JP2797958B2 - Optical semiconductor device bonding structure and bonding method - Google Patents

Optical semiconductor device bonding structure and bonding method

Info

Publication number
JP2797958B2
JP2797958B2 JP3617194A JP3617194A JP2797958B2 JP 2797958 B2 JP2797958 B2 JP 2797958B2 JP 3617194 A JP3617194 A JP 3617194A JP 3617194 A JP3617194 A JP 3617194A JP 2797958 B2 JP2797958 B2 JP 2797958B2
Authority
JP
Japan
Prior art keywords
layer
optical semiconductor
semiconductor element
bonding
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3617194A
Other languages
Japanese (ja)
Other versions
JPH0794786A (en
Inventor
和彦 蔵田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3617194A priority Critical patent/JP2797958B2/en
Publication of JPH0794786A publication Critical patent/JPH0794786A/en
Application granted granted Critical
Publication of JP2797958B2 publication Critical patent/JP2797958B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01076Osmium [Os]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は光半導体素子接合構造に
関し、特に光回路基板上に光半導体素子を接合固定する
接合構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical semiconductor device bonding structure, and more particularly to a bonding structure for bonding and fixing an optical semiconductor device on an optical circuit board.

【0002】[0002]

【従来の技術】従来、光回路基板上への光半導体素子の
接合には、AuSn共晶半田から用いられている。つま
り、AuSn共晶半田の箔片を光回路基板上の接合部に
供給し、その半田材の加熱溶融と同時に光半導体素子を
光回路基板上に搭載して加圧することで、光半導体素子
を光回路基板上に接合している。
2. Description of the Related Art Conventionally, AuSn eutectic solder is used for joining an optical semiconductor element onto an optical circuit board. In other words, a foil piece of AuSn eutectic solder is supplied to the joint portion on the optical circuit board, and the optical semiconductor element is mounted on the optical circuit board and pressed simultaneously with the heating and melting of the solder material, whereby the optical semiconductor element is mounted. It is bonded on the optical circuit board.

【0003】しかしながら、AuSn共晶半田は酸化し
やすいため、窒素雰囲気または窒素に若干の水素を混合
させた還元雰囲気気中で接合させなければならない。ま
たこの場合、光半導体素子の光回路基板上への加圧時
に、AuSn共晶半田上に生成された酸化膜を予め取り
除くため、光半導体素子を加圧振動させるスクラブと呼
ばれる作業が必要となる。
However, since AuSn eutectic solder is easily oxidized, it must be joined in a nitrogen atmosphere or a reducing atmosphere in which some hydrogen is mixed with nitrogen. Further, in this case, when the optical semiconductor element is pressed onto the optical circuit board, an operation called scrub for pressurizing and vibrating the optical semiconductor element is required to remove an oxide film formed on the AuSn eutectic solder in advance. .

【0004】また、他の接合方法としては、光回路基板
の電極あるいは光半導体素子の接合面上にSnを蒸着し
ておき、光回路基板及び光半導体素子を加熱、加圧して
接合する方法がある。この方法でも、Snが酸化しやす
いため、非酸化雰囲気と光半導体素子のスクラブとが要
求される。
As another bonding method, there is a method in which Sn is vapor-deposited on an electrode of an optical circuit board or a bonding surface of an optical semiconductor element, and the optical circuit substrate and the optical semiconductor element are bonded by heating and pressing. is there. Also in this method, since Sn is easily oxidized, a non-oxidizing atmosphere and a scrub of the optical semiconductor element are required.

【0005】さらに、上記以外の方法として、光回路基
板上の接合部にAuSn共晶半田の層を形成し、この層
の上に薄くAu層を蒸着して形成しておき、このAu層
に光半導体素子を搭載して接着溶融する方法がある。こ
の方法については、特開平1−138777号公報に詳
述されている。
[0005] Further, as a method other than the above, a layer of AuSn eutectic solder is formed at the joint on the optical circuit board, and a thin Au layer is formed by vapor deposition on this layer. There is a method of mounting and melting an optical semiconductor element. This method is described in detail in JP-A-1-138777.

【発明が解決しようとする課題】従来より、光ファイバ
等への光結合を光軸調整を行わないで組立てる構造が数
多く提案されているが、その実現のためには光半導体素
子を光回路基板上の所定の位置に高精度に接合する必要
がある。
A number of structures have been proposed for assembling optical coupling to an optical fiber or the like without adjusting the optical axis, but in order to realize this, an optical semiconductor element is mounted on an optical circuit board. It is necessary to join with high accuracy to a predetermined position above.

【0006】従来の光半導体素子接合方法を用いて、光
半導体素子をサブミクロンのオーダで高精度に位置決め
して実装することを試みた場合、接合時にスクラブによ
り光半導体素子を振動させるため、接合位置に変動を生
じてしまう。
When attempting to position and mount an optical semiconductor element with high precision on the order of submicron using a conventional optical semiconductor element bonding method, the optical semiconductor element is vibrated by scrubbing during bonding. The position will fluctuate.

【0007】また、一般にAuSn共晶半田の箔片の厚
さは薄くても20〜30μm程度ある。したがって、A
uSn共晶半田を溶融させて光半導体素子を接触させた
時、光半導体の電極面が濡れると同時に、AuSn共晶
半田の表面張力によって光半導体素子の接合位置がラン
ダムに動いてしまう。ここで、光半導体素子の電極面が
濡れるとは、溶融したAuSn共晶半田が電極面上に薄
く延びることである。
In general, the thickness of a foil piece of AuSn eutectic solder is about 20 to 30 μm at least. Therefore, A
When the optical semiconductor element is brought into contact with the uSn eutectic solder by melting the electrode surface of the optical semiconductor, the bonding position of the optical semiconductor element moves randomly due to the surface tension of the AuSn eutectic solder. Here, the term “wet the electrode surface of the optical semiconductor element” means that the molten AuSn eutectic solder extends thinly on the electrode surface.

【0008】さらに、溶融したAuSn共晶半田は加圧
時に光半導体素子が10〜20μm沈み込むため、光半
導体素子の高さ方向の精度を正確に制御することは困難
である。上述した現象の如く、従来の接合方法ではサブ
ミクロンのオーダでの光半導体素子の位置決め固定が困
難である。
Further, since the optical semiconductor element sinks by 10 to 20 μm when the molten AuSn eutectic solder is pressed, it is difficult to accurately control the precision of the optical semiconductor element in the height direction. As described above, it is difficult for the conventional bonding method to position and fix the optical semiconductor element on the order of submicrons.

【0009】Snを蒸着した場合にも表面が酸化膜が生
ずるため、上記の処理と同様にスクラブが必要であり、
サブミクロンのオーダでの光半導体素子の位置決め固定
は不可能である。
[0009] Even when Sn is deposited, an oxide film is formed on the surface. Therefore, scrubbing is required in the same manner as in the above processing.
It is impossible to position and fix the optical semiconductor device on the order of submicrons.

【0010】また、光半導体素子の接合時にSn及びA
u相互の拡散のみで完全なAuSn共晶を生成すること
は困難である。この場合、Snの重量比が多くなり、脆
い金属化合物が生成されやすいため、接合後の信頼性を
保証することが困難であり、保管条件や接合温度、及び
加熱時間などを厳しく設定することが必要である。
In addition, when joining the optical semiconductor element, Sn and A
It is difficult to generate a perfect AuSn eutectic only by diffusion between u. In this case, since the weight ratio of Sn increases and a brittle metal compound is easily generated, it is difficult to guarantee the reliability after joining, and the storage conditions, the joining temperature, the heating time, and the like must be strictly set. is necessary.

【0011】さらに、光回路基板上に形成されたAuS
n共晶半田層の上に薄くAu層を蒸着する場合にも、共
晶条件を保つために蒸着するAu層を薄くすれば、この
Au層のAu及びAuSn共晶半田層のSn相互の拡散
によって表面に酸化膜が生ずるので、上記の処理と同様
にスクラブが必要となる。
Further, AuS formed on the optical circuit board
Even when a thin Au layer is deposited on the n-eutectic solder layer, if the deposited Au layer is thinned to maintain the eutectic condition, the Au and AuSn eutectic solder layers in the Au layer can diffuse into each other. As a result, an oxide film is formed on the surface, so that scrubbing is required as in the above-described processing.

【0012】一方、表面に酸化膜が生ずるのを防ぐため
に、蒸着するAu層を厚くすれば、このAu層のAu及
びAuSn共晶半田層のSn相互の拡散によって共晶条
件を保つことができなくなるという問題がある。
On the other hand, if the thickness of the deposited Au layer is increased to prevent the formation of an oxide film on the surface, the eutectic condition can be maintained by the mutual diffusion of the Au and AuSn eutectic solder layers of the Au layer with Sn. There is a problem of disappearing.

【0013】さらに、溶融・固着後にあっては逆に共晶
状態であると融点が低いため、接合部の周囲温度の変
化、特に高温状態において安定した固着状態を維持する
ことができなくなる場合がある。
[0013] Further, after melting and fixing, the eutectic state has a low melting point, and consequently, it may not be possible to maintain a stable fixed state at a change in the ambient temperature of the joint, especially at a high temperature. is there.

【0014】そこで、本発明の目的は上記問題点を解消
し、サブミクロンのオーダで光半導体素子を位置決め固
定することができる光半導体素子接合構造を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide an optical semiconductor element bonding structure capable of positioning and fixing an optical semiconductor element on the order of submicrons.

【0015】[0015]

【課題を解決するための手段】本発明による光半導体素
子接合構造は、光半導体素子を光回路基板上に接合固定
する光半導体素子接合構造であって、光半導体素子は光
回路基板との接合面に形成された第1のAu層を含み、
一方、光回路基板は光半導体素子が接合される接合箇所
に第1のAu層と互いに共晶化される第2のAu層とS
n層と第3のAu層の3層が積層されて形成された接合
材を有し、接合材の共晶化により光半導体素子の接合面
を光回路基板上の光半導体素子の接合箇所に接合するよ
うにしたことを特徴としている。
An optical semiconductor element bonding structure according to the present invention is an optical semiconductor element bonding structure for bonding and fixing an optical semiconductor element on an optical circuit board, and the optical semiconductor element is bonded to the optical circuit board. A first Au layer formed on the surface,
On the other hand, the optical circuit board is a joint where the optical semiconductor element is joined.
A second Au layer eutecticized with the first Au layer and S
a bonding material formed by laminating three layers of an n layer and a third Au layer, and the bonding surface of the optical semiconductor element is formed at the bonding position of the optical semiconductor element on the optical circuit board by eutectic bonding of the bonding material. It is characterized by joining.

【0016】特に、接合前の光回路基板側のAu/Sn
の重量比を概ね80対20とし、一方で光半導体素子の
裏面にAn薄膜層が形成された構造で、280℃以上で
加熱・溶融して固着する。
In particular, Au / Sn on the side of the optical circuit board before bonding.
Is about 80:20, and an An thin film layer is formed on the back surface of the optical semiconductor element, and is fixed by heating and melting at 280 ° C. or more.

【0017】[0017]

【作用】本発明では、光回路基板上に最上層がAuとな
るようにAu及びSnを層状に形成し、最上層のAuを
含むAu及びSnの組成比を、Auが80%、Snが2
0%の重量比としている。
According to the present invention, Au and Sn are formed in layers on the optical circuit board such that the uppermost layer is made of Au. The composition ratio of Au and Sn including Au in the uppermost layer is 80% for Au and Sn is for 80%. 2
The weight ratio is 0%.

【0018】光半導体素子を接合する場合、光半導体素
子を光回路基板に接触させて加圧し、光回路基板を加熱
する。この加熱時に温度の上昇とともにAuとSnとが
相互に拡散する。Au及びSnの相互の拡散は、Snの
溶融温度以上でより活発となる。
When the optical semiconductor element is joined, the optical semiconductor element is brought into contact with the optical circuit board and pressed to heat the optical circuit board. During this heating, Au and Sn diffuse with each other as the temperature rises. The mutual diffusion of Au and Sn becomes more active above the melting temperature of Sn.

【0019】光回路基板温度が280℃以上となり、A
uとSnとの拡散が進み、Au対Snの重量比がほぼ8
0%対20%となった時点で、AuSn共晶が生成さ
れ、光半導体素子の電極面を濡らす。
When the temperature of the optical circuit board becomes 280 ° C. or higher,
The diffusion of u and Sn proceeds, and the weight ratio of Au to Sn is approximately 8
At the time of 0% to 20%, AuSn eutectic is generated and wets the electrode surface of the optical semiconductor element.

【0020】光回路基板の加熱を継続させると、光半導
体素子の電極内にもSnが拡散していき、光回路基板と
光半導体素子の電極面との境界が消滅する。この時点
で、光回路基板を冷却することで接合が完了する。接合
後は、Snに対するAuの重量比が少なくとも80:2
0となり、状態図の上で共晶状態から積極的にAuが多
い状態にずらすことになる。これにより、融点も高くな
り安定した接合状態が得られる。特に、共晶状態から重
量比をずらす場合に、Snがより多い状態にすると合金
部がもろいのに対して、Auが多い状態ではかかる問題
がない。
When the heating of the optical circuit board is continued, Sn diffuses into the electrodes of the optical semiconductor element, and the boundary between the optical circuit board and the electrode surface of the optical semiconductor element disappears. At this point, the bonding is completed by cooling the optical circuit board. After bonding, the weight ratio of Au to Sn is at least 80: 2.
0, which is positively shifted from the eutectic state to the Au-rich state on the phase diagram. As a result, the melting point is increased and a stable bonding state is obtained. In particular, when the weight ratio is shifted from the eutectic state, the alloy portion becomes brittle when the Sn content is increased, whereas this problem does not occur when the Au content is large.

【0021】[0021]

【実施例】次に、本発明の一実施例について図面を参照
して説明する。
Next, an embodiment of the present invention will be described with reference to the drawings.

【0022】図1は本発明の一実施例を示す構成図であ
る。図において、光回路基板1の光半導体素子実装部2
にはTi層6とPt層7とからなるバリア層8が形成さ
れており、このバリア層8の上にAu層3とSn層4と
が層状に形成されている。
FIG. 1 is a block diagram showing one embodiment of the present invention. In the figure, an optical semiconductor element mounting portion 2 of an optical circuit board 1 is shown.
Is formed with a barrier layer 8 composed of a Ti layer 6 and a Pt layer 7, and an Au layer 3 and a Sn layer 4 are formed in a layer on the barrier layer 8.

【0023】また、これらのAu層3及びSn層4の上
の最上層には予め設定された所定厚さのAu層5が形成
され、光半導体素子実装部2の接合部が形成される。こ
の所定厚さはAu層5のAu及びSn層4のSn相互の
拡散が生じても表面に酸化膜が生じにくい厚さ、例えば
0.4μm程度とする。
On the Au layer 3 and the Sn layer 4, an Au layer 5 having a predetermined thickness is formed on the uppermost layer, and a junction of the optical semiconductor element mounting section 2 is formed. The predetermined thickness is set to a thickness that hardly causes an oxide film to be formed on the surface even when the Au of the Au layer 5 and the Sn of the Sn layer 4 diffuse, for example, about 0.4 μm.

【0024】この接合部の最上層のAu層5上に光半導
体素子9のAuからなる電極面10を接触させて加圧
し、その後に加熱することで、光回路基板1の光半導体
素子実装部2に光半導体素子9を接合することができ
る。
The Au electrode surface 10 of the optical semiconductor element 9 is brought into contact with and pressurized on the Au layer 5 at the uppermost layer of the junction, and then heated, so that the optical semiconductor element mounting section of the optical circuit board 1 is heated. 2, the optical semiconductor element 9 can be joined.

【0025】図2は図1の光半導体素子9の光回路基板
1への接合を示す図である。図2(a)は光半導体素子
9の光回路基板1の光半導体素子実装部2への加圧状態
を示す図であり、図2(b)はAu層3,5とSn層4
との拡散状態を示す図である。また、図2(c)はAu
Sn共晶が生成された状態を示す図であり、図2(d)
は光半導体素子9の電極面10とAuSn共晶との拡散
状態を示す図である。
FIG. 2 is a view showing the bonding of the optical semiconductor element 9 of FIG. 1 to the optical circuit board 1. 2A is a diagram showing a state in which the optical semiconductor element 9 is pressed against the optical semiconductor element mounting portion 2 of the optical circuit board 1, and FIG. 2B is a view showing the Au layers 3 and 5 and the Sn layer 4.
FIG. 4 is a diagram showing a diffusion state of the above. FIG. 2C shows Au.
FIG. 2D is a view showing a state in which a Sn eutectic is generated, and FIG.
FIG. 4 is a view showing a diffusion state between the electrode surface 10 of the optical semiconductor element 9 and the AuSn eutectic.

【0026】これら図1及び図2を用いて本発明の一実
施例の処理について説明する。光半導体素子9を光回路
基板1に接合する場合、まず光半導体素子9の電極面1
0を光回路基板1の光半導体素子実装部2に形成された
接合部の最上層Au層5上に接触させて加圧する。[図
2(a)参照]。
The processing of one embodiment of the present invention will be described with reference to FIGS. When joining the optical semiconductor element 9 to the optical circuit board 1, first, the electrode surface 1 of the optical semiconductor element 9 is bonded.
0 is brought into contact with the uppermost Au layer 5 of the bonding portion formed on the optical semiconductor element mounting portion 2 of the optical circuit board 1 and pressurized. [See FIG. 2 (a)].

【0027】その後に、光回路基板1を280℃以下の
温度で加熱すると、温度の上昇とともにAu層3,5と
Sn層4との界面でAuとSnとの相互拡散が進行し、
AuとSnとの相互拡散層11が形成される[図2
(b)参照]。
Thereafter, when the optical circuit board 1 is heated at a temperature of 280 ° C. or lower, the interdiffusion of Au and Sn proceeds at the interface between the Au layers 3, 5 and the Sn layer 4 with the rise of the temperature.
An interdiffusion layer 11 of Au and Sn is formed (FIG. 2).
(B)].

【0028】光回路基板1の温度が280℃以上になる
と、Au層3,5のAu及びSn層4のSnの拡散が進
行し、Au対Snの重量比がほぼ80%対20%になる
と、AuSn共晶12が生成される[図2(c)参
照]。この時点で、光半導体素子9の電極面10に存在
する凹凸がAuSn共晶12で濡らされる。
When the temperature of the optical circuit board 1 rises to 280 ° C. or higher, diffusion of Au in the Au layers 3 and 5 and Sn in the Sn layer 4 progress, and when the weight ratio of Au to Sn becomes approximately 80% to 20%. , AuSn eutectic 12 is generated [see FIG. 2 (c)]. At this point, the irregularities existing on the electrode surface 10 of the optical semiconductor element 9 are wetted by the AuSn eutectic 12.

【0029】光回路基板1がさらに加熱されると、光半
導体素子9の電極面10の内部にもSnが拡散してい
き、光半導体素子実装部2の接合部と光半導体素子9の
電極面10との境界が消滅する[図2(d)参照]。こ
の状態で、光回線基板1を冷却することで接合が完了す
る。
When the optical circuit board 1 is further heated, Sn diffuses into the electrode surface 10 of the optical semiconductor element 9, and the junction between the optical semiconductor element mounting portion 2 and the electrode surface of the optical semiconductor element 9 is formed. The boundary with 10 disappears (see FIG. 2D). In this state, the optical circuit board 1 is cooled to complete the joining.

【0030】このように、光回路基板1の光半導体素子
実装部2上に最上層がAuとなるようにAu及びSnを
層状に形成し、最上層のAuを含むAu及びSnの組成
比を、Auが80%、Snが20%の重量比とすること
によって、Au及びSnの複数層を蒸着またはスパッタ
等の手段を用いて形成することが可能となるので、この
層の厚さの精度を非常に高くかつこの層の厚さを薄く形
成することが可能となる。
As described above, Au and Sn are formed in layers on the optical semiconductor element mounting portion 2 of the optical circuit board 1 so that the uppermost layer becomes Au, and the composition ratio of Au and Sn including Au in the uppermost layer is changed. , Au at a weight ratio of 80% and Sn at a weight ratio of 20%, a plurality of layers of Au and Sn can be formed by means such as vapor deposition or sputtering. Is very high and the thickness of this layer can be reduced.

【0031】また、光半導体素子実装部2の接合部を上
記の如く形成することで、光半導体素子9を接合すると
きの加圧力の変化に対する光半導体素子9の沈み込みを
非常に少なくすることができ、光半導体素子9の高さ方
向の精度をサブミクロン以下とすることができる。
Further, by forming the bonding portion of the optical semiconductor element mounting portion 2 as described above, the sinking of the optical semiconductor element 9 with respect to the change in the pressing force at the time of bonding the optical semiconductor element 9 is extremely reduced. Accordingly, the accuracy in the height direction of the optical semiconductor element 9 can be made to be submicron or less.

【0032】さらに、AuSn溶融時に光半導体素子9
の電極面10の面積に比較して接合部の厚さが非常に薄
いため、電極面10がAuSn共晶12で濡れたときに
生ずるAuSn共晶12の表面張力の影響は無視できる
程度に小さい。
Further, when the AuSn is melted,
Since the thickness of the bonding portion is very small as compared with the area of the electrode surface 10, the influence of the surface tension of the AuSn eutectic 12 generated when the electrode surface 10 is wet with the AuSn eutectic 12 is negligibly small. .

【0033】さらにまた、最も酸化が生じやすい加熱時
においても、AuSn溶融層が生成されるまで接合部の
最上層にAu層5があるため、表面酸化のないAuSn
溶融状態を容易に得ることができる。
Furthermore, even during heating, where oxidation is most likely to occur, the Au layer 5 is on the uppermost layer of the junction until the AuSn molten layer is formed.
A molten state can be easily obtained.

【0034】これにより、光半導体素子9の実装時にA
uSn共晶12の表面張力の影響による位置変動が生じ
ず、また酸化膜を除去するためのスクラブを不要とする
ので、光半導体素子9を接合前に高精度に位置決めして
おくことで、ザブミクロンの精度での実装が可能とな
る。
Thus, when the optical semiconductor element 9 is mounted, A
Since the position does not fluctuate due to the influence of the surface tension of the uSn eutectic 12 and the scrub for removing the oxide film is not required, positioning the optical semiconductor element 9 with high precision before bonding makes it possible to reduce the submicron size. It is possible to implement with a precision of.

【0035】また、光回路基板1を保管する場合も表面
層がAuで覆われており、かつ化学的に安定しているの
で、汚染のないよう保管することで接合前の酸洗浄等の
煩雑な作業が不要となる。
When the optical circuit board 1 is stored, the surface layer is covered with Au and is chemically stable. Work is not required.

【0036】さらに、通常AuSnの合金層を蒸着等に
よって形成しようとした場合、蒸着の条件のばらつき等
によって均一な組成比の合金を形成することが困難であ
る。これに対して、本発明ではAu及びSnを蒸着また
はスパッタ等の手段で順次形成するので、接合分の厚さ
を管理するだけでAuとSnとの均一な組成比を得るこ
とが可能である。よって、安価で、かつ歩留まりよく光
回路基板を製造することが可能となる。
Further, when an AuSn alloy layer is usually formed by vapor deposition or the like, it is difficult to form an alloy having a uniform composition ratio due to variations in vapor deposition conditions and the like. On the other hand, in the present invention, since Au and Sn are sequentially formed by means such as vapor deposition or sputtering, it is possible to obtain a uniform composition ratio of Au and Sn only by controlling the thickness of the junction. . Therefore, it is possible to manufacture an optical circuit board at low cost and with good yield.

【0037】なお、本発明の一実施例では光回路基板1
の光半導体素子実装部2に接合部を形成する例を述べた
が、この接合部を光半導体素子9側に形成しても、また
光半導体素子実装部2及び光半導体素子9の両方に形成
してもよく、これに限定されない。これらの場合、光半
導体素子実装部2及び光半導体素子9の表面層を所定厚
さのAuで形成しておく必要がある。
In one embodiment of the present invention, the optical circuit board 1
Although the example in which the bonding portion is formed in the optical semiconductor element mounting portion 2 has been described, the bonding portion may be formed on the optical semiconductor device 9 side or may be formed on both the optical semiconductor device mounting portion 2 and the optical semiconductor device 9. However, the present invention is not limited to this. In these cases, the surface layers of the optical semiconductor element mounting section 2 and the optical semiconductor element 9 need to be formed of Au having a predetermined thickness.

【0038】次に、本発明の光半導体素子接合構造にお
いて、膜構成を変えた他の実施例について説明する。
Next, another embodiment in which the film configuration is changed in the optical semiconductor element junction structure of the present invention will be described.

【0039】光半導体素子等の微小なチップを本発明の
接合構造によって接合する場合、接合電極の面積は、例
えば300μm角の半導体素子で250μm×60μm
2程度と非常に小さいため、接合層の厚さを薄くするこ
とができる。上述の一実施例で用いたAu/Sn/Au
層の厚さは1〜2μmとなっている。層構成としては、
Au/Sn/Au3層の場合、基板側の接合層のそれぞ
れの厚さを0.4、0.6、0.4μm、総膜厚1.4
μmとし、半導体レーザ側のAu電極膜厚を0.4μm
とした場合に良好な結果が得られている。
When a small chip such as an optical semiconductor device is bonded by the bonding structure of the present invention, the area of the bonding electrode is, for example, 250 μm × 60 μm for a 300 μm square semiconductor device.
Since it is as small as about 2, the thickness of the bonding layer can be reduced. Au / Sn / Au used in the above embodiment
The thickness of the layer is 1-2 μm. As the layer configuration,
In the case of the Au / Sn / Au3 layer, the thickness of each of the bonding layers on the substrate side is 0.4, 0.6, 0.4 μm, and the total film thickness is 1.4.
μm, and the thickness of the Au electrode on the semiconductor laser side is 0.4 μm.
In this case, good results were obtained.

【0040】ここでは他の膜厚の組合せとして、Au/
Sn/Auをそれぞれ0.6、0.6、0.2μmとし
た場合について説明する。基本的な構造は上述の一実施
例と同様であり、基板上に半導体レーザを2×10−3
Nで加圧した後、窒素雰囲気中で温度340℃で30秒
間加熱する。図3は、加熱前と加熱後における表面層の
合金状態を薄膜X線回折で観察した結果を示している。
図3より加熱前はAuの回折ピークしか認められず、A
u膜により表面酸化が抑制されていることがわかる。こ
れに対して、加熱後はAuとSnが拡散してAuSn合
金層が形成されていることがわかる。
Here, as another combination of film thicknesses, Au /
The case where Sn / Au is 0.6, 0.6, and 0.2 μm, respectively, will be described. The basic structure is the same as that of the above-described embodiment, and a semiconductor laser is placed on a substrate at 2 × 10 −3.
After pressurizing with N, it is heated at 340 ° C. for 30 seconds in a nitrogen atmosphere. FIG. 3 shows the results of observing the alloy state of the surface layer before and after heating by thin film X-ray diffraction.
From FIG. 3, before heating, only the Au diffraction peak was observed,
It can be seen that the surface oxidation is suppressed by the u film. On the other hand, it can be seen that after heating, Au and Sn diffuse to form an AuSn alloy layer.

【0041】上述の加熱による溶融、固着の接合層にお
けるAuSnの状態変化は、図3に示すAu−Snの状
態図を用いて説明することができる。すなわち、加熱前
には基板上のAu/Sn/Au層は図中のの状態にあ
り、基板上のAu/Sn重量比(%)は70:30の共
晶状態にある。次に、加熱により温度が上昇するにつれ
ての矢印に従ってAuSnは拡散が進み、の加熱状
態で完全に溶融する。さらに、基板上の接合層は半導体
レーザの電極のAu膜と接触しているため、Snは半導
体レーザの電極膜内にも拡散する結果、で示される状
態に移行する。この状態で加熱を停止することにより、
冷却され接合が完了する。従って、加熱後はもとの接合
層のAu/Snの重量比とは異なったものとなる。
The change in the state of AuSn in the melted and fixed bonding layer due to the above-described heating can be explained with reference to the state diagram of Au-Sn shown in FIG. That is, before heating, the Au / Sn / Au layer on the substrate is in the state shown in the figure, and the Au / Sn weight ratio (%) on the substrate is in the eutectic state of 70:30. Next, as the temperature rises due to heating, the diffusion of AuSn proceeds in accordance with the arrow, and the AuSn is completely melted in the heated state. Further, since the bonding layer on the substrate is in contact with the Au film of the electrode of the semiconductor laser, Sn also diffuses into the electrode film of the semiconductor laser, so that the state shifts to the state shown by. By stopping the heating in this state,
Cooling completes joining. Therefore, after the heating, the weight ratio of Au / Sn of the original bonding layer is different.

【0042】以上説明したような本発明の膜構成を採用
することにより、従来行っていたスクラブをすることな
く、完全な接合を行うなうことができるようになる。こ
のため、スクラブにより生じていた接合精度を向上させ
ることができる。
By adopting the film configuration of the present invention as described above, it is possible to perform complete bonding without performing scrub which has been conventionally performed. For this reason, the joining accuracy caused by the scrub can be improved.

【0043】次に、本発明の他の実施例により接合した
光半導体素子の接合精度について説明する。図4は、接
合部の高さ方向のばらつきの測定結果を示しており、ば
らつきはσ=0.18μmと非常に小さいことがわか
る。なお、接合後の接合層は溶融時に加圧することから
わずかに水平方向に広がるため、接合前より約0.4μ
m低くなっている。高さ方向の位置ずれについてはばら
つきさえ小さければ、あらかじめ位置ずれ分をオフセッ
トしておくことにより、結合特性の低下を回避すること
ができる。
Next, the joining accuracy of the optical semiconductor device joined according to another embodiment of the present invention will be described. FIG. 4 shows the measurement results of the variation in the height direction of the bonding portion, and it can be seen that the variation is extremely small as σ = 0.18 μm. Since the bonding layer after bonding spreads slightly in the horizontal direction due to pressurization during melting, it is about 0.4 μm more than before bonding.
m lower. If there is only a small variation in the positional deviation in the height direction, a reduction in the coupling characteristics can be avoided by offsetting the positional deviation in advance.

【0044】また、図5は接合による基板および半導体
レーザにマークを付して、光半導体素子の水平方向の位
置ずれ量を測定した結果を示している。接合層が比較的
薄いために表面張力による影響を抑制でき、しかもスク
ラブが必要ないために、位置ずれ量は平均で0.46μ
mと良好な結果が得られている。
FIG. 5 shows the result of measuring the horizontal displacement of the optical semiconductor device by marking the substrate and the semiconductor laser by bonding. Since the bonding layer is relatively thin, the influence of surface tension can be suppressed, and no scrub is required.
m and a good result are obtained.

【0045】また、初期的な接合強度は、ダイシェア強
度で約80gであり、温度サイクル印加後も劣化傾向は
認められていない。特に、接合前の光回路基板側のAu
とSnの重量比を80:20として共晶状態からAuが
多い方にずらすことによって、共晶状態を維持した接合
よりもより安定した接合が得られている。
The initial bonding strength is about 80 g in die shear strength, and no deterioration tendency is observed even after the application of the temperature cycle. In particular, Au on the optical circuit board side before bonding is used.
By shifting the weight ratio of Sn and Sn to 80:20 and shifting from the eutectic state to the one with more Au, more stable bonding is obtained than the bonding maintaining the eutectic state.

【0046】[0046]

【発明の効果】以上説明したように本発明によれば、光
半導体素子の接合面及び光回路基板上の光半導体素子の
接合箇所のうち少なくとも一方に、他方との接合面に形
成されたAu層を含みかつ互いに共晶化されるAu層及
びSn層が積層されて形成された接合材の共晶化により
光半導体素子の接合面を光回路基板上の光半導体素子の
接合箇所に接合することによって、サブミクロンのオー
ダで光半導体素子を位置決め固定することができるとい
う効果がある。しかも、接合後は共晶状態よりもAuの
重量比が多い状態にすることでより高温対してより安定
した接合が得られる。
As described above, according to the present invention, Au formed on at least one of the bonding surface of the optical semiconductor device and the bonding portion of the optical semiconductor device on the optical circuit board, and on the bonding surface with the other. The bonding surface of the optical semiconductor element is bonded to the bonding portion of the optical semiconductor element on the optical circuit board by eutectic bonding of a bonding material formed by laminating an Au layer and a Sn layer that include layers and are eutectic with each other. This has the effect that the optical semiconductor element can be positioned and fixed on the order of submicrons. In addition, by setting the weight ratio of Au to be larger than that in the eutectic state after bonding, more stable bonding can be obtained at higher temperatures.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す構成図である。FIG. 1 is a configuration diagram showing one embodiment of the present invention.

【図2】(a)は光半導体素子と光回路基板の光半導体
素子実装部への加圧状態を示す図、(b)はAu層とS
n層との拡散状態を示す図、(c)はAuSn共晶が生
成された状態を示す図、(d)は光半導体素子の電極面
とAuSn共晶との拡散状態を示す図である。
FIG. 2A is a diagram showing a state in which an optical semiconductor element and an optical circuit board are pressed against an optical semiconductor element mounting portion, and FIG. 2B is a view showing an Au layer and an S layer;
FIG. 3C is a diagram illustrating a diffusion state with an n-layer, FIG. 3C is a diagram illustrating a state in which an AuSn eutectic is generated, and FIG. 3D is a diagram illustrating a diffusion state between an electrode surface of the optical semiconductor element and the AuSn eutectic.

【図3】接合膜の加熱前後の薄膜X線回折による成分分
析結果
FIG. 3 is a result of component analysis by thin-film X-ray diffraction before and after heating of a bonding film.

【図4】本発明で他の実施例で用いた接合膜の接合過程
における状態変化を示すAuSn状態図
FIG. 4 is an AuSn state diagram showing a state change in a bonding process of a bonding film used in another embodiment of the present invention.

【図5】本発明の光半導体素子接合構造における高さ方
向の位置ずれ量
FIG. 5 shows the amount of displacement in the height direction in the optical semiconductor element junction structure of the present invention.

【図6】本発明の光半導体素子接合構造における水平方
向の位置ずれ量
FIG. 6 shows the amount of positional deviation in the horizontal direction in the optical semiconductor element junction structure of the present invention.

【図7】本発明の光半導体素子接合構造の接合部の強度
試験結果を示す図
FIG. 7 is a diagram showing a strength test result of a bonding portion of the optical semiconductor device bonding structure of the present invention.

【符号の説明】[Explanation of symbols]

1 光回路基板 2 光半導体素子実装部 3 Au層 4 Sn層 5 最上層のAu層 9 光半導体素子 10 電極面 DESCRIPTION OF SYMBOLS 1 Optical circuit board 2 Optical semiconductor element mounting part 3 Au layer 4 Sn layer 5 Uppermost Au layer 9 Optical semiconductor element 10 Electrode surface

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光半導体素子を光回路基板上に接合固定
する光半導体素子接合構造であって、 前記光半導体素子は前記光回路基板との接合面に形成さ
れた第1のAu層を含み、前記光回路基板は前記光半導体素子が接合される接合箇
所に前記第1のAu層と互いに共晶化される第2のAu
層とSn層と第3のAu層の3層が 積層されて形成され
た接合材を有し、 前記接合材の共晶化により前記光半導体素子の接合面を
前記光回路基板上の前記光半導体素子の接合箇所に接合
するようにしたことを特徴とする光半導体素子接合構
造。
1. An optical semiconductor element bonding structure for bonding and fixing an optical semiconductor element on an optical circuit board, wherein the optical semiconductor element includes a first Au layer formed on a bonding surface with the optical circuit board. The optical circuit board is a joint member to which the optical semiconductor element is joined.
Where the second Au layer is eutecticized with the first Au layer.
And a bonding material formed by laminating three layers of a layer, a Sn layer, and a third Au layer. The bonding surface of the optical semiconductor element is formed on the optical circuit board by eutectic bonding of the bonding material. An optical semiconductor element bonding structure, wherein the optical semiconductor element is bonded to a bonding portion of a semiconductor element.
【請求項2】 前記他方との接合面に形成されたAu層
が予め設定された所定厚さを有し、前記接合材を構成す
るAu層とSn層との重量比が約80対20であること
を特徴とする請求項1記載の光半導体素子接合構造。
2. An Au layer formed on a bonding surface with the other has a predetermined thickness, and a weight ratio of the Au layer and the Sn layer constituting the bonding material is about 80:20. 2. The optical semiconductor element junction structure according to claim 1 , wherein the optical semiconductor element junction structure is provided.
【請求項3】 前記光半導体素子の接合面及び前記回路
基板上の前記光半導体素子の接合面に夫々前記Au層が
形成されていることを特徴とする請求項1または請求項
記載の光半導体素子接合構造。
3. A process according to claim 1 or claim, characterized in that each said Au layer on the bonding surface of the optical semiconductor element of the bonding surface and the circuit board of the optical semiconductor element is formed
3. The optical semiconductor element bonding structure according to 2.
【請求項4】 前記Au、Sn、Auの3層の総膜厚が
1μm以上2μm以下であることを特徴とする請求項1
から請求項3までにいずれかの請求項に記載の光半導体
素子接合構造。
4. The method of claim 1, wherein said Au, Sn, the total thickness of the three layers of Au is 1μm or more 2μm or less
The optical semiconductor element junction structure according to any one of claims 1 to 3 .
【請求項5】 光半導体素子の実装面側の表面に第1の
Au層を形成する工程と、 前記光半導体素子が実装される光回路基板の表面に、第
2のAu層、Sn層、第3のAu層の3層を、前記第2
のAu層及び前記第3のAu層の重量の総和と前記Sn
層の重量の重量比が約80対20になるようにを形成す
る工程と、 前記光半導体素子の実装面と前記光回路基板の表面を接
合させる工程と、 前記光回路基板を280℃以上に加熱する工程と、 前記光回路基板を常温に冷却する工程と、 を含むことを特徴とする光半導体素子の接合方法。
5. A step of forming a first Au layer on a surface on a mounting surface side of an optical semiconductor element, and forming a first Au layer on an optical circuit board on which the optical semiconductor element is mounted .
The second Au layer, the Sn layer, and the third Au layer were
Of the total weight of the Au layer and the third Au layer and the Sn
Forming a layer so that the weight ratio of the layers is about 80 to 20; bonding the mounting surface of the optical semiconductor element to the surface of the optical circuit board; and keeping the optical circuit board at 280 ° C. or higher. A method for bonding optical semiconductor elements, comprising: a step of heating; and a step of cooling the optical circuit board to room temperature.
【請求項6】 前記第2のAu層と前記Sn層と前記第
3のAu層の3総の総膜厚が1μm以上2μm以下であ
ることを特徴とする請求項5記載のを含むことを特徴と
する光半導体素子の接合方法。
6. The second Au layer, the Sn layer, and the second
The total thickness of the three Au layers is 1 μm or more and 2 μm or less.
6. The method according to claim 5, further comprising:
Method for joining optical semiconductor elements.
JP3617194A 1993-04-27 1994-03-07 Optical semiconductor device bonding structure and bonding method Expired - Lifetime JP2797958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3617194A JP2797958B2 (en) 1993-04-27 1994-03-07 Optical semiconductor device bonding structure and bonding method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP12511493 1993-04-27
JP5-125114 1993-04-27
JP3617194A JP2797958B2 (en) 1993-04-27 1994-03-07 Optical semiconductor device bonding structure and bonding method

Publications (2)

Publication Number Publication Date
JPH0794786A JPH0794786A (en) 1995-04-07
JP2797958B2 true JP2797958B2 (en) 1998-09-17

Family

ID=26375216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3617194A Expired - Lifetime JP2797958B2 (en) 1993-04-27 1994-03-07 Optical semiconductor device bonding structure and bonding method

Country Status (1)

Country Link
JP (1) JP2797958B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4814503B2 (en) * 2004-09-14 2011-11-16 スタンレー電気株式会社 Semiconductor device, manufacturing method thereof, and electronic component unit
JP4617902B2 (en) 2005-01-31 2011-01-26 信越半導体株式会社 Light emitting device and method for manufacturing light emitting device
WO2007119571A1 (en) * 2006-04-17 2007-10-25 Dowa Electronics Materials Co., Ltd. Solder layer, substrate for device junction utilizing the same, and process for manufacturing the substrate
JP2009130300A (en) * 2007-11-27 2009-06-11 Panasonic Electric Works Co Ltd Method of manufacturing light-emitting device
US9620478B2 (en) 2011-11-18 2017-04-11 Apple Inc. Method of fabricating a micro device transfer head
US8426227B1 (en) * 2011-11-18 2013-04-23 LuxVue Technology Corporation Method of forming a micro light emitting diode array
US8349116B1 (en) 2011-11-18 2013-01-08 LuxVue Technology Corporation Micro device transfer head heater assembly and method of transferring a micro device
US8573469B2 (en) 2011-11-18 2013-11-05 LuxVue Technology Corporation Method of forming a micro LED structure and array of micro LED structures with an electrically insulating layer
JP5849691B2 (en) * 2011-12-28 2016-02-03 日亜化学工業株式会社 Mounting method of light emitting element
AT513747B1 (en) * 2013-02-28 2014-07-15 Mikroelektronik Ges Mit Beschränkter Haftung Ab Assembly process for circuit carriers and circuit carriers
CN103170765B (en) * 2013-03-05 2015-07-22 中国工程物理研究院应用电子学研究所 Preparation method for gold-tin eutectic solder
KR102564179B1 (en) * 2018-03-05 2023-08-07 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Light emitting device package
CN113394186B (en) * 2021-06-11 2022-06-14 赛创电气(铜陵)有限公司 Metal laminated structure, chip and manufacturing and welding methods thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136884A (en) * 1974-09-24 1976-03-27 Nippon Electric Co
JP2618475B2 (en) * 1989-03-27 1997-06-11 古河電気工業株式会社 Bonding method of LED array chip and heat sink substrate
JP2529397B2 (en) * 1989-06-16 1996-08-28 松下電子工業株式会社 Electrode for mounting chip parts

Also Published As

Publication number Publication date
JPH0794786A (en) 1995-04-07

Similar Documents

Publication Publication Date Title
US5854087A (en) Method of manufacturing an optical semiconductor device
JP2797958B2 (en) Optical semiconductor device bonding structure and bonding method
EP0253691B1 (en) Silicon die bonding process
JPH04326534A (en) Chip bonding method of semiconductor device
KR20050061452A (en) Submount and semiconductor device
JP3627591B2 (en) Power semiconductor module manufacturing method
JP3190718B2 (en) Submount for semiconductor laser
JP2008543049A (en) Semiconductor package and method for forming the same
JP2004111936A (en) Method of manufacturing semiconductor module
JP3346971B2 (en) Submount for optical semiconductor device and method of mounting the same
JPH08255973A (en) Ceramic circuit board
JP2557268B2 (en) Device mounting method
JPWO2005086221A1 (en) Electronic component mounting method
JPS63102326A (en) Clad material
JPS61181136A (en) Die bonding
JPH0146228B2 (en)
US4921158A (en) Brazing material
Zakel et al. Fluxless flip chip assembly on rigid and flexible polymer substrates using the Au-Sn metallurgy
JPH09283909A (en) Electronic circuit device and its manufacture
JP2000138250A (en) Semiconductor device and its manufacture
JPH11186295A (en) Soldering method
JPS6260836B2 (en)
JPH0140514B2 (en)
KR960011854B1 (en) Silicon die-bonding process
JPH11111737A (en) Semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070703

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080703

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090703

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100703

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110703

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110703

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 15

EXPY Cancellation because of completion of term