optical fiber
GB2151868A (en) Optical amplifiers
US5140598A (en) Fiber optic amplifier
US8081880B2 (en) Inline pump sharing architecture for remotely-pumped pre- and post-amplifiers
EP0691716A2 (en) Optical phase conjugator, optical transmission system using the same, and optical phase conjugation method
JP2757912B2 (en) Optical fiber communication system
JP2798681B2 (en) Optical fiber transmission line
JP2747315B2 (en) Glass waveguide amplifier for bidirectional transmission
EP0840469A2 (en) Device and method to suppress q-switching in an optical amplifying device
JP2003107543A (en) Raman amplifying method, raman amplifier, and optical transmission system
Haugen et al. Bidirectional transmission at 622 Mb/s utilizing erbium-doped fiber amplifiers
EP1162768A1 (en) System and method for amplifying a WDM signal including a Raman amplified Dispersion-compensating fibre
JPH10326930A (en) Gain-flattening optical fiber amplifier
JP3495578B2 (en) Optical fiber amplifier
KR20030022974A (en) Dispersion-compensated optical fiber amplifier
JPH05190945A (en) Optical amplifier
JP2834867B2 (en) Erbium-doped fiber amplifier
Kannan et al. Unrepeatered bidirectional transmission system over a single fiber using optical fiber amplifiers
JP2947983B2 (en) Optical fiber amplifier

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees