JP2785740B2 - Multi-conductor power line spacer - Google Patents

Multi-conductor power line spacer

Info

Publication number
JP2785740B2
JP2785740B2 JP7081978A JP8197895A JP2785740B2 JP 2785740 B2 JP2785740 B2 JP 2785740B2 JP 7081978 A JP7081978 A JP 7081978A JP 8197895 A JP8197895 A JP 8197895A JP 2785740 B2 JP2785740 B2 JP 2785740B2
Authority
JP
Japan
Prior art keywords
cross
spacer
section
frame
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7081978A
Other languages
Japanese (ja)
Other versions
JPH08251785A (en
Inventor
祐司 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP7081978A priority Critical patent/JP2785740B2/en
Publication of JPH08251785A publication Critical patent/JPH08251785A/en
Application granted granted Critical
Publication of JP2785740B2 publication Critical patent/JP2785740B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Suspension Of Electric Lines Or Cables (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、架空送電線に使用され
る多導体スペーサの構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a multiconductor spacer used for an overhead transmission line.

【0002】[0002]

【従来の技術】従来、多導体送電線用スペーサのフレー
ム部材としては、円形ロッド(円形断面の棒)、円形パ
イプ、スプリング(コイルばね)、およびU字鋼(断面
がU字形の開口断面を有する鋼材)等が使用されてき
た。しかし、近年、送電容量増加を目的として、導体数
が増加すると共に、導体間隔を拡げた送電線が建設され
るようになり、従来よりフレーム部の長い多導体用スペ
ーサ(以下大束径スペーサという)が必要となってき
た。この大束径スペーサでは、大きな外部荷重が加わる
傾向があり、そのため、従来、スペーサのフレームに使
用した上記部材が必ずしも設計上最適でないことが多く
なってきている。従来の多導体スペーサの一例を図4に
示す。フレーム部12は図示のように断面U字形鋼が用い
られ、単一の断面形状で環状六角形のスペーサフレーム
が形成され、各接合点において外方に突出してクランプ
部13が形成され、その先端部に導体クランプ用の金具14
が一体に取り付けられている。この形状のものは線路方
向移動荷重のフレーム捻り荷重に対しては優れた性能を
示すが、曲げ荷重および座屈荷重に対しては最適ではな
い。
2. Description of the Related Art Conventionally, as a frame member of a spacer for a multi-conductor power transmission line, a circular rod (a rod having a circular cross section), a circular pipe, a spring (a coil spring), and a U-shaped steel (an open cross section having a U-shaped cross section) have been used. Steel materials). However, in recent years, as the number of conductors has been increased with the aim of increasing the power transmission capacity, transmission lines with increased conductor spacing have been constructed, and multi-conductor spacers having a longer frame portion than before (hereinafter referred to as large bundle diameter spacers). Is needed. In this large bundle diameter spacer, a large external load tends to be applied, and therefore, the above-described members used in the frame of the spacer are often not always optimal in design. FIG. 4 shows an example of a conventional multiconductor spacer. As shown in the figure, a U-shaped steel section is used for the frame section 12, an annular hexagonal spacer frame having a single cross-sectional shape is formed, and a clamp section 13 is formed to protrude outward at each joint point. Bracket for conductor clamp 14
Are attached integrally. This shape shows excellent performance against the torsion load of the frame moving load in the track direction, but is not optimal for bending load and buckling load.

【0003】[0003]

【発明が解決しようとする課題】スペーサフレーム部材
の設計を決定する支配的な外部荷重は、サブスパン荷
重、線路方向移動荷重および短絡電磁力荷重であるが、
具体的に説明すると次のとおりである。 (1)サブスパン荷重は、スペーサフレーム間に支持さ
れた電線11、11に図5に示すように水平振動(ほぼ反対
位相の振動)を生じた時に、フレーム10に加わる曲げ荷
重のことである。 (2)線路方向移動荷重は、架線金具に動きが生じた
時、これに伴い中央電線11、11が図6に示すように、電
線が線路方向に(図6においては紙面と垂直方向に)動
くため、スペーサフレーム10が撓みながら捻られる荷重
のことである。 (3)短絡電磁力荷重は、図7に示すように、全電線11
に短絡電流が流れると電線11の相互間に求心力が均等に
働く。そのためスペーサフレーム10を部材軸方向に圧縮
する荷重のことである。
The dominant external loads that determine the design of the spacer frame member are subspan load, line direction moving load, and short-circuit electromagnetic force load.
The details are as follows. (1) The subspan load is a bending load applied to the frame 10 when horizontal vibrations (vibrations having substantially opposite phases) are generated in the electric wires 11, 11 supported between the spacer frames as shown in FIG. (2) The line direction moving load is such that when the overhead metal fittings move, the central wires 11, 11 are moved in the line direction as shown in FIG. 6 (in FIG. 6, in the direction perpendicular to the plane of the paper). This is a load that causes the spacer frame 10 to bend while being bent due to movement. (3) The short-circuit electromagnetic force load is, as shown in FIG.
When a short-circuit current flows through the wires, the centripetal force acts evenly between the wires 11. Therefore, it is a load for compressing the spacer frame 10 in the axial direction of the member.

【0004】すでに説明したように従来よりフレーム部
の長い大束径スペーサを必要とする現状において、スペ
ーサ重量に大きな割合を占めるフレーム部の設計が適切
でないと、スペーサ重量が過度に重くなり、製品のコス
トアップとなるばかりでなく、施工時の運搬、取付け作
業も難しくなり、工事費用の増加につながる。それ故、
スペーサフレーム部材の強度設計は上記荷重に対応して
最適なものを選定する必要がある。
As described above, in the present situation where a large bundle diameter spacer having a longer frame portion than before is required, if the frame portion, which accounts for a large proportion of the spacer weight, is not properly designed, the spacer weight becomes excessively heavy, and the product weight increases. Not only does the cost increase, but also the transportation and installation work during construction become difficult, leading to an increase in construction costs. Therefore,
For the strength design of the spacer frame member, it is necessary to select an optimal one in response to the above-mentioned load.

【0005】[0005]

【課題を解決するための手段】上記のように、スペーサ
には、送電線に実装時、種々の外力が加わることを設計
上考慮するが、フレーム部の設計を考える場合、前記
(1)のサブスパン荷重時の曲げ荷重に対しては同一断
面積で断面係数の大きい薄肉パイプ状の部材が設計上有
利である。また、前記(2)の線路方向移動荷重時の捻
り荷重に対しては捻り変形が発生しやすい平板状の断面
やU字形、H字形、L字形等の開口断面を持つ部材が設
計上有利であり、さらに(3)の短絡荷重時の座屈荷重
に対しては、座屈現象は部材に変形が生じ始めると急激
に耐座屈力が低下するため、部材の断面の形状は圧縮力
に対し変形の生じ難い点対称であることが望ましく、点
対称でない場合でも、部材の断面図心を通る垂直方向の
軸に対して直交する2軸以上に対し、線対称であること
が望ましい。従って、大束径スペーサのフレーム部の形
状は、強度設計上は単一の部材によるよりも、複数の断
面形状を持つ部材の方がよいことがわかる。上記の観点
より本発明の多導体送電線用スペーサは、2導体以上の
架空送電線用スペーサにおいて、電線を把持するクラン
プ部を取り付けるフレーム部のフレーム部材が、(1)
クランプ部に接する部分で閉断面を持ち、(2)クラン
プ部とクランプ部との間のフレーム部の中間で開断面を
持ち、(3)前記フレーム部のクランプ部に接する部分
と前記クランプ部とクランプ部との中間部は共に該閉型
のフレーム部の断面図心を垂直に通る軸に対して、少な
くとも直交する2軸において断面形状が対称となる、構
造を備えるものである。
As described above, the design considers that various external forces are applied to the spacer when mounting it on a power transmission line. For a bending load at the time of a subspan load, a thin pipe-shaped member having the same sectional area and a large sectional modulus is advantageous in design. In addition, a member having a flat plate-shaped cross section or a U-shaped, H-shaped, L-shaped open cross-section or the like in which torsional deformation is likely to occur with respect to the torsional load at the time of the line-direction moving load of (2) is advantageous in design. In addition, with respect to the buckling load at the time of the short-circuit load of (3), the buckling phenomenon sharply reduces the buckling resistance when the member starts to be deformed. On the other hand, it is desirable to have point symmetry in which deformation is unlikely to occur, and even if it is not point symmetry, it is desirable to have line symmetry with respect to two or more axes orthogonal to a vertical axis passing through the cross-sectional center of the member. Therefore, it can be seen that the shape of the frame portion of the large bundle diameter spacer is better for members having a plurality of cross-sectional shapes than for a single member in terms of strength design. In view of the above, the multi-conductor power transmission line spacer of the present invention is an overhead transmission line spacer having two or more conductors, wherein the frame member of the frame portion to which the clamp portion for gripping the electric wire is attached is (1)
(2) having an open cross section in the middle of the frame portion between the clamp portion and the clamp portion; and (3) having a portion in contact with the clamp portion of the frame portion and the clamp portion. Both the intermediate portion and the clamp portion have a structure in which the cross-sectional shape is symmetric at least in two axes perpendicular to the cross-sectional center of the closed frame portion.

【0006】[0006]

【作用】[Action]

(1)クランプ部に接する部分の断面形状が閉断面であ
ることにより、スペーサにサブスパン荷重等で曲げ荷重
が加わった場合、その設計上最も弱点となる箇所は、ク
ランプ部とフレーム部の接合部であることが多い。曲げ
荷重に対するフレーム部の発生曲げ応力σB は、基本的
に次の(1)式で表現される。
(1) Since the cross-sectional shape of the portion in contact with the clamp portion is a closed cross-section, if a bending load is applied to the spacer due to a subspan load or the like, the weakest point in the design is the joint portion between the clamp portion and the frame portion. Often it is. The generated bending stress σ B of the frame portion with respect to the bending load is basically expressed by the following equation (1).

【0007】[0007]

【数1】 (Equation 1)

【0008】従って発生曲げ応力σB を小さくするに
は、断面係数ZF を大きくすればよく、同一断面積であ
ることを条件とすると大口径のパイプ材の採用や、曲げ
モーメント方向に大きく間隔をあけた平板の並列配置等
が有効である。しかし、曲げ荷重方向は必ずしも限定さ
れないので、平板の並列配置等開断面のものは荷重方向
によっては部材に応力集中が発生するため好ましくな
く、また接合するクランプ部もある限られた大きさを持
つため、パイプ状のものでも無制限に大口径のものは採
用できず、場合によっては、パイプ状ではなく、断面充
実の円形棒状のロッドとなることもある。よって、本発
明ではクランプ部に接する部分の望ましいフレーム部材
の断面形状は、閉断面形状のものを用いる。次に(2)
クランプ部とクランプ部とのフレーム部の中央ないし中
間で、フレーム部材が開断面であることについて説明す
る。スペーサに線路方向移動荷重が加わると、スペーサ
のフレーム部には捻り荷重が加わり、捻り変形によりこ
の荷重を吸収する必要がある。この際断面形状が閉断面
である部材によれば、捻り荷重に対し断面形状変形の余
地がないため、捻り荷重をすべて捻り応力変形で吸収す
る必要があり、開断面を有する部材より設計上大きく不
利である。この捻り荷重に対する閉断面部材と開断面部
材の発生応力の比較は、種々の断面部材に対し、適切な
応力算出式がないため、一般的な比較はできないが、ほ
ぼ同面積を有する開断面部材のU字形鋼と閉断面部材の
鋼パイプに同一捻り荷重を加えた実験では、U字形鋼発
生応力3.5kgf/mm2 、鋼パイプ発生応力 18.3kgf/mm2
と閉断面のパイプでは約5〜6倍の応力が発生した。従
って、本発明ではフレーム部の中間部は開断面のフレー
ム部材が極めて好ましい。更に(3)の短絡電磁力荷重
による座屈強度については、種々の算出式が提案されて
おり、統一されたものはないが、例えば日本建築学会、
鋼構造設計では許容座屈応力を(2)式にて規定してい
る。
Therefore, to reduce the generated bending stress σ B , it is sufficient to increase the section modulus Z F. If the sectional area is the same, the use of a large-diameter pipe material or a large gap in the bending moment direction is required. A parallel arrangement of flat plates with openings is effective. However, since the bending load direction is not necessarily limited, those having an open cross section such as a parallel arrangement of flat plates are not preferable because stress concentration occurs in the members depending on the load direction, and the clamp portion to be joined has a limited size with a clamp portion. For this reason, a pipe-shaped one having a large diameter cannot be adopted without limitation, and in some cases, a rod-shaped rod having a solid cross section may be used instead of the pipe-shaped one. Therefore, in the present invention, the cross-sectional shape of the frame member desirably in contact with the clamp portion is a closed cross-sectional shape. Next (2)
The fact that the frame member has an open cross section at the center or middle of the frame portion between the clamp portions will be described. When a line direction moving load is applied to the spacer, a torsional load is applied to the frame portion of the spacer, and it is necessary to absorb this load by torsional deformation. At this time, according to the member having a closed cross-sectional shape, there is no room for deformation of the cross-sectional shape with respect to the torsional load, so it is necessary to absorb all the torsional load by torsional stress deformation, which is larger in design than a member having an open cross-section. Disadvantageous. The comparison of the stress generated between the closed section member and the open section member with respect to this torsional load cannot be generally compared because there is no appropriate stress calculation formula for the various cross section members. In the experiment where the same torsional load was applied to the U-shaped steel and the steel pipe of the closed section member, the U-shaped steel generated stress was 3.5 kgf / mm 2 , and the steel pipe generated stress was 18.3 kgf / mm 2
And about 5 to 6 times the stress was generated in the pipe having the closed section. Therefore, in the present invention, it is extremely preferable that the intermediate portion of the frame portion be a frame member having an open cross section. Further, for the buckling strength due to the short-circuit electromagnetic force load of (3), various calculation formulas have been proposed, and there is no unified formula.
In steel structure design, the allowable buckling stress is defined by equation (2).

【0009】[0009]

【数2】 (Equation 2)

【0010】(2)式は、開断面、閉断面いずれの部材
に対するものとは示されていないが、開断面の部材は座
屈時大きな断面変形を伴うことを考えると、設計式を一
般化することが難しいため、多分(2)式は閉断面の棒
あるいはパイプに対するものと推定される。そこで、断
面積263mm2のU字形鋼と310mm2の鋼パイプで、長さ60〜
110 mmの部材について座屈実験を行い、上記(2)式に
よる許容座屈応力計算値と比較したところ、鋼パイプで
は実験値/計算値が1.00〜1.07とよく一致したのに対
し、U字形鋼では0.74〜0.80と鋼パイプの70〜80%の強
度であることが確認できた。このU字形鋼の鋼パイプに
対して座屈強度の劣る原因を実験等によって考察してみ
ると、U字形鋼は点対称の断面ではないため、座屈荷重
負荷時、図心を軸に曲げ応力が発生し、開断面であるた
め断面形状が座屈しやすい方向に変形し座屈を容易にし
ているということが判明した。従って座屈荷重に対して
は、フレームの断面形状が図心に対し、点対称であるこ
とが最も望ましいが、図心を軸として直交する2軸に対
し、断面が線対称であれば、図心に対して点対称である
のと実用上ほぼ等価な意味を持つため、(3)の要件と
しては、フレームの端部、中央部に図心を通る軸に対
し、少なくとも直交する2軸において断面形状が対称と
なっていればよい。
The equation (2) is not shown for either the open section or the closed section, but the design equation is generalized in consideration of the fact that the member having the open section involves a large cross-sectional deformation when buckled. It is presumed that equation (2) is probably for a rod or pipe with a closed cross-section because it is difficult to do so. Therefore, a steel pipe of the cross-sectional area 263 mm 2 of U-shaped steel and 310 mm 2, 60 to the length
A buckling test was performed on a 110 mm member and compared with the allowable buckling stress calculated by the above equation (2). As a result, the experimental value / calculated value of the steel pipe agreed well with 1.00 to 1.07. For steel, it was confirmed that the strength was 0.74 to 0.80, which is 70 to 80% of that of steel pipe. When examining the cause of the inferior buckling strength of this U-shaped steel pipe by experiments, etc., the U-shaped steel does not have a point-symmetrical cross section. It has been found that stress is generated and the cross-sectional shape is deformed in a direction that is easy to buckle due to the open cross section, thereby facilitating buckling. Therefore, for the buckling load, it is most preferable that the cross-sectional shape of the frame is point-symmetric with respect to the centroid, but if the cross-section is line-symmetric with respect to two axes orthogonal to the centroid, Since it has a practically equivalent meaning to being point-symmetric with respect to the center, the requirement (3) is that at least two axes perpendicular to the axis passing through the centroid at the end and center of the frame What is necessary is that the cross-sectional shape is symmetric.

【0011】[0011]

【実施例】図1は、本発明の実施例を部分的に示してい
るが、全体としての構造は、複数のぞれぞれ相隣るクラ
ンプ部1の間でフレーム部2は同一構造をとるものであ
る。図2(a)で、図1のA−A'断面図と同(b)で図
1のB−B'断面図を示すが、B−B'断面はフレーム部2
の丁度中央ないし、中間部分のものである。これに対
し、A−A'断面はクランプ部1に近接する位置における
フレーム部2のものである。図1に示すフレームは、図
2(a)、(b)により示すようにクランプ部1に接す
るフレーム部2の位置では円形のパイプ形状3をなし、
中間部では円形パイプ形状面の、送電線へのスペーサ取
り付けにより上下方向となる面を対称的に取り去ったス
リット4を具えた形状のものである。また、図3
(a)、(b)に示すようにフレーム部2はクランプ部
1に近接する位置で断面角筒5の形状をなし、中間部で
は角筒のパイプ形状面の、送電線のスペーサ取り付けに
より上下方向となる二面を対称的に取り去ったスリット
6を具える形状のものである。
FIG. 1 partially shows an embodiment of the present invention. The overall structure is such that the frame portion 2 has the same structure between a plurality of adjacent clamp portions 1. Take it. FIG. 2A is a cross-sectional view taken along the line AA ′ in FIG. 1 and FIG. 2B is a cross-sectional view taken along the line BB ′ in FIG.
It is just the middle or middle part. On the other hand, the AA ′ section is that of the frame portion 2 at a position close to the clamp portion 1. The frame shown in FIG. 1 forms a circular pipe shape 3 at the position of the frame portion 2 in contact with the clamp portion 1 as shown in FIGS.
The middle part has a slit 4 in which a vertical pipe-shaped surface of the circular pipe-shaped surface is removed symmetrically by attaching a spacer to a transmission line. FIG.
As shown in (a) and (b), the frame portion 2 has a cross-sectional shape of a rectangular tube 5 at a position close to the clamp portion 1, and has a pipe-shaped surface of the rectangular tube at an intermediate portion, which is vertically moved by attaching a transmission line spacer. It has a slit 6 in which two directions are removed symmetrically.

【0012】[0012]

【発明の効果】本発明をスペーサフレームに採用すれ
ば、すでに説明した各種の荷重に耐える設計を行うこと
ができ、フレーム部の部材を従来より大幅に少なくする
ことが可能であり、スペーサ製作材料費が低減でき、施
工時の運搬および取付け作業が容易となり、施工工事費
が低減につながるほか、施工安全上でも良い効果を及ぼ
す。この効果は、架空送電線の導体数が多い程、また、
導体間隔の大きい程、その効果は顕著となり、特に多導
体大束径スペーサに利用すると有効である。
When the present invention is applied to a spacer frame, it is possible to carry out a design which can withstand the various loads described above, and it is possible to greatly reduce the number of members of the frame portion as compared with the prior art. Costs can be reduced, transportation and mounting work during construction can be facilitated, leading to a reduction in construction work costs and a good effect on construction safety. This effect is more pronounced as the number of conductors in the overhead transmission line increases.
The effect becomes more remarkable as the conductor interval becomes larger, and it is particularly effective when used for a multiconductor large bundle diameter spacer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明スペーサの構成を示す。FIG. 1 shows the configuration of the spacer of the present invention.

【図2】図1のスペーサの実施例としてそのA−A'断面
およびB−B'断面を示す。
FIG. 2 shows an AA ′ section and a BB ′ section of an embodiment of the spacer of FIG. 1;

【図3】図1のスペーサの他の実施例としてそのA−A'
断面およびB−B'断面を示す。
FIG. 3 shows another embodiment of the spacer shown in FIG.
The cross section and the BB 'cross section are shown.

【図4】従来から用いられている多導体スペーサの形状
を一例として示す。
FIG. 4 shows an example of the shape of a multiconductor spacer conventionally used.

【図5】サブスパン荷重の説明図を示す。FIG. 5 is an explanatory diagram of a subspan load.

【図6】線路方向移動荷重の説明図を示す。FIG. 6 is an explanatory diagram of a line direction moving load.

【図7】短絡電磁力荷重の説明図を示す。FIG. 7 shows an explanatory diagram of a short-circuit electromagnetic force load.

【符号の説明】[Explanation of symbols]

1 クランプ部 2 フレーム部 3 円筒(断面) 4 スリット 5 角筒(断面) 6 スリット DESCRIPTION OF SYMBOLS 1 Clamp part 2 Frame part 3 Cylinder (cross section) 4 Slit 5 Square tube (cross section) 6 Slit

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H02G 7/00 - 7/22Continuation of front page (58) Field surveyed (Int. Cl. 6 , DB name) H02G 7/00-7/22

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 2導体以上の架空送電線用スペーサにお
いて電線を把持する部分のクランプ部を結ぶフレーム部
の断面が、クランプ部に接する部分において閉断面を持
ち、フレーム部中間部で開断面を持ち、かつフレーム部
のクランプ部に接する部分、中間部共に図心を通る軸に
対し、少なくとも直交する2軸において断面形状が対称
となっていることを特徴とする多導体送電線用スペー
サ。
1. A cross section of a frame portion connecting a clamp portion of a portion for holding an electric wire in an overhead transmission line spacer having two or more conductors has a closed cross section in a portion in contact with the clamp portion, and has an open cross section in an intermediate portion of the frame portion. A spacer for a multi-conductor transmission line, wherein a cross-sectional shape is symmetrical in at least two axes orthogonal to an axis passing through the center of gravity of both a portion which is in contact with a clamp portion of a frame portion and an intermediate portion.
【請求項2】 電線を把持する部分のクランプ部を結ぶ
フレームの断面が、クランプ部に接する部分において、
断面円形パイプの形状をなし、中間部では円形パイプ形
状面の、送電線へのスペーサ取り付けにより上下方向と
なる面に対称的にスリットを具えた形状のものであるこ
とを特徴とする請求項1による多導体送電線用スペー
サ。
2. A cross section of a frame connecting a clamp portion of a portion for gripping an electric wire at a portion in contact with the clamp portion,
2. A pipe having a circular cross-sectional shape, wherein the intermediate portion has a circular pipe-shaped surface and a slit provided symmetrically on a surface which is vertically arranged by attaching a spacer to a transmission line. For multi-conductor transmission line spacers.
【請求項3】 電線を把持する部分のクランプ部を結ぶ
フレーム部の断面が、クランプ部に接する部分において
断面角筒の形状をなし、中間部では角筒状パイプ形状面
の、送電線へのスペーサ取り付けにより上下方向となる
二面に対称的にスリットを具えた形状ものであることを
特徴とする請求項1による多導体送電線用スペーサ。
3. A cross section of a frame portion connecting a clamp portion of a portion for gripping an electric wire has a rectangular tube shape in a portion in contact with the clamp portion, and a rectangular tube-shaped pipe-shaped surface in an intermediate portion connects to a transmission line. 2. The multi-conductor power transmission line spacer according to claim 1, wherein the spacer has a shape having slits symmetrically on two surfaces which are vertically arranged by mounting the spacer.
JP7081978A 1995-03-13 1995-03-13 Multi-conductor power line spacer Expired - Fee Related JP2785740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7081978A JP2785740B2 (en) 1995-03-13 1995-03-13 Multi-conductor power line spacer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7081978A JP2785740B2 (en) 1995-03-13 1995-03-13 Multi-conductor power line spacer

Publications (2)

Publication Number Publication Date
JPH08251785A JPH08251785A (en) 1996-09-27
JP2785740B2 true JP2785740B2 (en) 1998-08-13

Family

ID=13761583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7081978A Expired - Fee Related JP2785740B2 (en) 1995-03-13 1995-03-13 Multi-conductor power line spacer

Country Status (1)

Country Link
JP (1) JP2785740B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5211333B2 (en) * 2009-01-29 2013-06-12 古河電工パワーシステムズ株式会社 Spacer wear amount prediction method, system thereof, and test apparatus
CN107394732B (en) * 2017-08-16 2019-05-31 国家电网公司 A kind of connection structure of power transmission line inter-phase spacer

Also Published As

Publication number Publication date
JPH08251785A (en) 1996-09-27

Similar Documents

Publication Publication Date Title
US6427952B2 (en) Cable management ring
JP5591357B2 (en) Cable fixing member and cable fixing structure using the same
JP2785740B2 (en) Multi-conductor power line spacer
JP6909243B2 (en) Busbar wire
KR20190128434A (en) Spacer damper
KR20160122956A (en) Multiaction-type Plate Steel Damper
JP2006294438A (en) Buckling prevention type high-slide flat broadband shield cable
JP2597334Y2 (en) Crimp terminal and crimp structure of crimp terminal and wire
CN217469409U (en) Phase-to-phase spacer
JP2909233B2 (en) Cable support device
CN213575916U (en) Electric connection protection wire clamp
JP2561708Y2 (en) Overhead transmission line spacer and overhead transmission line
JP3619166B2 (en) Terminal crimping structure of stretched wire
US20240145122A1 (en) Insulated electric wire and wiring harness
CN212968876U (en) Combination wire clip profile replacement
JPS6338679Y2 (en)
JPH0838939A (en) Ionization wire
JPH038024Y2 (en)
CA1225042A (en) Mast-type electro-precipitator discharge electrodes
JPS5854814Y2 (en) Breeze vibration prevention device for aluminum pipe bus bar
JP2022003846A (en) Equipotential bonding metal fitting
RU1814051C (en) Method of improvement of operating and process characteristics of insulated wires
JP3349930B2 (en) Suspended jumper device
JP5667124B2 (en) Battery terminal
JP2004112978A (en) Interphase spacer for electric wire, and aerial transmission line

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees