JP2795450B2 - Amorphous magnetic alloy for magnetic head - Google Patents

Amorphous magnetic alloy for magnetic head

Info

Publication number
JP2795450B2
JP2795450B2 JP1007669A JP766989A JP2795450B2 JP 2795450 B2 JP2795450 B2 JP 2795450B2 JP 1007669 A JP1007669 A JP 1007669A JP 766989 A JP766989 A JP 766989A JP 2795450 B2 JP2795450 B2 JP 2795450B2
Authority
JP
Japan
Prior art keywords
magnetic
amorphous
alloy
roll
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1007669A
Other languages
Japanese (ja)
Other versions
JPH02190455A (en
Inventor
雅弘 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP1007669A priority Critical patent/JP2795450B2/en
Publication of JPH02190455A publication Critical patent/JPH02190455A/en
Application granted granted Critical
Publication of JP2795450B2 publication Critical patent/JP2795450B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15316Amorphous metallic alloys, e.g. glassy metals based on Co

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Heads (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、非晶質(アモルファス)磁性合金、より詳
しくは、高飽和磁束密度、高透磁率を有し、かつ熱的安
定性に優れた磁気ヘッド用非晶質磁性合金に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an amorphous (amorphous) magnetic alloy, and more specifically, to an alloy having a high saturation magnetic flux density, a high magnetic permeability, and excellent thermal stability. And an amorphous magnetic alloy for a magnetic head.

〔従来の技術〕[Conventional technology]

近年、磁気テープや磁気ディスクの高密度化に伴い、
より高い飽和磁束密度を有する磁気ヘッドのコア材料が
求められている。従来より磁気ヘッドコア材料(磁性材
料)として非晶質磁性合金が提案されている(例えば、
特開昭55−80303号公報、56−44734号公報および56−75
542号公報参照)。
In recent years, with the increasing density of magnetic tapes and magnetic disks,
There is a need for a magnetic head core material having a higher saturation magnetic flux density. Conventionally, an amorphous magnetic alloy has been proposed as a magnetic head core material (magnetic material) (for example,
JP-A Nos. 55-80303, 56-44734 and 56-75
542).

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

非晶質磁性合金の場合にはその磁気特性向上のため
に、キュリー点温度(Tc)以上で結晶化温度(Tx)以下
の温度範囲にて熱処理を行なわなければならないが、飽
和磁束密度が高くなるにしたがってキュリー点温度は上
昇し、一方、結晶化温度は低下する傾向がある。特に、
Co(コバルト)基非晶質磁性合金では、飽和磁束密度10
KG付近にてキュリー点温度と結晶化温度とが逆転して、
キュリー点温度のほうが高くなり通常の熱処理を施こす
ことはできなくなる。そこで、外部から強制的に磁界を
かけながら熱処理(磁場中熱処理)を行なう、特に、回
転磁界中熱処理を行なうことによって磁気特性向上を図
っている。
In the case of an amorphous magnetic alloy, heat treatment must be performed at a temperature in the range from the Curie point temperature (Tc) to the crystallization temperature (Tx) to improve its magnetic properties. As the Curie point temperature increases, the crystallization temperature tends to decrease. Especially,
Co (cobalt) -based amorphous magnetic alloy has a saturation magnetic flux density of 10
Curie point temperature and crystallization temperature are reversed around KG,
The Curie point temperature becomes higher, so that ordinary heat treatment cannot be performed. Therefore, heat treatment (heat treatment in a magnetic field) is performed while forcibly applying a magnetic field from the outside, and particularly, magnetic properties are improved by performing heat treatment in a rotating magnetic field.

しかしながら、本発明の実験によれば、Co基非晶質磁
性合金を回転磁界中熱処理して向上させた透磁率は熱的
に不安定であって経時変化(低下)が大きく実用上問題
があるとわかった。
However, according to the experiments of the present invention, the improved magnetic permeability obtained by heat-treating a Co-based amorphous magnetic alloy in a rotating magnetic field is thermally unstable and changes with time (decrease) over time, which poses a practical problem. I understood.

本発明の目的は、上述した問題を克服して熱的安定性
のある非晶質磁性合金であって優れた磁気特性(高飽和
磁束密度、高透磁率)の磁気ヘッド用コア材料を提供す
ることである。
An object of the present invention is to provide a core material for a magnetic head, which is an amorphous magnetic alloy having thermal stability and which has excellent magnetic properties (high saturation magnetic flux density and high magnetic permeability) by overcoming the above-mentioned problems. That is.

〔課題を解決するための手段〕[Means for solving the problem]

上述の目的が、組成式(FeaCobx(SicBdyMz 〔式中、MはTi,Zr,Hf,V,Nb,Ta,Cr,Mo,W,Mn,RuおよびAl
の1種または2種以上の組合わせであり、 x+y+z=100,a+b=1,c+d=1, 0.03≦a≦0.06,0≦c≦0.5, 17≦y≦21,0.1≦z≦7.5〕 を有し、かつ超急冷法で非晶質化したときに0.5〜30%
の結晶化度を有する磁気ヘッド用非晶質磁性合金によっ
て達成される。
The above object is achieved by a composition formula (Fe a Co b ) x (Si c B d ) y M z [where M is Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Ru And Al
X + y + z = 100, a + b = 1, c + d = 1, 0.03 ≦ a ≦ 0.06, 0 ≦ c ≦ 0.5, 17 ≦ y ≦ 21, 0.1 ≦ z ≦ 7.5] 0.5% to 30% when it becomes amorphous by the rapid quenching method
Is achieved by an amorphous magnetic alloy for a magnetic head having a crystallinity of?

〔作用〕[Action]

本発明に係る非晶質磁性合金の組成において上述した
ように限定した理由は次のとおりである。(1)0.03≦
a≦0.06としたのは、まずこの範囲がこの組成系での磁
歪ゼロ付近であり、磁気特性の良好な範囲であるからで
ある。aが0.03未満であると、磁歪がマイナス(−)に
多く移行し、逆に、0.06を越えると、磁歪がプラス
(+)に大きく移行してしまう。(2)0≦c≦0.5と
したのは、Siが0.5を越えるように多くなると飽和磁束
密度が低下しかつ超急冷法でのリボン化(薄層化)が困
難になるからである。(3)17≦y≦21としたのは、y
が21を越えると飽和磁束密度が低下(9KG以下)し、一
方、17未満になるとリボン化が困難になるからである。
製造上はyが18〜20であるのが好ましい。そして、
(4)0.1≦z≦7.5としたのは、耐摩耗性および耐食性
を向上させ、結晶成長を抑え、並びに、微細構造にする
わけであるが、0.1未満では効果が現われず、一方、7.5
を越えると飽和磁束密度が低下するからである。
The reasons for limiting the composition of the amorphous magnetic alloy according to the present invention as described above are as follows. (1) 0.03 ≦
The reason for setting a ≦ 0.06 is that this range is close to zero magnetostriction in this composition system, and is a range with good magnetic properties. When a is less than 0.03, the magnetostriction largely shifts to minus (-), and when it exceeds 0.06, the magnetostriction largely shifts to plus (+). (2) The reason for satisfying 0 ≦ c ≦ 0.5 is that when the content of Si exceeds 0.5, the saturation magnetic flux density decreases, and it becomes difficult to form a ribbon (thin layer) by a super-quenching method. (3) 17 ≦ y ≦ 21
Is more than 21, the saturation magnetic flux density is reduced (9 KG or less), while if it is less than 17, it becomes difficult to form a ribbon.
From the viewpoint of production, y is preferably 18-20. And
(4) The reason for satisfying 0.1 ≦ z ≦ 7.5 is to improve wear resistance and corrosion resistance, to suppress crystal growth, and to obtain a fine structure.
This is because the saturation magnetic flux density decreases when the ratio exceeds.

結晶化度を0.5〜30%とすることは、上述した組成合
金を溶融し、超急冷法にしたがって回転ロールに溶液を
吹き付けて非晶質リボン(テープ)を作成する際に、ロ
ールを加熱して非晶質化の冷却速度を調整することでな
される。非晶質磁性合金の内部に含まれる結晶の含有率
(結晶化度)は、完全に結晶化させた場合でのX線回折
ピークを100%としてそれに対する非晶質磁性合金のX
線回折ピークの割合で表わしたものであって、結晶化度
0.5%未満では透磁率の経時変化(低下)が大きく安定
化効果がなく、一方、30%を超えると高い透磁率が得ら
れない。
The crystallinity of 0.5 to 30% is achieved by melting the above-mentioned alloy composition and spraying the solution onto a rotating roll according to a super-quenching method to form an amorphous ribbon (tape). This is done by adjusting the cooling rate for amorphization. The content (crystallinity) of the crystal contained in the amorphous magnetic alloy is defined as the X-ray diffraction peak of the amorphous magnetic alloy with respect to the X-ray diffraction peak of 100% when completely crystallized.
It is expressed by the ratio of the line diffraction peak,
If it is less than 0.5%, the change with time (decrease) of the magnetic permeability is large and there is no stabilizing effect, while if it exceeds 30%, a high magnetic permeability cannot be obtained.

〔実施例〕〔Example〕

以下、添付図面を参照して実施例によって本発明を詳
しく説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

実施例1 所定の成分材料を用意して組成: (Fe0.045Co0.95580(Si0.1B0.918Ru1.0Mn1.0
溶液(溶融温度:1250〜1200℃)とした。該溶液を超急
冷法での銅製ロールを用いた片ロール法にしたがって該
ロールに吹き付けて、厚み30μm、幅12mmの非晶質磁性
薄板(リボン、テープ)を作製した。このときの条件と
しては、銅製ロールは直径700mmで幅70mmであり、ロー
ル回転数は400〜500rpmであり、該ロールと加熱せずに
室温状態で作製した試料A(比較例)と、該ロールを40
℃に加熱して作製した試料B(本発明)と、該ロールを
60℃に加熱して作製した試料C(本発明)とを得た。
Example 1 A predetermined component material was prepared and made into a solution of (Fe 0.045 Co 0.955 ) 80 (Si 0.1 B 0.9 ) 18 Ru 1.0 Mn 1.0 (melting temperature: 1250 to 1200 ° C.). The solution was sprayed onto the roll according to a single roll method using a copper roll by a rapid quenching method to produce an amorphous magnetic thin plate (ribbon, tape) having a thickness of 30 μm and a width of 12 mm. The conditions at this time were as follows: the copper roll had a diameter of 700 mm and a width of 70 mm, the rotation number of the roll was 400 to 500 rpm, and a sample A (comparative example) prepared at room temperature without heating the roll and the roll. To 40
Sample B (the present invention) produced by heating to
Sample C (the present invention) produced by heating to 60 ° C. was obtained.

これら試料A,BおよびCをX線回折して得たグラフが
第2図、第3図および第4図である。これらグラフから
ロール温度が高いほど大きな回折ピークが現われ結晶化
が進行することがわかる。
Graphs obtained by subjecting these samples A, B and C to X-ray diffraction are FIG. 2, FIG. 3 and FIG. From these graphs, it can be seen that as the roll temperature is higher, a larger diffraction peak appears and crystallization proceeds.

次に、作製した試料A,BおよびCに回転磁界中熱処理
(熱処理温度:結晶化温度より約70℃低い温度;回転
数:400rpm;熱処理時間:60分)を施こして、磁気特性を
向上させ、透磁率μ0(1kHz、印加磁場2mOe)を測定し
た。そして、各試料を100℃の時効温度に維持して透磁
率の経時変化を測定して、第1図に示す結果を得た。第
1図において、横軸が時効時間で、縦軸が透磁率の低下
割合(μt/μ0)である。第1図からわかるように、結
晶化が進行していない試料Aでは透磁率が多く低下し、
一方、ある程度結晶化させた試料BおよびCでは透磁率
の低下は小さくなり、熱的安定性が向上している。
Next, the prepared samples A, B, and C are subjected to a heat treatment in a rotating magnetic field (heat treatment temperature: about 70 ° C. lower than the crystallization temperature; rotation speed: 400 rpm; heat treatment time: 60 minutes) to improve the magnetic properties. Then, the magnetic permeability μ 0 (1 kHz, applied magnetic field 2 mOe) was measured. Then, each sample was maintained at an aging temperature of 100 ° C., and the change with time of the magnetic permeability was measured, and the results shown in FIG. 1 were obtained. In FIG. 1, the abscissa indicates the aging time, and the ordinate indicates the rate of decrease in the magnetic permeability (μ t / μ 0 ). As can be seen from FIG. 1, in Sample A in which crystallization has not progressed, the magnetic permeability is greatly reduced,
On the other hand, in Samples B and C that have been crystallized to some extent, the decrease in magnetic permeability is small, and the thermal stability is improved.

実施例2 所定の成分材料を用意して組成: (Fe0.05Co0.9576(Si0.2B0.818Ta1.0Cr1.0Zr1.0
Ru3.0の溶液(溶融温度:1250〜1200℃)とした。該溶液
を実施例1での銅製ロールに吹き付けて、厚み30μm、
幅12mmのものと、厚み40μm、幅12mmの非晶質磁性薄板
を作製した。ロール回転数を400〜500rpmとし、ロール
を60℃に加熱しての条件で行なった。X線回折によって
これら非晶質磁性薄板の結晶化を調べたところ、厚みに
よる相違はなかった。
Example 2 A predetermined component material was prepared and composed: (Fe 0.05 Co 0.95 ) 76 (Si 0.2 B 0.8 ) 18 Ta 1.0 Cr 1.0 Zr 1.0
A solution of Ru 3.0 (melting temperature: 1250 to 1200 ° C.) was obtained. The solution was sprayed onto the copper roll of Example 1 to have a thickness of 30 μm.
An amorphous magnetic thin plate having a width of 12 mm and a thickness of 40 μm and a width of 12 mm were produced. The rotation was performed under the conditions of a roll rotation speed of 400 to 500 rpm and a roll heated to 60 ° C. When the crystallization of these amorphous magnetic thin plates was examined by X-ray diffraction, there was no difference depending on the thickness.

実施例3 実施例2での組成の溶液を所定温度にした実施例1の
銅製ロールに吹き付けて、厚み30μm、幅12mmの非晶質
磁性薄板を作製した。このときの条件としては、ロール
回転数を400〜500rpmとし、ロール温度を室温から150℃
までの範囲内で異なるものに設定した。作製した非晶質
磁性薄板それぞれを実施例1と同じ回転磁界中熱処理し
てから透磁率(1kHz、印加磁場2mOe)およびX線回折で
の結晶化度を調べた。得られた結果を第5図に示す。第
5図からわかるように、結晶化度が30%(60℃)を越え
ると透磁性μは大きく低下し、40%以上(80℃以上)に
なると透磁率は3000以下になってしまう。そして、ロー
ルを100℃に加熱すると、結晶化度が60%以上になって
しまう。
Example 3 The solution having the composition of Example 2 was sprayed onto the copper roll of Example 1 at a predetermined temperature to produce an amorphous magnetic thin plate having a thickness of 30 μm and a width of 12 mm. At this time, the roll rotation speed was set to 400 to 500 rpm, and the roll temperature was changed from room temperature to 150 ° C.
Different values were set within the range up to. Each of the prepared amorphous magnetic thin plates was heat-treated in the same rotating magnetic field as in Example 1, and then examined for magnetic permeability (1 kHz, applied magnetic field of 2 mOe) and crystallinity by X-ray diffraction. The results obtained are shown in FIG. As can be seen from FIG. 5, when the crystallinity exceeds 30% (60 ° C.), the magnetic permeability μ greatly decreases, and when it exceeds 40% (80 ° C. or more), the magnetic permeability becomes 3000 or less. When the roll is heated to 100 ° C., the crystallinity becomes 60% or more.

〔発明の効果〕〔The invention's effect〕

上述したように本発明によると、ロールを加熱して非
晶質化のときの冷却速度を遅くすることによって一部結
晶化させると、磁場中熱処理した非晶質磁性合金の透磁
率はその熱的安定性が向上する。
As described above, according to the present invention, when the roll is heated and the cooling rate during the amorphization is reduced to partially crystallize, the magnetic permeability of the amorphous magnetic alloy heat-treated in a magnetic field is increased by the heat. Stability is improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、非晶質磁性合金の透磁率の経時変化を示すグ
ラフであり、 第2図は、試料A(ロール加熱なし)のX線回折グラフ
であり、 第3図は、試料B(ロール40℃加熱)のX線回折グラフ
であり、 第4図は、試料C(ロール60℃加熱)のX線回折グラフ
であり、 第5図は、非晶質磁性合金の結晶化度と透磁率との関係
を示すグラフである。
FIG. 1 is a graph showing the change over time in the magnetic permeability of an amorphous magnetic alloy. FIG. 2 is an X-ray diffraction graph of sample A (without roll heating). FIG. FIG. 4 is an X-ray diffraction graph of sample C (rolled at 60 ° C.), and FIG. 5 is a graph showing the crystallinity and transparency of the amorphous magnetic alloy. It is a graph which shows the relationship with magnetic susceptibility.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】組成式(FeaCobx(SicBdyMz 〔式中、MはTi,Zr,Hf,V,Nb,Ta,Cr,Mo,W,Mn,RuおよびAl
の1種または2種以上の組み合わせであり、 x+y+z=100,a+b=1,c+d=1, 0.03≦a≦0.06,0≦c≦0.5 17≦y≦21,0.1≦z≦7.5〕 を有し、且つ超急冷法で非晶質化したときに0.5〜30%
の結晶化度を有し、且つ回転磁場中熱処理を行った磁気
ヘッド用非晶質磁性金属。
1. A composition formula (Fe a Co b) x ( Si c B d) y M z wherein, M is Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Ru And Al
X + y + z = 100, a + b = 1, c + d = 1, 0.03 ≦ a ≦ 0.06, 0 ≦ c ≦ 0.5 17 ≦ y ≦ 21, 0.1 ≦ z ≦ 7.5] 0.5 to 30% when amorphous by rapid quenching
Amorphous magnetic metal for a magnetic head having a degree of crystallinity and heat-treated in a rotating magnetic field.
JP1007669A 1989-01-18 1989-01-18 Amorphous magnetic alloy for magnetic head Expired - Lifetime JP2795450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1007669A JP2795450B2 (en) 1989-01-18 1989-01-18 Amorphous magnetic alloy for magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1007669A JP2795450B2 (en) 1989-01-18 1989-01-18 Amorphous magnetic alloy for magnetic head

Publications (2)

Publication Number Publication Date
JPH02190455A JPH02190455A (en) 1990-07-26
JP2795450B2 true JP2795450B2 (en) 1998-09-10

Family

ID=11672209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1007669A Expired - Lifetime JP2795450B2 (en) 1989-01-18 1989-01-18 Amorphous magnetic alloy for magnetic head

Country Status (1)

Country Link
JP (1) JP2795450B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4365994A (en) * 1979-03-23 1982-12-28 Allied Corporation Complex boride particle containing alloys

Also Published As

Publication number Publication date
JPH02190455A (en) 1990-07-26

Similar Documents

Publication Publication Date Title
JPH01242755A (en) Fe-based magnetic alloy
EP0429022B1 (en) Magnetic alloy with ulrafine crystal grains and method of producing same
JPH01156451A (en) Soft-magnetic alloy having high saturation magnetic flux density
JPS6133058B2 (en)
JP4257629B2 (en) Fe-based amorphous alloy ribbon and magnetic component for nanocrystalline soft magnetic alloy
JP2795450B2 (en) Amorphous magnetic alloy for magnetic head
JPH10324961A (en) Iron-based amorphous alloy sheet strip excellent in soft magnetic property, and its manufacture
JPS6035425B2 (en) Manufacturing method of high magnetic permeability amorphous alloy
JPH0312442B2 (en)
JPS6261660B2 (en)
JPH08283919A (en) Iron-base amorphous alloy foil and its production
JPS6256202B2 (en)
JPS6181608A (en) Preparation of powder of hexagonal ferrite particle
JP3887029B2 (en) Quenched metal ribbon with excellent soft magnetic properties and method for producing the same
JPS61123119A (en) Co group magnetic core and heat treatment thereof
JPS627261B2 (en)
JP2621151B2 (en) Magnetic material and method of manufacturing the same
JPS6242981B2 (en)
RU2009258C1 (en) Magnetic alloy for oxidizing annealing and method for production thereof
JPS5837125A (en) Manufacture of sendust alloy thin band
JPH01142049A (en) Fe-based magnetic alloy
JPS619520A (en) Manufacture of rapidly cooled thin strip having high tensile strength and non-orientation
JPS61246318A (en) Improvement of surface property and magnetic characteristic of thin strip of amorphous magnetic alloy
JPS6311654A (en) Production of amorphous magnetic material
JPS6256203B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080626

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090626

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090626

Year of fee payment: 11