JP2798344B2 - Power boat propeller and method of manufacturing the same - Google Patents

Power boat propeller and method of manufacturing the same

Info

Publication number
JP2798344B2
JP2798344B2 JP16100293A JP16100293A JP2798344B2 JP 2798344 B2 JP2798344 B2 JP 2798344B2 JP 16100293 A JP16100293 A JP 16100293A JP 16100293 A JP16100293 A JP 16100293A JP 2798344 B2 JP2798344 B2 JP 2798344B2
Authority
JP
Japan
Prior art keywords
propeller
hardness
quenching
motor boat
vacuum vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16100293A
Other languages
Japanese (ja)
Other versions
JPH0716701A (en
Inventor
和弘 渡辺
広美 楮原
穣 森川
源治 海津
孝一 蔵本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nakashima Propeller Co Ltd
Original Assignee
Hitachi Ltd
Nakashima Propeller Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nakashima Propeller Co Ltd filed Critical Hitachi Ltd
Priority to JP16100293A priority Critical patent/JP2798344B2/en
Publication of JPH0716701A publication Critical patent/JPH0716701A/en
Application granted granted Critical
Publication of JP2798344B2 publication Critical patent/JP2798344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はモータボート用プロペラ
及びその新規な製造法に係り、特にアルミニウム青銅か
らなるモータボート用プロペラとその精密鋳造による製
造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a motor boat propeller and a novel method of manufacturing the same, and more particularly to a motor boat propeller made of aluminum bronze and a method of manufacturing the same by precision casting.

【0002】[0002]

【従来の技術】モータボート用プロペラはアルミニウム
青銅の精密鋳造品であり、鋳造されたプロペラはボス部
を機械加工し翼部を研磨して使用される。精密鋳造法
は、消失模型の外側にセラミックシェル鋳型を形成し、
模型を消失後加熱した高温の鋳型に金属溶湯を注入して
鋳造する方法であり、寸法精度のよい薄肉の鋳物を量産
的に製造するに適した鋳造方法である。モータボート用
プロペラは翼部が薄肉で高寸法精度が要求されるから、
精密鋳造法が適用されている。
2. Description of the Related Art A motorboat propeller is a precision cast product of aluminum bronze, and the cast propeller is used by machining a boss portion and polishing a wing portion. The precision casting method forms a ceramic shell mold outside the vanishing model,
This is a casting method in which a molten metal is poured into a high-temperature mold heated after the model has disappeared and is cast, and is a casting method suitable for mass-producing a thin casting with good dimensional accuracy. Motor boat propellers require thin wings and high dimensional accuracy.
Precision casting is applied.

【0003】従来、ロストワックス法等により精密鋳造
されたプロペラは、熱処理されずに機械加工工程及び研
磨工程を経てユーザーに供給されていた。このため、プ
ロペラの硬さが平均的に低くかつその硬さの変動範囲も
大きかった。また、一般の船舶用プロペラに関する従来
技術として、特開平3−10989号公報にはアルミニ
ウム青銅製大型船舶用プロペラを鋳造によって製造する
ことが記載され、特開平56−51545号公報には非
磁性銅合金に焼入れ焼戻し処理をすることが記載されて
いる。
Conventionally, a propeller precision cast by a lost wax method or the like has been supplied to a user through a machining step and a polishing step without heat treatment. For this reason, the hardness of the propeller was low on average and the fluctuation range of the hardness was large. As a conventional technique relating to a general marine propeller, Japanese Patent Application Laid-Open No. 3-10989 describes that a large marine propeller made of aluminum bronze is manufactured by casting, and Japanese Patent Application Laid-Open No. 56-51545 discloses a non-magnetic copper propeller. It is described that a quenching and tempering treatment is performed on the alloy.

【0004】[0004]

【発明が解決しようとする課題】モータボート用プロペ
ラは、薄肉であるため手加工で修正される。すなわち、
翼の中ほどから先端までの形状の修正、翼先端の減肉と
曲げ加工等であり、この手加工の程度は水温、淡水と海
水の混合度合い等によっても変えることがある。この手
加工はモータボート独自技術であり、その加工の善し悪
しが性能に大きく影響する。
The propeller for a motorboat is so thin that it is manually modified. That is,
The modification of the shape from the middle to the tip of the wing, the thinning and bending of the tip of the wing, and the like, the degree of the manual processing may be changed depending on the water temperature, the degree of mixing of fresh water and seawater, and the like. This manual processing is a proprietary motor boat technology, and the quality of the processing greatly affects the performance.

【0005】ところで、プロペラの硬さが低すぎると、
回転中に受ける水の抵抗によって翼先端の曲げた部分が
戻ってしまうため、減肉できずに性能の悪いプロペラに
なる。また、硬さを増すためにハンマリング等で塑性変
形して減肉すると微細な割れが生じ、それが原因となっ
て運転中にプロペラを飛散させ、事故を起こすことがあ
る。プロペラの硬さが高すぎると減肉や曲げ加工に時間
がかかると同時に、加工時に割れを生じて廃棄せざるを
えないか、著しいときはプロペラを飛散させて事故を起
こす危険がある。
If the hardness of the propeller is too low,
Since the bent portion of the tip of the wing returns due to the resistance of water during rotation, the propeller cannot be reduced in thickness and becomes a poorly performing propeller. Further, if the thickness is reduced by plastic deformation by hammering or the like to increase the hardness, fine cracks are generated, which may cause the propeller to scatter during operation and cause an accident. If the hardness of the propeller is too high, it takes time to reduce the thickness or bend, and at the same time, cracks may occur during the processing and must be discarded. If the propeller is extremely hard, the propeller may be scattered to cause an accident.

【0006】モータボート用プロペラ加工時の問題を解
決するためにはプロペラの硬さを厳しく管理することが
必要であるが、従来のように鋳放し状態のままで熱処理
を施さない製造法では硬さを十分に管理することができ
なかった。また、熱処理を行うにしても、具体的な熱処
理方法について全く知られていない。
It is necessary to strictly control the hardness of the propeller in order to solve the problem during the processing of the propeller for a motor boat. Couldn't manage enough. Even when heat treatment is performed, no specific heat treatment method is known.

【0007】この様に、従来提供されていたモータボー
ト用プロペラはモータボート適度の硬さを有し手加工が
可能であるとともに高い強度を有する新しいモータボー
ト用プロペラの出現が望まれていた。本発明は、前記要
求に応え、加工が容易であるとともに高強度で変形の少
ないモータボート用プロペラ及びその製造方法を提供す
ることを目的とする。
[0007] As described above, it has been desired to develop a new propeller for a motorboat which has been conventionally provided, has a moderate hardness of the motorboat, can be processed by hand, and has high strength. SUMMARY OF THE INVENTION An object of the present invention is to provide a motor boat propeller which meets the above-mentioned requirements, is easy to process, has high strength, and has little deformation, and a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】本発明は、アルミニウム
青銅の化学組成を選定し、かつ熱処理条件を選定するこ
とによって、適正な硬さを得るとともに硬さの変動範囲
を最小にする。モータボート用プロペラのような薄肉の
精密鋳造品は、表面精度を維持するために熱処理時の酸
化を防止しなければならず、真空熱処理をする必要があ
る。アルミニウム青銅は焼入れ性に劣り水冷又は油冷が
望ましいが、真空容器内で水冷又は油冷することは不可
能である。このため、本発明では、真空容器内に窒素又
はアルゴン等の非酸化性ガスを高圧まで封入して焼入れ
速度を大とした熱処理を施すことによって、アルミニウ
ム青銅の顕微鏡組織を微細化して耐力を著しく増す手法
を採用する。
According to the present invention, by selecting the chemical composition of aluminum bronze and selecting the heat treatment conditions, a proper hardness is obtained and the fluctuation range of the hardness is minimized. Thin wall precision castings such as propellers for motor boats must prevent oxidation during heat treatment in order to maintain surface accuracy and require vacuum heat treatment. Aluminum bronze is inferior in hardenability and desirably water-cooled or oil-cooled, but cannot be water-cooled or oil-cooled in a vacuum vessel. For this reason, in the present invention, a non-oxidizing gas such as nitrogen or argon is sealed in a vacuum vessel to a high pressure and subjected to a heat treatment at a high quenching rate, thereby refining the microstructure of aluminum bronze and significantly increasing proof stress. Adopt an increasing method.

【0009】また、モータボート用プロペラは所定形状
に減肉及び曲げ加工しやすくかつ運転中に変形しないこ
とが必要である。この条件を満足するには、質量でA
l;8.5〜12.5%,Fe;3.5〜6.0%,N
i;3.5〜6.0%,Mn;0.1〜2.0%を含有
し,残部が実質的にCuである溶湯、望ましくは質量で
Al;9.5〜10.5%,Fe;4.2〜5.2%,
Ni;4.8〜5.8%,Mn;1.0〜1.5%を含
有し、残部が77.5%以上のCuである溶湯を、望ま
しくは850〜1100℃に加熱したセラミックシェル
鋳型に真空下で注入して冷却した後、真空容器内で85
0〜950℃に1時間程度加熱し非酸化性ガスを加圧封
入して焼入れし、500〜700℃に1時間程度加熱し
て焼戻しを施す必要があることが本発明者らによる研究
によって判明した。焼戻しは真空中で行ってもよいし、
非酸化性ガス雰囲気中で行ってもよい。焼入れにおける
非酸化性ガスの加圧封入圧力は2〜10気圧が好まし
く、部材の肉厚によって変えることが好ましい。特に3
〜7気圧が好ましい。
Further, it is necessary that the propeller for a motor boat be easily reduced in thickness and bent into a predetermined shape and not deformed during operation. To satisfy this condition, A
l; 8.5 to 12.5%, Fe; 3.5 to 6.0%, N
i; 3.5-6.0%, Mn; 0.1-2.0%, the balance being substantially Cu, preferably Al by mass: 9.5-10.5%, Fe; 4.2-5.2%,
A ceramic shell containing 4.8 to 5.8% Ni, Mn; 1.0 to 1.5%, and a molten metal containing Cu of 77.5% or more, preferably heated to 850 to 1100 ° C. After being poured into a mold under vacuum and cooled, 85
Research by the present inventors has revealed that it is necessary to heat to about 0 to 950 ° C. for about 1 hour, quench and quench the non-oxidizing gas under pressure, and heat to about 500 to 700 ° C. for about 1 hour. did. Tempering may be performed in a vacuum,
It may be performed in a non-oxidizing gas atmosphere. The pressure of the non-oxidizing gas during the quenching is preferably 2 to 10 atm, and is preferably changed depending on the thickness of the member. Especially 3
~ 7 atm is preferred.

【0010】Alが8.5%未満では初相の軟らかいα
相が多すぎて強度が不足し、また、12.5%を越える
と硬いβ相が多くなり延性が低下する。Feは3.5%
以上で凝固組織を微細化するとともに微細なκ相(Fe
Al)を析出して強度を増すが、6.0%以上ではκ相
が粗大化し耐食性を低下させる。NiはFeと同様な作
用を示し、3.5%以上で凝固組織を微細化するととも
に微細なκ相(NiAl)を析出して強度を増すが、
6.0%以上ではκ相が粗大化する。また、Niは共析
変態終了を遅らせ、β’変態を起きやすくして、焼入れ
状態の硬さを増す効果があり、Ni;4.8〜5.8
%,Fe;4.2〜5.2%がβ’の微細組織を得るの
に望ましい。この範囲のFe及びNiと共存するとき
は、Alは9.5〜10.5%が適正硬さを得るために
適量である。Mnは0.1%以上からβ’変態を起きや
すくして、焼入れ冷却速度の感受性を減じる効果があ
り、2.0%を越えるとκ相の凝集が起こり強度及び延
性が低下する。強度と延性を兼ね備える場合は、1.0
〜1.5%が望ましい。
When Al is less than 8.5%, the soft α of the primary phase
If the number of phases is too large, the strength is insufficient. If it exceeds 12.5%, the hard β phase increases and the ductility decreases. Fe is 3.5%
As described above, the solidified structure is refined and the fine κ phase (Fe
Al) precipitates to increase the strength, but at 6.0% or more, the κ phase becomes coarse and the corrosion resistance is reduced. Ni exhibits the same action as Fe, and when it is 3.5% or more, the solidification structure is refined and the fine κ phase (NiAl) is precipitated to increase the strength.
At 6.0% or more, the κ phase becomes coarse. Ni has the effect of delaying the end of eutectoid transformation, making β ′ transformation more likely to occur, and increasing the hardness in the quenched state. Ni: 4.8 to 5.8
%, Fe; 4.2 to 5.2% is desirable for obtaining a microstructure of β ′. When coexisting with Fe and Ni in this range, Al is 9.5 to 10.5% in an appropriate amount to obtain an appropriate hardness. From 0.1% or more of Mn, β ′ transformation is apt to occur and the sensitivity of the quenching cooling rate is reduced. If it exceeds 2.0%, the κ phase aggregates and the strength and ductility decrease. 1.0 when combining strength and ductility
~ 1.5% is desirable.

【0011】セラミックシェル鋳型の加熱温度は、溶湯
の化学成分及び温度、鋳造物の形状及び厚み、鋳込むま
での時間等により決まる適当な範囲があり、結晶粒の大
きさなど鋳造物の性質にも影響を与えるものであるが、
本発明のアルミニウム青銅製モータボート用プロペラの
製造の場合、850℃程度からセラミックシェル鋳型の
耐熱温度である1100℃程度の温度に加熱しておくと
品質的に満足のいくプロペラが鋳造できる。
The heating temperature of the ceramic shell mold has an appropriate range determined by the chemical composition and temperature of the molten metal, the shape and thickness of the casting, the time required for casting, and the like, and depends on the properties of the casting such as the size of crystal grains. Also have an effect,
In the case of manufacturing the aluminum-bronze motor boat propeller of the present invention, a propeller with satisfactory quality can be cast by heating from about 850 ° C. to a temperature of about 1100 ° C. which is the heat-resistant temperature of the ceramic shell mold.

【0012】[0012]

【作用】本発明の条件で製作したアルミニウム青銅製モ
ータボート用プロペラの翼部の硬さはHv230〜25
0で、ボス部の硬さがHv220〜240であり、鋳放
し状態よりも微細な顕微鏡組織になる。翼部とボス部と
の硬さの差は、鋳造時の冷却速度の差によって析出相の
量が異なるためである。すなわち、上記成分範囲では凝
固後、高温域でαとβの混合相になり、速く冷却する翼
部はβ相が多く、遅く冷却するボス部はα相が多くな
る。その後温度低下すると、軟らかいα相はそのまま残
りβ相は硬いβ'相に変わる。したがって、冷却の速い
翼部はβ'相が多いため硬く、ボス部は軟らかい。熱処
理してもこの硬さの差の傾向は変わらないが、微細な組
織になるため、硬さは全体的に高くなり、その変動範囲
は狭くなる。
The hardness of the wings of the aluminum bronze motor boat propeller manufactured under the conditions of the present invention is Hv 230 to 25.
At 0, the hardness of the boss is Hv220-240, and the microstructure becomes finer than in the as-cast state. The difference in hardness between the wing portion and the boss portion is due to the difference in the amount of precipitated phase due to the difference in cooling rate during casting. That is, in the above-mentioned component range, after solidification, a mixed phase of α and β is formed in a high temperature range, the wing portion that cools quickly has many β phases, and the boss portion that cools slowly has many α phases. Then, when the temperature is lowered, the soft α phase remains as it is, and the β phase changes to a hard β ′ phase. Therefore, the wing portion that cools quickly has a large β ′ phase, and is hard, and the boss portion is soft. Although the tendency of the difference in hardness does not change even if heat treatment is performed, the hardness becomes higher as a whole, and the range of variation becomes narrower because of the fine structure.

【0013】[0013]

【実施例】以下、本発明の実施例を詳細に説明する。 〔実施例1〕質量でAl;10.12%,Fe;4.8
5%,Ni;5.45%,Mn;1.32%を含有し,
残部がCuであるアルミニウム青銅を850℃に加熱し
たセラミックシェル鋳型に鋳込み温度1200℃で注入
し、平行部直径6.5mmの試験片を鋳造した。試験片
は、鋳放しのままのものと熱処理を施したものとの2種
類を作り、それぞれ平行部直径6.0mmの引張り試験
片に機械加工した。
Embodiments of the present invention will be described below in detail. [Example 1] Al: 10.12% by mass, Fe: 4.8
5%, Ni; 5.45%, Mn; 1.32%,
Aluminum bronze whose remainder is Cu was poured into a ceramic shell mold heated to 850 ° C. at a casting temperature of 1200 ° C. to cast a test piece having a parallel part diameter of 6.5 mm. Two types of test specimens, one as cast and one subjected to heat treatment, were prepared and machined into tensile test specimens each having a parallel part diameter of 6.0 mm.

【0014】一方の試験片の熱処理は、10-1Pa程度
の真空中で900℃で1時間加熱保持後0.5MPa
(5気圧)まで室温の窒素ガスを加圧封入して冷却する
ことによって焼入れし、ついで550℃で1時間加熱保
持後0.5MPa(5気圧)まで室温の窒素ガス封入す
ることによって焼き戻すことにより行った。この窒素ガ
ス封入による冷却は、真空中での冷却よりも冷却速度が
速くなるようにするためである。
On the other hand, the heat treatment of one test piece is performed by heating at 900 ° C. for 1 hour in a vacuum of about 10 −1 Pa, followed by 0.5 MPa.
(5 atm), quenching by pressurizing and cooling nitrogen gas at room temperature to 5 MPa, then heating and holding at 550 ° C. for 1 hour, then tempering by filling with nitrogen gas at room temperature to 0.5 MPa (5 atm). Was performed. The cooling by the nitrogen gas filling is performed so that the cooling rate is higher than that in the vacuum.

【0015】表1に示す引張試験結果より明らかなよう
に引張強さ、耐力及び硬さが熱処理によって高くなって
おり、特に耐力が著しく向上することが明かである。な
お、強度が高くなっているにもかかわらず、高い伸び率
になっていることが分かる。
As is clear from the tensile test results shown in Table 1, the tensile strength, proof stress and hardness are increased by the heat treatment, and it is clear that the proof stress is particularly remarkably improved. In addition, it turns out that although elongation is high, it has become high elongation.

【0016】[0016]

【表1】 [Table 1]

【0017】〔実施例2〕質量でAl;10.01%,
Fe;4.52%,Ni;5.11%,Mn;1.31
%を含有し,残部がCuであるアルミニウム青銅の溶湯
を850℃に加熱したセラミックシェル鋳型に鋳込み温
度1250℃で真空下に注入し、図1に示す形状の直径
182mmプロペラを鋳造した。翼部はその根元から先
端にかけて肉厚を減少させ、その先端の肉厚は根元近く
の厚さの0.3〜0.4倍にした。鋳放しのままのプロ
ペラ及び実施例1と同じ条件の熱処理を施したプロペラ
の翼及びボス部の硬さをそれぞれ5点ずつ両プロペラの
同じ位置で調べた。その結果を表2に示す。
Example 2 Al: 10.01% by mass,
Fe; 4.52%, Ni; 5.11%, Mn; 1.31
% And a balance of Cu, the balance being Cu, was poured into a ceramic shell mold heated to 850 ° C. under vacuum at a casting temperature of 1250 ° C. to cast a 182 mm diameter propeller having the shape shown in FIG. The thickness of the wing portion was reduced from the root to the tip, and the thickness at the tip was 0.3 to 0.4 times the thickness near the root. The hardness of the blades and the bosses of the as-cast propellers and the propellers subjected to the heat treatment under the same conditions as in Example 1 were examined at the same position on both propellers at five points each. Table 2 shows the results.

【0018】表2から明らかなように、翼部及びボス部
とも本発明の熱処理を施すと、鋳放しの場合に比較して
全体的に硬さが増し、同時に硬さの変動範囲が著しく狭
くなって、適度の硬さを有する均質なアルミニウム青銅
製プロペラが得られる。また、顕微鏡組織を調べてみる
と、鋳放しのままのプロペラ翼部の顕微鏡組織に比べて
本発明の焼入れ焼戻しの熱処理をしたプロペラ翼部の顕
微鏡組織は微細な組織になっていた。
As is evident from Table 2, when the heat treatment of the present invention is applied to both the wing portion and the boss portion, the overall hardness is increased as compared with the as-cast case, and at the same time, the variation range of the hardness is extremely narrow. As a result, a homogeneous aluminum bronze propeller having an appropriate hardness is obtained. Further, when examining the microstructure, the microstructure of the propeller blade subjected to the quenching and tempering heat treatment of the present invention was finer than the microstructure of the as-cast propeller blade.

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【発明の効果】本発明によれば、強度が著しく高められ
かつ高い延性を有するアルミニウム青銅製モータボート
用プロペラを製造することがでる。また、本発明のアル
ミニウム青銅製モータボート用プロペラは、所定形状に
減肉及び曲げ加工するのが容易であり、かつそのように
加工したプロペラが運転中に変形したり飛散したりする
ことがない。
According to the present invention, it is possible to manufacture a motor boat propeller made of aluminum bronze having significantly increased strength and high ductility. In addition, the aluminum bronze motor boat propeller of the present invention is easy to reduce and bend into a predetermined shape, and the propeller thus processed is not deformed or scattered during operation. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】 モータボート用プロペラの正面図。FIG. 1 is a front view of a motor boat propeller.

【符号の説明】[Explanation of symbols]

1 翼部 2 ボス部 1 wing part 2 boss part

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 630 C22F 1/00 630C 630K 640 640Z 681 681 682 682 691 691B 691Z 692 692Z (72)発明者 森川 穣 茨城県勝田市大字堀口832番地の2 日 立マテリアルエンジニアリング株式会社 内 (72)発明者 海津 源治 東京都中央区日本橋茅場町二丁目4番10 号 ナカシマプロペラ株式会社内 (72)発明者 蔵本 孝一 岡山県岡山市上道北方688番地の1 ナ カシマプロペラ株式会社内 (56)参考文献 特開 昭64−15263(JP,A) 特開 昭62−9761(JP,A) 特開 平1−147044(JP,A) 特開 平1−176057(JP,A) (58)調査した分野(Int.Cl.6,DB名) C22F 1/08 B63H 1/14 B22D 29/00──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI C22F 1/00 630 C22F 1/00 630C 630K 640 640Z 681 681 682 682 692 691 691B 691Z 692 692Z (72) Inventor Minoru Morikawa Katsuta, Ibaraki 832 Horiguchi, Hachiguchi-shi, Tokyo, Japan (72) Inventor Genji Kaizu 2-4-1-10 Nihonbashi Kayabacho, Chuo-ku, Tokyo Inside Nakashima Propeller Co., Ltd. (72) Koichi Kuramoto Inventor Koichi Okayama, Okayama No. 688 north of Hokkaido, 1 Nakashima Propeller Co., Ltd. (56) References JP-A-64-15263 (JP, A) JP-A-62-9761 (JP, A) JP-A-1-147704 (JP, A) Japanese Patent Application Laid-Open No. 1-176057 (JP, A) (58) Fields investigated (Int. Cl. 6 , D B name) C22F 1/08 B63H 1/14 B22D 29/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量で、A1;8.5〜12.5%,F
e;3.5〜6.0%,Ni;3.5〜6.0%,M
n;0.1〜2.0%を含有し、残部が実質的にCuで
ある溶湯を加熱したセラミックシェル鋳型に真空下で注
入して冷却し凝固させた後、焼入れ及び焼戻しの加熱を
真空容器内で行い、前記焼入れにおける冷却を前記真空
容器内に非酸化性ガスを加圧封入することにより行うこ
とを特徴とするモータボート用プロペラの製造法。
1. A1 by weight: 8.5 to 12.5%, F
e; 3.5-6.0%, Ni; 3.5-6.0%, M
n: a molten metal containing 0.1 to 2.0%, with the balance being substantially Cu, is poured under vacuum into a heated ceramic shell mold, cooled and solidified, and then quenching and tempering are performed under vacuum. A method for producing a propeller for a motor boat, wherein the method is performed in a vessel, and cooling in the quenching is performed by pressurizing and sealing a non-oxidizing gas in the vacuum vessel.
【請求項2】 前記焼入れは850〜950℃に加熱し
た後、非酸化性のガスを封入することによって行い、前
記焼戻しは500〜700℃で行うことを特徴とする請
求項1記載のモータボート用プロペラの製造法。
2. The motor boat according to claim 1, wherein the quenching is performed by heating to 850 to 950 ° C. and then filling a non-oxidizing gas, and the tempering is performed at 500 to 700 ° C. Manufacturing method of propeller for car.
【請求項3】 重量で、Al;9.5〜10.5%,F
e;4.2〜5.2%,Ni;4.8〜5.8%,M
n;1.0〜1.5%を含有し、残部が77.5%以上
のCuである溶湯を加熱したセラミックシェル鋳型に真
空下で注入して冷却した後、真空容器内で850〜95
0℃に加熱保持後焼入れし、前記焼入れにおける冷却を
前記真空容器内に非酸化性ガスを加圧封入して行い、そ
の後真空容器内において500〜700℃で焼戻し、硬
さHv220以上にしたことを特徴とするモータボート
用プロペラの製造法。
3. Al by weight: 9.5 to 10.5%, F
e; 4.2-5.2%, Ni; 4.8-5.8%, M
n: a molten metal containing 1.0 to 1.5% and the balance being 77.5% or more of Cu is poured into a heated ceramic shell mold under vacuum and cooled, and then 850 to 95 in a vacuum vessel.
After quenching after heating to 0 ° C., cooling in the quenching was performed by pressurizing and sealing a non-oxidizing gas in the vacuum vessel, and then tempering at 500 to 700 ° C. in the vacuum vessel to a hardness of Hv 220 or more. A method for producing a propeller for a motor boat, comprising:
【請求項4】 前記溶湯を850〜1100℃に加熱し
たセラミックシェル鋳型に真空下で注入し冷却した後、
真空容器内で850〜950℃に1時間程度加熱した後
前記真空容器内に非酸化性のガスを封入して焼入れし、
その後500〜700℃に1時間程度加熱して焼戻し、
硬さをHv220以上、硬さの変動範囲をHv30以内
にしたことを特徴とする請求項3記載のモータボート用
プロペラの製造法。
4. After the molten metal is poured into a ceramic shell mold heated to 850 to 1100 ° C. under vacuum and cooled,
After heating to 850 to 950 ° C. for about 1 hour in a vacuum vessel, a non-oxidizing gas is sealed in the vacuum vessel and quenched,
After that, it is tempered by heating to 500-700 ° C for about 1 hour
4. The method for producing a motorboat propeller according to claim 3, wherein the hardness is Hv220 or more and the variation range of the hardness is Hv30 or less.
【請求項5】 翼部とボス部とを有するモータボート用
プロペラにおいて、前記モータボート用プロペラは、重
量で、Al;8.5〜12.5%,Fe;3.5〜6.
0%,Ni;3.5〜6.0%,Mn;0.1〜2.0
%を含有し、残部が実質的にCuであるアルミニウム青
銅からなり、且つ前記翼部の硬さがHv230〜250
の範囲とし、前記ボス部の硬さがHv220〜240の
範囲であることを特徴とするモータボート用プロペラ。
5. A motor boat propeller having a wing portion and a boss portion, wherein the motor boat propeller is, by weight, Al: 8.5 to 12.5%, Fe;
0%, Ni; 3.5 to 6.0%, Mn; 0.1 to 2.0
%, And the balance is substantially made of aluminum bronze, and the wing has a hardness of 230 to 250 Hv.
And the hardness of the boss portion is in the range of Hv220 to 240.
JP16100293A 1993-06-30 1993-06-30 Power boat propeller and method of manufacturing the same Expired - Fee Related JP2798344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16100293A JP2798344B2 (en) 1993-06-30 1993-06-30 Power boat propeller and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16100293A JP2798344B2 (en) 1993-06-30 1993-06-30 Power boat propeller and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0716701A JPH0716701A (en) 1995-01-20
JP2798344B2 true JP2798344B2 (en) 1998-09-17

Family

ID=15726712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16100293A Expired - Fee Related JP2798344B2 (en) 1993-06-30 1993-06-30 Power boat propeller and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2798344B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4437323B1 (en) * 2009-03-27 2010-03-24 ヤマト発動機株式会社 Aluminum bronze racing propeller
JP5073864B1 (en) * 2012-04-23 2012-11-14 ヤマト発動機株式会社 Wing surface shape recording device for propeller of outboard motor of race boat
CN105436412B (en) * 2015-11-23 2017-12-22 镇江同舟螺旋桨有限公司 A kind of propeller casting mold Nitrogen filling system
CN109628772B (en) * 2018-12-25 2020-04-10 华中科技大学 Ultrashort-period high-strength and high-ductility nickel-aluminum bronze alloy and preparation method thereof

Also Published As

Publication number Publication date
JPH0716701A (en) 1995-01-20

Similar Documents

Publication Publication Date Title
JP5236948B2 (en) Heat treatment of aluminum alloy high pressure die castings.
US4789412A (en) Cobalt-base alloy having high strength and high toughness, production process of the same, and gas turbine nozzle
US6261390B1 (en) Process for nodulizing silicon in casting aluminum silicon alloys
MX2007001008A (en) An al-si-mg-zn-cu alloy for aerospace and automotive castings.
JP2016079454A (en) Aluminum alloy forging material and manufacturing method therefor
JPS627828A (en) Al alloy with high li and si content and its production
JP2000119786A (en) Aluminum alloy forging material for high speed motion part
JP2009503250A (en) Method for producing copper alloy having high damping capacity
JP2010053743A (en) Die-cast compressor impeller
CN115747563B (en) Cu-15Ni-8 Sn-based alloy for ocean engineering and preparation method thereof
WO2015142804A1 (en) High strength, homogeneous copper-nickel-tin alloy and production process
US20160298217A1 (en) Aluminum Alloy Refiner Material and Preparation Method Thereof
JP2798344B2 (en) Power boat propeller and method of manufacturing the same
JP6540075B2 (en) TiAl heat resistant member
EP3434797A1 (en) Advanced cast aluminum alloys for automotive engine application with superior high-temperature properties
CN111575554A (en) Production method of high-strength wear-resistant aluminum alloy
JP2004524974A (en) High-temperature isostatic compression molding of castings
JP2002206143A (en) High strength low thermal expansion casting steel and ring-shaped parts for blade ring of gas turbine and for seal ring holding ring consisting of the high strength low thermal expansion casting steel
US20050167011A1 (en) Casting of aluminum based wrought alloys and aluminum based casting alloys
CN111155021B (en) High-temperature alloy ingot blank, preparation method thereof and high-temperature alloy part
Samuel et al. Intermetallics formation, hardness and toughness of A413. 1 type alloys: role of melt and aging treatments
JPS6033329A (en) Ni based superplastic alloy and manufacture thereof
JP2000054054A (en) Aluminum-magnesium-silicon forged part excellent in brightness and its production
RU2613234C2 (en) Cast brass
WO2022211062A1 (en) Aluminum alloy material, production method therefor, and machine component

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees