JP2787052B2 - High voltage supply - Google Patents

High voltage supply

Info

Publication number
JP2787052B2
JP2787052B2 JP63030215A JP3021588A JP2787052B2 JP 2787052 B2 JP2787052 B2 JP 2787052B2 JP 63030215 A JP63030215 A JP 63030215A JP 3021588 A JP3021588 A JP 3021588A JP 2787052 B2 JP2787052 B2 JP 2787052B2
Authority
JP
Japan
Prior art keywords
voltage
output
power supply
floating power
floating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63030215A
Other languages
Japanese (ja)
Other versions
JPH01206275A (en
Inventor
正治 後藤
規雄 曽根
秀雄 赤間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON HYUURETSUTO PATSUKAADO KK
Original Assignee
NIPPON HYUURETSUTO PATSUKAADO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON HYUURETSUTO PATSUKAADO KK filed Critical NIPPON HYUURETSUTO PATSUKAADO KK
Priority to JP63030215A priority Critical patent/JP2787052B2/en
Priority to EP89102249A priority patent/EP0328109A1/en
Priority to US07/309,755 priority patent/US4914312A/en
Publication of JPH01206275A publication Critical patent/JPH01206275A/en
Application granted granted Critical
Publication of JP2787052B2 publication Critical patent/JP2787052B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/14Circuits therefor, e.g. for generating test voltages, sensing circuits
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/62Regulating voltage or current wherein the variable actually regulated by the final control device is dc using bucking or boosting dc sources

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Amplifiers (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は一般に半導体素子の特性を測定する半導体測
定装置に関し、特に高ブレークダウン電圧を測定するの
に適した高電圧を出力することのできる高電圧供給装置
に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally relates to a semiconductor measuring device for measuring characteristics of a semiconductor device, and more particularly, to a semiconductor measuring device capable of outputting a high voltage suitable for measuring a high breakdown voltage. The present invention relates to a voltage supply device.

〔発明の技術的背景及びその問題点〕[Technical background of the invention and its problems]

従来、半導体ダイオードなどの被測定デバイス(DU
T)のブレークダウン(破壊)電圧を測定するのに、こ
れに逆電圧を可変印加して、ブレークダウンによる電流
が所定の値に達したときの印加電圧をブレークダウン電
圧として測定している。このとき電圧印加が長時間にわ
たると、デバイス内の発熱によりデバイス自身が破壊さ
れる恐れがあるため、印加電圧はパルス、たとえばパル
ス幅1ms位の高速パルスである必要があった。このよう
なパルスはその波高値が数十ボルト程度なら容易に実現
できる。しかし、ブレークダウン電圧が、たとえば1kV
もの高電圧であるようなデバイスを測定する場合、測定
に必要な高速パルスを発生させることは容易でない。
Conventionally, devices to be measured (such as semiconductor diodes)
To measure the breakdown (breakdown) voltage of T), a reverse voltage is variably applied thereto, and the applied voltage when the current due to the breakdown reaches a predetermined value is measured as the breakdown voltage. At this time, if the voltage is applied for a long time, the device itself may be destroyed by heat generation in the device. Therefore, the applied voltage has to be a pulse, for example, a high-speed pulse with a pulse width of about 1 ms. Such a pulse can be easily realized if its peak value is about several tens of volts. However, if the breakdown voltage is, for example, 1 kV
When measuring a device having a very high voltage, it is not easy to generate a high-speed pulse required for the measurement.

このような高電圧のパルスを発生させるのに、スイッ
チング電源回路をアナログ・フィードバックで制御する
方式、あるいは変成器を用いて昇圧した交流電圧をスラ
イドトランスで制御する方式などが考えられるが、いず
れも電圧応答速度(周波数応答特性)などに難がある。
また、高耐圧のトランジスタを用いたリニア増幅器をア
ナログ・フィードバックで制御する方式では、応答を速
くするために多量のアイドリング電流が必要とされ、こ
のため消費電力が大きくなる。
To generate such a high-voltage pulse, a method of controlling the switching power supply circuit with analog feedback, or a method of controlling the AC voltage boosted by using a transformer with a slide transformer can be considered. There is a difficulty in voltage response speed (frequency response characteristics).
Further, in a method of controlling a linear amplifier using a transistor with a high withstand voltage by analog feedback, a large amount of idling current is required to increase the response speed, and the power consumption increases.

〔発明の目的〕[Object of the invention]

本発明は1kV以上の高電圧を出力することのできる装
置を、低消費電力(高効率)、広周波数帯域、低価格で
提供することを目的とする。
An object of the present invention is to provide a device capable of outputting a high voltage of 1 kV or more with low power consumption (high efficiency), a wide frequency band, and a low price.

〔発明の概要〕[Summary of the Invention]

本発明は、ブレークダウン電圧測定に際し、印加電圧
に高速パルス性が必要とされる電圧変化幅は、十数ボル
トであり、他の印加電圧領域では高速性が必要とされな
いということに基づいている。これは、ブレークダウン
領域では発熱によるデバイス破壊の可能性があり、高速
パルス性が必要とされるが、その最大可変出力波高値
は、この領域がわずかな印加電圧の変化で大幅に電流が
変わる領域であることから、一般に十数ボルトあれば充
分であるという測定アプリケーション上の理由による。
(第4図参照) 本発明の一実施例の高電圧供給装置によれば、高電圧
出力手段(システムコモン上で動作)と、その出力電圧
(フローティングコモン)上で動作するフローティング
(浮動状態)電源手段とが備えられ、高電圧出力手段
は、たとえば1kV程度以上の高電圧を出力できるが、高
速性はあまり必要とされない。フローティング電源手段
は、たとえば最大で十数ボルト程度の出力であるが、応
答は高速であり、たとえば1ms幅のパルス有を発生する
ことができる。高電圧供給装置の出力(システムコモン
上で動作)はフローティング電源手段内の出力設定手段
によって設定される。出力設定手段を所望の値に設定す
ると、フローティング電源手段の出力はこれに応じてそ
れ自身が持つ応答速度で変化し、該出力はフローティン
グコモン上の比較器によって所定の値と比較される。該
比較器の出力はアイソレータ手段を介して、システムコ
モン上の高電圧出力手段に入力され、これに応じて該高
電圧出力手段の出力、すなわちフローティングコモンの
電位が増減される。一方、またフローティングコモン電
位はモニタ手段によってシステムコモン電位と加減算さ
れた後、前記出力設定手段の出力と加減算されて、フロ
ーティング電源手段の出力を増減する。この場合、高電
圧出力手段の出力の増減と、フローティング電源手段の
出力の増減とは方向が逆である。このようにして高電圧
出力手段の出力電圧はフローティング電源手段が動作可
能な範囲にとどまるように制御される。
The present invention is based on the fact that, when measuring the breakdown voltage, the voltage change width in which a high-speed pulse property is required for the applied voltage is ten and several volts, and the high-speed property is not required in other applied voltage regions. . This means that the device may be destroyed due to heat generation in the breakdown region, and high-speed pulsing is required, but the maximum variable output peak value is such that the current changes significantly with a slight change in applied voltage in this region. Because it is an area, it is generally for measurement applications that ten and a few volts are sufficient.
According to the high voltage supply device of one embodiment of the present invention, the high voltage output means (operates on the system common) and the floating (floating state) operates on the output voltage (floating common). Power supply means is provided, and the high voltage output means can output a high voltage of, for example, about 1 kV or more, but high speed is not so required. The floating power supply means has, for example, an output of about ten and several volts at maximum, but has a fast response, and can generate a pulse having a width of, for example, 1 ms. The output of the high voltage supply (operating on the system common) is set by output setting means in the floating power supply means. When the output setting means is set to a desired value, the output of the floating power supply means changes correspondingly at its own response speed, and the output is compared with a predetermined value by a comparator on the floating common. The output of the comparator is input to the high voltage output means on the system common via the isolator means, and the output of the high voltage output means, that is, the potential of the floating common is increased or decreased accordingly. On the other hand, the floating common potential is added to or subtracted from the system common potential by the monitor means, and then added to or subtracted from the output of the output setting means to increase or decrease the output of the floating power supply means. In this case, the directions of the increase and decrease of the output of the high voltage output unit and the increase and decrease of the output of the floating power supply unit are opposite. In this way, the output voltage of the high voltage output means is controlled so as to stay within the range in which the floating power supply means can operate.

これによって、特にデバイスの高ブレークダウン電圧
の測定に適した高速パルスを発生することのできる高電
圧供給手段を、低消費電力、高速(広周波数帯域)、低
価格で構成することができる。フローティング電源手段
ではブレークダウン時の出力電流を測定することも可能
である。
As a result, a high-voltage supply unit that can generate a high-speed pulse particularly suitable for measuring a high breakdown voltage of a device can be configured with low power consumption, high speed (wide frequency band), and low cost. With the floating power supply means, it is also possible to measure the output current at the time of breakdown.

なお、高電圧出力手段とフローティング電源手段とを
個別に制御し、これらの出力を単に重畳したものを高電
圧供給装置の出力としても良い。
It should be noted that the high voltage output means and the floating power supply means may be individually controlled, and those outputs may be simply superimposed and used as the output of the high voltage supply device.

〔発明の実施例〕(Example of the invention)

第1図は本発明の一実施例の高電圧供給装置を示す図
である。図において、逆三角形マーク▽はシステムコモ
ンへの接地を表わし、中に線のある逆三角形マーク はフローティングコモンへの接地を表わす。フローティ
ング電源手段100は図の点線で囲まれた部分に相当し、
フローティングコモンを基準電位として動作する。この
回路では電圧モード動作のとき、高電圧供給装置の出力
電圧VOS(システムコモンに対する電圧)はDAC101によ
って設定され、このとき増幅器105、結合回路116、増幅
器110、電流検出用抵抗117及び増幅器111からなるルー
プが働いてVOSを所望の値に設定する。DAC102は抵抗117
を流れる電流の設定または電流制限値の設定を行なうも
ので、正電流設定/制限、負電流設定/制限はそれぞれ
増幅器106、107によって制御される。これらの詳しい動
作説明はたとえば特開昭58−148506号「複合制御増幅
器」を参照されたい。増幅器108、109はそれぞれ図中の
VCF(フローティング電源手段の出力VOFに等しい)がフ
ローティング電源手段100の出力電圧範囲を超えて正ま
たは負方向に変化しようとしたときにフローティング電
源手段100の動作を制限し、出力にスパイクノイズが発
生するのを防ぐ働きをしている。
FIG. 1 is a diagram showing a high voltage supply device according to one embodiment of the present invention. In the figure, the inverted triangle mark ▽ indicates grounding to the system common, and the inverted triangle mark with a line inside Represents ground to the floating common. The floating power supply means 100 corresponds to a portion surrounded by a dotted line in the figure,
It operates using the floating common as a reference potential. In this circuit, in the voltage mode operation, the output voltage V OS (voltage with respect to the system common) of the high voltage supply device is set by the DAC 101. At this time, the amplifier 105, the coupling circuit 116, the amplifier 110, the current detecting resistor 117 and the amplifier 111 Sets VOS to the desired value. DAC102 is resistor 117
The setting of the current flowing through the circuit or the setting of the current limit value is performed. The setting and limiting of the positive current and the setting and limiting of the negative current are controlled by the amplifiers 106 and 107, respectively. For a detailed description of these operations, see, for example, Japanese Patent Application Laid-Open No. 58-148506, "Composite Control Amplifier". Amplifiers 108 and 109 are respectively
When V CF (equal to the output V OF of the floating power supply means) attempts to change in the positive or negative direction beyond the output voltage range of the floating power supply means 100, the operation of the floating power supply means 100 is limited, and spike noise is generated at the output. Works to prevent the occurrence of

フローティング電源手段100の出力電圧が制限範囲内
である場合の高電圧供給装置の動作を第2図を用いて説
明する。DAC101によってVOSの設定たとえば0.6V以上の
正値が行なわれると、フローティングコモンに対するフ
ローティング電源手段の出力VOFはフローティング電源
手段自身の持つ応答速度で急速に立ち上がり、設定され
た値に到達する。このときVCFはフローティングコモン
上にウインド−コンパレータ113によって、たとえばフ
ローティングコモン電位+0.6V、および、フローティン
グコモン電位−0.6Vとそれぞれ比較され、この場合、コ
ンパレータ113はUP信号を発生する。このUP信号はフォ
トカプラー142(DOWN信号の場合はフォトカプラー141)
によってコモンがアイソレートされてシステムコモン上
のアップ・ダウンカウンター133へ導かれる。カウンタ
ー133はこの信号を一定周期毎(たとえば20μs)に受
けつけて、これによってカウントアップした出力をDAC1
32に入力し、DAC132の出力は高電圧出力手段130内の増
幅器131に入力されて増幅器131の出力、すなわちフロー
ティングコモンの電位を増加する。高電圧出力手段130
はシステムコモンを基準電位として動作するので、フロ
ーティングコモン電位はシステムコモン電位に対して増
加することになる。したがって、システムコモンを基準
電位とする高電圧供給装置の出力電圧VOSは、高電圧出
力手段130の出力電圧に、フローティングコモンを基準
電位とするフローティング電源手段100の出力電圧VOF
重畳(直列接続)された形となる。このフローティング
コモン電位は、モニタ手段150内の増幅器103によってそ
のシステムコモン電位に対する電位差が検知され、増幅
器105内の反転入力端子に印加される。この電圧印加に
より、増幅器105の反転入力端子におけるDAC101からの
出力電圧が減じられ、フローティング電源手段100の出
力電圧VOFは低下する。この電圧低下分はフローティン
グコモン電位の上昇分に相当する。高電圧供給装置の出
力電圧VOSは一定のままである。この一連の動作はVCF
コンパレータ113のウインドー内に入るまで繰り返さ
れ、その結果VOSは第2図に示すように、フローティン
グ電源手段100自身の応答速度ですばやく立上った波形
となる。立下りも同様に高速となる。なおDAC101による
設定値が負である場合はコンパレータ113はDOWN信号を
発生するが、動作は正の場合の逆を考えれば良い。第3
図はフローティング電源手段100の出力電圧VOFが制限範
囲外である場合の高電圧供給装置の動作を示す図であ
る。VOFが制限範囲を超えて正方向に変化しようとして
いる関はVOFの値は増幅器108によって制限値に抑えられ
る。その他は第2図で説明した動作と同様である。VOS
は図示のように急速に立上った後は階段状の部分を有す
ることになる。
The operation of the high voltage supply device when the output voltage of the floating power supply 100 is within the limit range will be described with reference to FIG. A positive value of the set, for example, more than 0.6V of V OS is performed by the DAC 101, the output V OF floating supply means for floating the common rises rapidly at a response speed with the floating power source means itself reaches the set value. Wind this time V CF is on the floating common - by the comparator 113, for example, a floating common potential + 0.6V, and are respectively compared with the floating common potential -0.6 V, this case, the comparator 113 generates an UP signal. This UP signal is a photocoupler 142 (in the case of a DOWN signal, photocoupler 141)
Then, the common is isolated and led to the up / down counter 133 on the system common. The counter 133 receives this signal at regular intervals (for example, 20 μs) and outputs the output counted up by the DAC 1
The output of the DAC 132 is input to the amplifier 131 in the high voltage output means 130, and the output of the amplifier 131, that is, the potential of the floating common is increased. High voltage output means 130
Operates using the system common as a reference potential, so that the floating common potential increases with respect to the system common potential. Therefore, the output voltage V OS of the high voltage supply device having the system common as the reference potential is superimposed on the output voltage V OF of the floating power supply means 100 having the floating common as the reference potential on the output voltage of the high voltage output means 130 (series). Connected). This floating common potential is detected by the amplifier 103 in the monitor means 150 with respect to the system common potential, and is applied to the inverting input terminal in the amplifier 105. This voltage application, the output voltage from DAC101 at the inverting input terminal of amplifier 105 is reduced, the output voltage V OF floating supply means 100 is reduced. This voltage drop corresponds to a rise in the floating common potential. The output voltage V OS of the high voltage supply remains constant. This series of operations is repeated until V CF enters the window of the comparator 113. As a result, as shown in FIG. 2, the waveform of V OS quickly rises at the response speed of the floating power supply means 100 itself. The falling speed is also high. When the value set by the DAC 101 is negative, the comparator 113 generates a DOWN signal. Third
Figure is a diagram showing the operation of the high voltage supply device in the case where the output voltage V OF floating supply means 100 is outside limits. The function of V OF is trying to change by more than a limited range in the positive direction the value of V OF is suppressed to limit the amplifier 108. The other operations are the same as those described with reference to FIG. V OS
Has a step-like portion after rising rapidly as shown.

高電圧出力手段の制限をデジタル信号で行なうことに
は次のような利点がある。
Limiting the high voltage output means by a digital signal has the following advantages.

(1) 高電圧出力手段の周波数応答がシステムの安定
性に関与しない。高電圧出力手段はアップ・ダウンカウ
ンターとDACとが提供する一定周期毎に変化する段階波
形に対して応答可能であれば良く、内部でどの様な帯域
操作(たとえばピーキング)をしていてもシステムの安
定性には影響を及ぼさない。また、回路方式も任意であ
り、例えば効率の高いスイッチング電源回路(高効率、
低消費電力)などを用いることができる。
(1) The frequency response of the high voltage output means does not contribute to the stability of the system. The high-voltage output means only needs to be able to respond to the step waveform that changes at regular intervals provided by the up / down counter and the DAC, and the system can operate in any band (for example, peaking) internally. It does not affect the stability of Further, the circuit system is also arbitrary, and for example, a switching power supply circuit with high efficiency (high efficiency,
Low power consumption) can be used.

(2) アナログ信号で高電圧を制御する場合に比べて
制御系のハードウェアが簡単で小さくなる。アナログ信
号で高電圧出力手段に対してフィードバックをかける場
合には、変性器、アナログ・フォトアイソレータ等を必
要とする。
(2) The control system hardware is simpler and smaller than when high voltage is controlled by analog signals. When applying feedback to the high voltage output means with an analog signal, a denaturer, an analog photoisolator, and the like are required.

(3) 高電圧出力手段とフローティング電源手段の独
立性が強く設計の自由度が大きい。
(3) The high voltage output means and the floating power supply means are highly independent and have a high degree of freedom in design.

なおウィンドーコンパレータ113の出力はUP、DOWNの
2種類の信号に限定されるものではなく、また、これら
の信号をアップ・ダウンカウンター113が受付ける周期
も一定である必要はない。
Note that the output of the window comparator 113 is not limited to the two types of signals, UP and DOWN, and the period at which these signals are received by the up / down counter 113 does not need to be constant.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明を用いることにより、特
に半導体素子の高ブレークダウン電圧の測定に際し、素
子を破壊することなく高速かつ高精度に測定できる高電
圧供給装置を、低消費電力、広帯域、低価格で実現する
ことができる。
As described above, by using the present invention, particularly when measuring a high breakdown voltage of a semiconductor device, a high-voltage supply device capable of measuring at high speed and with high accuracy without breaking the device is provided. It can be realized at a low price.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す図、第2図は低電圧出
力における、本発明の一実施例の動作を示す図、第3図
は高電圧出力における、本発明の一実施例の動作を示す
図、第4図はダイオードのブレークダウン特性を示す図
である。 100:フローティング電源手段 130:高電圧出力手段 133:アップ・ダウンカウンター 113:ウインドーコンパレータ 132:DAC 141、142:フォトカプラー 103:増幅器
1 is a diagram showing one embodiment of the present invention, FIG. 2 is a diagram showing the operation of one embodiment of the present invention at low voltage output, and FIG. 3 is one embodiment of the present invention at high voltage output. FIG. 4 is a diagram showing the breakdown characteristics of the diode. 100: Floating power supply means 130: High voltage output means 133: Up / down counter 113: Window comparator 132: DAC 141, 142: Photocoupler 103: Amplifier

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−148506(JP,A) 特開 昭59−99368(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01R 31/26 G01R 31/28 G01R 31/00 G05F 1/00 H02M 9/00────────────────────────────────────────────────── (5) References JP-A-58-148506 (JP, A) JP-A-59-99368 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G01R 31/26 G01R 31/28 G01R 31/00 G05F 1/00 H02M 9/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高電圧出力手段と、 該高電圧出力手段と直列接続されて該高電圧出力手段の
出力を基準電位として動作し、出力が前記高電圧出力手
段より高速で応答するフローティング電源手段と、 を備えて成る高電圧供給装置。
1. A high-voltage output means, and a floating power supply means connected in series with the high-voltage output means to operate using an output of the high-voltage output means as a reference potential and to respond faster than the high-voltage output means. And a high-voltage supply device comprising:
【請求項2】前記高電圧出力手段の出力電圧の増減は、
前記フローティング電源手段からの制御信号に基づいて
行われ、設定された負荷電圧値に対して前記フローティ
ング電源手段が動作可能となるよう前記高電圧出力手段
の出力電圧が増減されることを特徴とする特許請求の範
囲第(1)項記載の高電圧供給装置。
2. The output voltage of said high voltage output means is increased or decreased by:
It is performed based on a control signal from the floating power supply means, and the output voltage of the high voltage output means is increased or decreased so that the floating power supply means becomes operable with respect to a set load voltage value. The high voltage supply device according to claim (1).
【請求項3】前記高電圧出力手段の出力電圧の増減に応
答してこれと逆方向に前記フローティング電源手段の出
力電圧を増減させる手段をさらに備えて成る特許請求の
範囲第(2)項記載の高電圧供給装置。
3. The apparatus according to claim 2, further comprising means for responding to an increase or decrease in the output voltage of said high-voltage output means, and increasing or decreasing the output voltage of said floating power supply means in the opposite direction. High voltage supply equipment.
【請求項4】前記高電圧出力手段の出力電圧の増減は、
前記フローティング電源手段からの光結合された制御信
号に応答して行なわれることを特徴とする特許請求の範
囲第(2)項または第(3)項記載の高電圧供給装置。
4. An increase / decrease of an output voltage of said high voltage output means,
The high-voltage supply device according to claim 2, wherein the high-voltage supply device is performed in response to an optically coupled control signal from said floating power supply means.
【請求項5】前記フローティング電源手段は、負荷電流
を測定するための電流検出手段を備えていることを特徴
とする特許請求の範囲第(1)項乃至第(4)項のいず
れかに記載の高電圧供給装置。
5. The floating power supply means according to claim 1, wherein said floating power supply means includes current detection means for measuring a load current. High voltage supply equipment.
JP63030215A 1988-02-12 1988-02-12 High voltage supply Expired - Lifetime JP2787052B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63030215A JP2787052B2 (en) 1988-02-12 1988-02-12 High voltage supply
EP89102249A EP0328109A1 (en) 1988-02-12 1989-02-09 High voltage generator
US07/309,755 US4914312A (en) 1988-02-12 1989-02-10 Pulsed power supply for determining breakdown voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63030215A JP2787052B2 (en) 1988-02-12 1988-02-12 High voltage supply

Publications (2)

Publication Number Publication Date
JPH01206275A JPH01206275A (en) 1989-08-18
JP2787052B2 true JP2787052B2 (en) 1998-08-13

Family

ID=12297501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63030215A Expired - Lifetime JP2787052B2 (en) 1988-02-12 1988-02-12 High voltage supply

Country Status (3)

Country Link
US (1) US4914312A (en)
EP (1) EP0328109A1 (en)
JP (1) JP2787052B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69119729T2 (en) * 1990-12-17 1996-10-02 Patented Devices Pty Ltd Monitoring of partial discharges
US5668708A (en) * 1996-03-13 1997-09-16 Spellman High Voltage Electronics Corp. DC power supply with reduced ripple
JP4718517B2 (en) * 2007-05-29 2011-07-06 Imv株式会社 Board inspection equipment
JP6699480B2 (en) * 2016-09-16 2020-05-27 株式会社デンソー Signal processor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3470457A (en) * 1967-04-28 1969-09-30 Texaco Inc Voltage regulator employing cascaded operational amplifiers
US3535609A (en) * 1969-04-23 1970-10-20 Us Army High voltage,constant current power supply
DE2907580A1 (en) * 1979-02-27 1980-09-04 Leybold Heraeus Gmbh & Co Kg METHOD AND ARRANGEMENT FOR GENERATING A SMOOTHED VOLTAGE FROM THREE-PHASE
DE3042982C2 (en) * 1980-11-14 1982-11-11 Grundig E.M.V. Elektro-Mechanische Versuchsanstalt Max Grundig & Co KG, 8510 Fürth Circuit arrangement for stabilizing the high voltage for cathode ray tubes
JPS58148506A (en) * 1982-02-26 1983-09-03 Yokogawa Hewlett Packard Ltd Composite controlling amplifier
US4517472A (en) * 1983-07-06 1985-05-14 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration High voltage power supply

Also Published As

Publication number Publication date
JPH01206275A (en) 1989-08-18
US4914312A (en) 1990-04-03
EP0328109A1 (en) 1989-08-16

Similar Documents

Publication Publication Date Title
KR100700406B1 (en) Voltage Regulator
CA1303675C (en) Current source for a variable load with an inductive component
JP2010045865A (en) Adaptive dead time control for push-pull switching circuit
JPH0670540A (en) System provided with current-limiting output and power supply circuit
KR900702653A (en) Conversion circuit
JP2787052B2 (en) High voltage supply
EP0049649A1 (en) A.C. motor powering arrangement with means for limiting the power delivered to an A.C. motor
US4700148A (en) Shaker table amplifier
US4081696A (en) Current squaring circuit
JP2007315980A (en) Current/voltage conversion circuit
CN110207836B (en) Single photon detector and high-voltage fast regulating circuit thereof
JPH03183967A (en) Voltage or current application current or voltage measuring instrument
US3040234A (en) Electric control apparatus
EP3757980A1 (en) Control circuit, light source driving device and display equipment
US4305008A (en) Rectifiers
CN218630560U (en) Current source
KR930011247B1 (en) Voltage regulator
JPH0640471Y2 (en) Power supply
KR940001333Y1 (en) Variable d.c. power source
JPH0224045B2 (en)
SU980238A2 (en) Stabilized transistorized inverter
JPH04200005A (en) Power amplifier
SU612234A1 (en) Parametric dc voltage stabilizer
JPH0744248A (en) Constant voltage circuit
JPS62183613A (en) Detection circuit

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080605

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080605

Year of fee payment: 10