JP2798350B2 - 直流電圧のドリフトが制御されている導波路型電気光学素子の選別方法 - Google Patents

直流電圧のドリフトが制御されている導波路型電気光学素子の選別方法

Info

Publication number
JP2798350B2
JP2798350B2 JP30042093A JP30042093A JP2798350B2 JP 2798350 B2 JP2798350 B2 JP 2798350B2 JP 30042093 A JP30042093 A JP 30042093A JP 30042093 A JP30042093 A JP 30042093A JP 2798350 B2 JP2798350 B2 JP 2798350B2
Authority
JP
Japan
Prior art keywords
drift
voltage
bias voltage
value
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30042093A
Other languages
English (en)
Other versions
JPH07152007A (ja
Inventor
裕俊 永田
和昌 木内
臣一 下津
淳一 荻原
純一郎 箕輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP30042093A priority Critical patent/JP2798350B2/ja
Priority to CA002133300A priority patent/CA2133300C/en
Priority to EP94307165A priority patent/EP0652457B1/en
Priority to US08/315,981 priority patent/US5526448A/en
Publication of JPH07152007A publication Critical patent/JPH07152007A/ja
Application granted granted Critical
Publication of JP2798350B2 publication Critical patent/JP2798350B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • G02F1/0123Circuits for the control or stabilisation of the bias voltage, e.g. automatic bias control [ABC] feedback loops

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、印加直流電圧のド
リフトが制御されている導波路型電気光学素子の選別方
法に関するものである。更に詳しく述べるならば、本発
明は、Ti:LiNbO3 製の導波路型変調器素子で代
表されるような、電気光学素子において、その出力光を
制御するための直流制御電圧のドリフトが所定値に制御
されている素子の簡単な選別方法に関するものである。
【0002】
【従来の技術】Ti:LiNbO3 製の導波路型変調器
素子で代表されるような、電気光学素子からの出力光を
制御するための制御電圧のドリフト現象を評価する手段
として、一定値の直流バイアス電圧を素子に印加し、出
力光の動作点の経時変化をモニターする方法が既に報告
されている(例えば、H.Nagata and K.Kiuch, J.Appl.P
hys.73(1993)4162. およびK.Seino, T. Nakazawa, Y.Ku
bota, M.Doi, T.Yamaneand H.Hakogi, Proceedings of
the OFC'92, San Jose, February 8-11, 1992(Optical
Soc.of America)p.325)。
【0003】しかし、前記素子の実際の使用では、出力
光の動作点をある初期値に直流バイアス電圧により調整
し、ここに交流(高周波)電圧を重ね合わせることによ
り、前記外部電圧信号に対応した出力光強度の変調状態
を得ている。このため、前記直流バイアス電圧は一定値
に固定されるものではなく、出力光の動作点を常に初期
値の状態に維持するために、刻々と調整変化されるもの
である。この、出力光の動作点を常に初期値の状態に維
持するために必要なバイアス電圧(制御電圧)の経時変
化が、真のDCドリフト現象である。そして、この動作
バイアス電圧(制御電圧)の変化が、システムの許容値
を超過してしまうと、素子は制御不能の状態になる。
【0004】したがって、前述のような、固定直流バイ
アス電圧のみを印加した状態において、当該光素子のD
Cドリフトを評価してもそれは実際のシステムにおける
素子動作に対応したものではない。しかし、固定直流バ
イアス電圧印加方式の利点は、評価される素子性能の個
体差に関わりなく、ある規定された一定値のバイアス電
圧を連続印加すれば、サンプルが複数個であっても、出
力光の位相変化あるいは強度変化を時間経過にしたがっ
て順次モニターしていくだけで、動作点の経時変化を、
一つの測定系で、複数サンプルを非常に簡便に測定・評
価できることである。
【0005】一方、実際のシステム回路あるいは類似の
回路によって、素子の実際の動作中に生ずるバイアス電
圧(制御電圧)のドリフトを直接測定・評価することも
可能である(例えば、H.Jumonji and T.Nozawa, IEICE
Transaction, J75-C-1(1992)17)。しかし、測定系が前
者に比べ複雑となり、それぞれドリフト特性が異なる複
数個のサンプルを評価する場合、サンプルと制御回路を
一対一対応させる必要が生じ、系はさらに複雑になる。
【0006】
【発明が解決しようとする課題】前記素子の制御電圧の
ドリフトの程度を簡便に測定し、かつ製造工程中の検査
項目として、大きなドリフト、特に制御電圧が発散して
しまうような不良特性をもつ素子(製品)を選別・ふる
い分けることのできる方法を提供する。上記目的のた
め、基本的な測定手段としては、従来の固定直流バイア
ス電圧印加方式を採用することが、測定の簡便さおよび
複数同時評価の能力の点で好ましい。またこの固定直流
バイアス電圧印加方式により測定されるドリフト特性値
と、実際のシステムにおける制御電圧のドリフト現象と
の対応を明確にすることにより、実際の動作時に生ずる
DCドリフトを考慮した、光素子の判定基準を与える必
要がある。
【0007】
【課題を解決するための手段】DCドリフト現象は、雰
囲気温度を高くすることにより加速される現象であるた
め(前出の文献参照)、雰囲気温度をできる限り高く保
つことで、測定時間を短縮することができる。
【0008】したがって、導波路型の電気光学変調器素
子を、その出力変調光の動作点を規定位置に調整するた
めの直流バイアス電圧を印加した状態で動作させる際、
前記動作点を規定位置に維持するために必要となるバイ
アス電圧が経時変化する現象として定義される「制御電
圧のドリフト」の程度を推定し、前記制御電圧のドリフ
トが発散しない、つまり制御不能にならない素子を選別
する方法であって、室温(30℃程度)よりも高く、か
つ100℃以下の任意の一定温度環境下に保持した前記
素子に、任意一定値の直流バイアス電圧を連続印加した
状態で前記素子を動作させ、その出力光の動作点(例え
ば変調光強度のピーク位置)の経時変化もモニターし、
前記出力光の動作点の経時変化、いわゆるDCドリフ
ト、から電圧量を単位として求めた見かけの飽和ドリフ
ト量(VC)と、定値印加した前記バイアス電圧(V
B)の比(A=VC/VB)が、少なくとも1より小さ
い素子を選別することにより、製品のふるい分けを容易
に行うことができる。
【0009】ドリフト現象を加速するための加熱温度を
室温よりも高くすることにより、測定時間をより短くす
ることができるが、素子の組立に使用されている、接着
剤等の熱劣化を抑えるために、加熱温度は100℃以下
であることが望ましい。雰囲気温度80℃で測定した場
合、上記のドリフト特性値「A」を導出するに要する測
定時間は、後述の実施例においては、数10時間(およ
そ1日間)で充分であった。
【0010】本発明の印加直流電圧のドリフトが制御さ
れている導波路型電気光学素子は、室温以上の所定温度
を保持された導波路型電気光学素子に所望値の直流バイ
アス電圧を連続印加した状態で、前記素子に光を入力
し、この素子から出力する光の動作点の経時変化をモニ
ターしたとき、飽和電圧ドリフト量VCと、前記印加さ
れた直流バイアス電圧(VB)の比、A=VC/VBが
1未満であることを特徴とする、ものである。
【0011】本発明の、印加直流電圧のドリフトが制御
されている導波路型電気光学素子の選別方法は、導波路
型電気光学素子を室温よりも高く100℃以下の所定温
度に保持し、これらの素子に所定値の直流バイアス電圧
を印加し、この電圧印加された素子に光を入力し、この
素子の出力光の動作点の経時変化をモニターし、電圧の
ドリフト量の飽和値(VC)と、前記印加された直流バ
イアス電圧(VB)との比:A=VC/VBを算出し、
この比Aとして1未満の値を示す素子を選別することを
特徴とするものである。
【0012】上記素子およびその選別方法において、前
記比Aの値が0.5以下であることが好ましく、このよ
うにすることにより素子に対する直流制御電圧のドリフ
ト量をより低く維持することができる。
【0013】
【作用】図1に、Ti:LiNbO3 製の導波路型マッ
ハツェンダー強度変調器素子について、固定直流バイア
ス電圧連続印加方式で測定したDCドリフトと、動作時
間、(70℃において)を示す。印加固定直流バイアス
電圧を−5,0,1,2,4,5Vの6水準にと変化さ
せて、それぞれ雰囲気温度70℃で測定した。
【0014】使用した素子の構造は、z−カットLiN
bO3 基板の表面に、Tiを熱拡散(980℃)させる
ことにより光導波路パタンを形成し、次にスパッタリン
グ法を用いてSiO2 バッファ層(高帯域用変調器で
は、通常、厚さ500nm〜1μm)を堆積、600℃
酸素気流中で熱処理した後、進行波型の電極パタン(A
u)を蒸着および電界メッキにより配設したものであ
る。導波路の両端の片方には薄膜型の偏光子を介して、
光ファイバが、紫外線硬化型の低屈折率エポキシ系接着
剤で固定されている。電極パタンの入出力部には、高周
波用の市販電極コネクタが、ボンディングされている。
これらの部品は、通常、金属筐体中にパッケージされる
が、本発明における一連の実験では、特に気密封止を施
さない筐体に実装したサンプルを用いた。
【0015】図1の実験におけるDC電圧ドリフトの測
定では、素子に上記固定DCバイアス電圧と同時に、1
kHz の±20V交流電圧を印加し、素子から出力される
強度変調された光(入力光の波長1.55μm)強度を
オシロスコープ上でモニターし、ある特定のピーク位置
(便宜上、横軸の印加電圧値OVの位置に最も近いピー
クをとった)の経時変化を追跡した(変化の単位は、電
圧値(V)である)。図1において初期状態からの、こ
の変化量(電圧単位)をDC電圧ドリフト量として図示
した。同様なドリフト測定は、交流電圧を印加せずに、
固定直流バイアス電圧のみを印加した状態でも測定でき
る。その場合、ドリフトは出力光強度変化として測定さ
れるが、素子の初期動作点、半波長電圧がわかっていれ
ば、測定された強度変化を、電圧単位のドリフト量に換
算することは容易である。
【0016】図2は、温度70℃で、まず固定直流バイ
アス電圧(−5,1,4V:白ぬき記号で示してある)
を連続して印加した状態でDC電圧ドリフトを測定し、
次に、ドリフト値がほぼ飽和した段階で、印加していた
バイアス電圧をゼロにして測定したドリフト値(黒記
号)を示してある。図2より、印加していたDCバイア
ス電圧を切ると、それまでのバイアス印加により生じた
DCドリフト値が、ほぼ同じ時間かかって回復すること
が明らかに理解できる。
【0017】図1,2に示されている結果は、誘電体に
電界(バイアス)を印加した場合の分極現象、特に比較
的長い緩和時間を有する配向分極、あるいはイオン分極
現象に類似している。観察されたDCドリフトが全て分
極の寄与によるものであるとは限らないが、素子を構成
する材料が酸化物誘電体および強誘電体であること、お
よび観察されるドリフトが数時間もの長時間を必要とす
る現象であることを考慮すると、素子中の電子の移動に
よる現象ではなく、少なくともイオンの変位・泳動によ
るものであることが推測できる。
【0018】さらに、バイアスの方向にドリフトが依存
し、バイアス電圧を切るとドリフトが回復することよ
り、イオン伝導的なメカニズムよりも、イオンあるいは
イオン対の変位、つまり分極現象が大きく関与している
と考えられる。つまり、バイアス電圧を印加することに
より、時間的な遅れ(緩和時間)をもって、電界(バイ
アス)を打ち消す方向に分極が生じ、素子に実効的に印
加されているバイアス電圧が徐々に小さくなって、これ
がDC電圧ドリフト現象として観察されるものと思われ
る。分極のメカニズムは、現段階では明らかでないが、
誘電体の構成イオン自身、酸化物材料中に不純物として
含まれる水素に基づく−OH基、および素子中に不純物
として含有される水分子等に生ずるものと考えられる。
【0019】したがって、図1,2に示されているよう
な、単一の一定値DCバイアス電圧を連続印加した場合
に観察される、時間遅れを有する電圧ドリフト現象は、
緩和現象に関する一般式、 V(t)=V(∞){1−exp(−t/τ)} (0) で表すことができる。上記式においてtは時間、τは緩
和時間を表す。
【0020】このことを確認するために、図3に、図1
のデータを、動作時間とlog(V(∞)−V(t))
の関係に換算してプロットした。V(∞)は見かけの飽
和ドリフト電圧、V(t)は時刻tにおけるドリフト電
圧である。図3より、固定DCバイアス電圧方式で観察
されるDC電圧ドリフト現象は、式(0)で表すことが
可能で、(雰囲気温度70℃での)緩和時間は、図3中
において、括弧内に記したように、およそ4時間である
ことがわかった。
【0021】次に、固定バイアス電圧方式で測定したD
Cドリフト現象に関する上記考察をもとに、固定バイア
ス電圧方式による測定データと実際のシステムにおける
制御電圧のドリフトとの関連づけを行った。実際の素子
動作では、まず素子の動作点を最適な電圧位置に調整す
るために、初期バイアス電圧を印加する。この初期バイ
アス電圧により、時間Δt後にドリフトV(Δt)が生
ずると、そこでドリフト分の電圧V(Δt)を初期バイ
アス電圧に追加する。このような操作を繰り返していく
ことにより、出力光の動作点(変調状態)を、常に、初
期状態と同一に維持することが可能になる。
【0022】下記で、固定バイアス電圧方式で得られる
ドリフト特性値をもとに、実際の素子動作(follo
wing up制御方式)で現れる制御電圧のドリフト
を推測するための関係式を導出することができる。
【0023】時刻t=0で、素子に直流バイアス電圧V
B を印加した場合、時刻tにおけるDCドリフトV
(t)は、周囲温度が一定であれば、下記式(1):
【0024】
【数1】 〔但し A:係数(V(∞)=AVB ) τ:緩和時間〕に従うものと仮定する。
【0025】また印加するバイアス電圧VB が時間によ
り変化していく場合、総ドリフトV(t)は、(1)式
に基づき、各追加バイアスに対するドリフトの和により
与えられる、と仮定する。上記の仮定より、素子に初期
バイアス電圧V0 を印加した場合、時刻t=nΔtで、
素子からの出力光の動作点を初期動作点と同じ状態に維
持するために追加するバイアス電圧(BnΔt)の値を
求める。
【0026】図4に示されているように: 0.時刻t=0で初期バイアス電圧V0 を印加する。 1.時刻t=ΔtでのドリフトV(Δt)は、下記式に
より求められる。
【0027】
【数2】 1′.時刻t=Δtでバイアス電圧B(Δt)=V(Δ
t)を追印加する。 2.時刻t=2Δtでの電圧ドリフト値:V(2Δt)
は、図4に示されているように、V1 +V2 となる。つ
まり下記式により求められる。
【0028】
【数3】 2′.時刻t=2Δtで追印加するバイアス電圧B(2
Δt)は、図4に示されているように、下記式により求
められる。
【0029】
【数4】 同様にして、時刻t=3Δt,t=4Δtにおけるバイ
アス電圧B(3Δt),B(4Δt)は下記式により求
められる。
【0030】
【数5】
【0031】従って時刻t=nΔtにおけるバイアス電
圧B(nΔt)は、下記式(2)により求められる。
【0032】
【数6】
【0033】時刻t=nΔtにおける制御電圧のドリフ
ト量V(nΔt)は、前記式(2)に基づき、下記式
(3)により求められる。
【0034】
【数7】
【0035】V(nΔt)が収束するためには下記関係
式(4): B(nΔt)<B((n−1)Δt) (4) が成立することが、必要である。よってこの関係を満た
すための条件を求めると、B(nΔt)とB((n−
1)Δt)との差は、下記式(5)から求められる。
【0036】
【数8】
【0037】(5)式よりA<1であれば、(4)式の
関係が満たされ、V(nΔt)が収束することがわか
る。またA=1の時は式(5)により B(nΔt)=B((n−1)Δt) となり、つまりV(nΔt)は線型に発散することがわ
かる。また、式(3)よりV(nΔt)の収束状況は、
パラメータA,Δt、およびτに依存することがわか
る。
【0038】式(3)より、任意時間における制御電圧
のドリフト量は、制御間隔Δt、固定バイアス電圧方式
で測定した緩和時間τと、固定バイアス電圧方式で測定
した、見かけの飽和ドリフト量(電圧単位)の印加バイ
アス電圧に対する比A、に依存することがわかった。そ
して、制御電圧のドリフトが発散せず、収束するための
条件は、式(5)より比A<1、つまり、固定バイアス
方式で得られる見かけの飽和ドリフト量(VC)が、印
加バイアス電圧(VB)よりも小さいことである。Δt
は、システムに依存するパラメータである。τは、温度
に依存するパラメータであり、温度加速係数が予めわか
っていれば、高温の加速環境下で測定したτの値に加速
係数を乗ずることにより、任意の温度でのドリフト量を
見積もることもできる。素子のドリフト特性を選別する
ための基準値として、少なくともA<1を示したが、こ
れとは別に、τが大きい素子ほどドリフトが遅いことは
明かである。したがって、当然、τの値も素子の選別基
準に使うことは可能である。
【0039】図5に、式(3)に実際に値を代入して計
算した結果を示す。図1,図3の測定例に従い、τの値
を4時間とした。初期バイアス電圧は、素子の半波長電
圧に相当する3.5Vとし、Δtの値は、便宜上1時間
とし、Aの値が1,0.8,0.5,0.2,0.1の
場合について計算した。A=1の場合は、式(5)から
もわかるように、動作時間の経過に従い、必要となる制
御電圧(VB)は線形に増大し、発散してしまう。
【0040】図6は、図5の関係を、動作時間をlog
スケールにとり直したものである。図5、および図6か
らわかるように、A<1であれば制御電圧は発散しない
が、より低い制御電圧の範囲、特に10V(初期バイア
スを含む)以内で素子を動作させるためには、A≦0.
5であることが好ましい。
【0041】図7に、初期バイアス電圧:3.5V、緩
和時間:4時間、A=0.5の条件で、Δtの値を5〜
240分間の範囲で変化させて計算したときの動作時間
−動作電圧の関係を示す。Δtを大きくするほど、少な
くとも初期のドリフト電圧は小さくなる。したがって、
式(3)から制御電圧ドリフトの絶対量を見積もる場合
は、Δtをできる限り小さくして計算するのが安全であ
る。Δt→0として、式(3)を積分して一般式、ある
いは近似式を導いてもよい。
【0042】
【実施例】実際の測定例と、式(3)との対応を検討し
た。図1に示した素子サンプルは、Aの値がほぼ1で、
発散型のドリフトを示すため、A<1の素子を作製し
た。この素子は、図1に示したものと形態は同一であっ
たが、SiO2 バッファ層を、スパッタリング法ではな
く、真空蒸着法で作製した。
【0043】図8は、雰囲気温度80℃で、バイアス電
圧5Vの固定バイアス電圧方式で測定した、DCドリフ
トである。ドリフトは最初負の方向に生じ、途中から図
8にみられるような正方向のドリフトに転じた。初期の
負方向のドリフト発生の原因は不明であるが、最終的に
は、分極現象等に基づくものと思われるドリフトが優勢
になるものと考えて、式(3)との対応を検討した。ド
リフトが一度負方向に起こるため、見かけの飽和ドリフ
ト量として、図8中に示したように、1.4V(A=
0.28)と2.3V(A=0.46)の二つが与えら
れた。
【0044】図8のドリフトの緩和時間は、図9に示す
ように、8.4時間であった。(プロットの傾きの逆
数)。
【0045】図10は、実際のシステム動作に近い形、
つまりドリフトによる動作点変化を補償するためにバイ
アス電圧を随時制御(5分間隔)していく方式で測定し
た制御電圧のドリフト値と、式(3)により計算した結
果の対応を示している。直線は、緩和時間=8.4時
間、A=0.46の場合、破線はA=0.28の条件
で、Δt=1時間として計算した結果である。初期バイ
アス電圧は、実測、計算いずれも3.5Vとした。式
(3)が多くの仮定をもとに導出した第一近似的なもの
であることを考慮すると、A=0.28の場合の計算と
実測値は、比較的よい一致をみせている。
【0046】本例のように、Aの値の決め方に2通りあ
る場合は、仮に制御電圧上限値が決められた条件で、素
子選別のためのしきい値を判断するには、確認のため若
干の予備測定を行っておくことが好ましい。
【0047】
【発明の効果】導波路型の電気光学変調器素子の好適な
DC電圧ドリフト特性を有するものおよびその選別を行
う方法が提供された。
【図面の簡単な説明】
【図1】図1はTi:LiNbO3 製の導波路型マッハ
ツェンダー強度変調器素子について、固定バイアス連続
印加方式で測定したDCドリフトの一例を示すグラフ。
【図2】図2は温度70℃で、まず固定直流バイアス
(−5,1,4V:白ぬき記号で示してある)を連続し
て印加した状態におけるDC電圧ドリフトの一例、およ
びドリフトがほぼ飽和した段階で、印加していたバイア
スをゼロにして測定したドリフト(黒記号)の一例を示
すグラフ。
【図3】図3は、図1のデータを、動作時間tとlog
(V(∞)−V(t))の関係に直してプロットして示
したグラフ。
【図4】図4は実際の素子の制御方法と、固定バイアス
電圧方式で観察されるドリフト現象と制御電圧のドリフ
ト現象との関連性を示すグラフ。
【図5】図5は動作時間と動作電圧との関係を式(3)
に実際に値を代入して計算した結果を示すグラフ。
【図6】図6は図5における動作時間−動作電圧の関係
において、動作時間をlogスケールにとり直したグラ
フ。
【図7】図7は初期バイアス3.5V、緩和時間4時
間、A=0.5の条件で、Δtの値を5〜240分間ま
で変化させて計算したときの動作時間−動作電圧の関係
を示すグラフ。
【図8】図8は雰囲気温度80℃で、バイアス電圧5V
の固定バイアス方式で測定したときの動作時間−DCド
リフト関係を示すグラフ。
【図9】図9は図8に示され、DCドリフトの緩和時間
を求めるための、動作時間−ln{V(∞)−V
(0)}関係を示すグラフ。
【図10】図10は実際のシステム動作に近い形、つま
りドリフトによる位相変化を補償するためにバイアス電
圧を随時制御(5分間隔)していく方式で測定した制御
電圧のドリフトと、式(3)により計算した結果の対応
を示すための動作時間−動作電圧関係を示すグラフ。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 荻原 淳一 千葉県船橋市豊富町585番地 住友セメ ント株式会社 中央研究所内 (72)発明者 箕輪 純一郎 千葉県船橋市豊富町585番地 住友セメ ント株式会社 中央研究所内 (56)参考文献 特開 平5−257105(JP,A) 特開 平4−346310(JP,A) 特開 平5−215927(JP,A) OPTICAL FIBER COM MUNICATION CONFERE NCE,1992 TECHNICAL D IGEST SERIES,VOL. 5,PP.325−328 (FEBRUAR Y 2−7,1992) M.SEINO ET.AL.,「A LOW DC−D RIFT TI:LINBO3 MOD ULATOR ASSURED OVE R 15 YEARS」 (58)調査した分野(Int.Cl.6,DB名) G02F 1/00 - 1/055 505 G02F 1/29 - 1/313 G02B 6/12 - 6/14

Claims (2)

    (57)【特許請求の範囲】
  1. 【請求項1】 複数個の導波路型電気光学素子を室温よ
    りも高く100℃以下の所定温度に保持し、これらの素
    子に所定値の直流バイアス電圧を印加し、この電圧印加
    された素子に光を入力し、この素子の出力光の動作点の
    経時変化をモニターし、電圧ドリフト量の飽和値(V
    C)と、前記印加された直流バイアス電圧(VB)との
    比:A=VC/VBを算出し、この比Aとして1未満の
    値を示す素子を選別することを特徴とする、印加直流電
    圧のドリフトが制御されている導波路型電気光学素子の
    選別方法。
  2. 【請求項2】 前記比Aの値が0.5以下である、請求
    項1に記載の導波路型電気光学素子の選別方法。
JP30042093A 1993-11-01 1993-11-30 直流電圧のドリフトが制御されている導波路型電気光学素子の選別方法 Expired - Fee Related JP2798350B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP30042093A JP2798350B2 (ja) 1993-11-30 1993-11-30 直流電圧のドリフトが制御されている導波路型電気光学素子の選別方法
CA002133300A CA2133300C (en) 1993-11-01 1994-09-29 Optical waveguide device
EP94307165A EP0652457B1 (en) 1993-11-01 1994-09-30 Optical waveguide device
US08/315,981 US5526448A (en) 1993-11-01 1994-09-30 Optical waveguide modulator having a reduced D.C. drift

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30042093A JP2798350B2 (ja) 1993-11-30 1993-11-30 直流電圧のドリフトが制御されている導波路型電気光学素子の選別方法

Publications (2)

Publication Number Publication Date
JPH07152007A JPH07152007A (ja) 1995-06-16
JP2798350B2 true JP2798350B2 (ja) 1998-09-17

Family

ID=17884592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30042093A Expired - Fee Related JP2798350B2 (ja) 1993-11-01 1993-11-30 直流電圧のドリフトが制御されている導波路型電気光学素子の選別方法

Country Status (1)

Country Link
JP (1) JP2798350B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187932A1 (ja) 2018-03-29 2019-10-03 住友大阪セメント株式会社 光素子

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4637308B2 (ja) * 1999-11-18 2011-02-23 住友大阪セメント株式会社 LiNbO3光強度変調器用導波路型電気光学素子の長期使用後の印加直流電圧を予じめ算出する方法及びその応用方法
JP4637310B2 (ja) * 2000-01-13 2011-02-23 住友大阪セメント株式会社 マッハツェンダ型光強度変調器用導波路型電気光学素子の長期使用後の印加電圧を予じめ算出する方法
JP5443314B2 (ja) * 2010-09-28 2014-03-19 日本電信電話株式会社 光変調器
JP2018097159A (ja) 2016-12-14 2018-06-21 住友大阪セメント株式会社 薄板ln光制御デバイス
CN114100706B (zh) * 2021-10-18 2022-08-19 吉林大学 一种基于粒子漂移的粒子分选方法及***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPTICAL FIBER COMMUNICATION CONFERENCE,1992 TECHNICAL DIGEST SERIES,VOL.5,PP.325−328 (FEBRUARY 2−7,1992) M.SEINO ET.AL.,「A LOW DC−DRIFT TI:LINBO3 MODULATOR ASSURED OVER 15 YEARS」

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187932A1 (ja) 2018-03-29 2019-10-03 住友大阪セメント株式会社 光素子
US11347086B2 (en) 2018-03-29 2022-05-31 Sumitomo Osaka Cement Co., Ltd. Optical element

Also Published As

Publication number Publication date
JPH07152007A (ja) 1995-06-16

Similar Documents

Publication Publication Date Title
US5526448A (en) Optical waveguide modulator having a reduced D.C. drift
Nagata et al. Progress and problems in reliability of Ti: LiNbO 3 optical intensity modulators
JP2798350B2 (ja) 直流電圧のドリフトが制御されている導波路型電気光学素子の選別方法
IL125303A (en) Method and arrangement for poling of optical crystals
US9223158B2 (en) Optical waveguide element and method of manufacturing the same
Kobayashi et al. X‐ray dilatometric study on ferroelectric phase transition of KH2PO4 I. The order of transition
US6215576B1 (en) Method for making a second-order nonlinear optical material, the material obtained by the method, and an optical modulation device comprising the material
US6654512B2 (en) Buffer layer structures for stabilization of a lithium niobate device
US6747787B2 (en) Optically functional device, single crystal substrate for the device and method for its use
Nagata Activation energy of dc-drift of x-cut LiNbO 3 optical intensity modulators
US6195191B1 (en) Optical devices having improved temperature stability
JP2005515485A6 (ja) ニオブ酸リチウムデバイスを安定化させるための緩衝層構造
Atuchin et al. Waveguide formation mechanism generated by double doping in ferroelectric crystals
JP2963989B1 (ja) 光変調器
Nagata Long-term DC drift in x-cut LiNbO3 modulators without oxide buffer layer
Nagata et al. DC drift of Z-cut LiNbO/sub 3/modulators
Eknoyan et al. Low‐voltage interferometric modulator in zinc‐diffused strontium barium niobate (SBN: 60)
JP3090176B2 (ja) 反り変形を有する光位相調整された光導波路型光素子チップ
JP3228823B2 (ja) 導波路型光素子、およびその製造方法
JP4637308B2 (ja) LiNbO3光強度変調器用導波路型電気光学素子の長期使用後の印加直流電圧を予じめ算出する方法及びその応用方法
JP4637310B2 (ja) マッハツェンダ型光強度変調器用導波路型電気光学素子の長期使用後の印加電圧を予じめ算出する方法
US6925211B2 (en) Buffer layer structures for stabilization of a lithium niobate device
JP3415898B2 (ja) 導波路型光素子の初期動作点調整方法
Righi et al. Electro-optic properties of LiKSO4 and LiK1-xRbxSO4 crystals
Shulepova et al. The influence of pyroelectric effect on the stability of optical parameters in Ti: LiNbO 3 modulators

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080703

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090703

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090703

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100703

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110703

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees