JP2784439B2 - Magnetoresistance storage element, array and device - Google Patents

Magnetoresistance storage element, array and device

Info

Publication number
JP2784439B2
JP2784439B2 JP6022669A JP2266994A JP2784439B2 JP 2784439 B2 JP2784439 B2 JP 2784439B2 JP 6022669 A JP6022669 A JP 6022669A JP 2266994 A JP2266994 A JP 2266994A JP 2784439 B2 JP2784439 B2 JP 2784439B2
Authority
JP
Japan
Prior art keywords
storage element
layer
magnetization
ferromagnetic
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6022669A
Other languages
Japanese (ja)
Other versions
JPH06295419A (en
Inventor
ケニス・ティン=ユアン・クン
デニー・ドゥアン=リー・タン
ワン・ポー・カン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of JPH06295419A publication Critical patent/JPH06295419A/en
Application granted granted Critical
Publication of JP2784439B2 publication Critical patent/JP2784439B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1673Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Semiconductor Memories (AREA)
  • Hall/Mr Elements (AREA)
  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高性能非揮発性記憶装
置に関し、より詳しくは、スピン・バルブ構成を持つ磁
気抵抗記憶素子を使用する非揮発性磁気ランダム・アク
セス記憶装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high performance nonvolatile storage device, and more particularly to a nonvolatile magnetic random access storage device using a magnetoresistive storage element having a spin valve structure.

【0002】[0002]

【従来の技術】本発明者等は、以下の参照文献を本発明
に関連が最も深いと考える。
BACKGROUND OF THE INVENTION The present inventors consider the following references to be most relevant to the present invention.

【0003】[A]米国特許第5159513号は、ス
ピン・バルブ効果を利用した磁気抵抗(MR)センサを
開示している。このセンサは、ガラスまたはその他の適
切な基板上に付着された長方形の多層構造を備えてい
る。第1および第2の強磁性層が、薄い銅製のスペーサ
層によって分離されている。第1の層の磁化は、硬磁気
材料を第1の層として使用することによって、あるい
は、それが好ましいなら反強磁性層を使用して交換結合
により第1の層を固定することによって、センサの幅に
直交する方向に固定されている。第2の層の磁化は、通
常センサの長さに沿った方向であるが、感知される磁界
の大きさによって決定される角度で自由に回転すること
ができる。したがって、このセンサはアナログ型装置で
ある。
[A] US Pat. No. 5,159,513 discloses a magnetoresistive (MR) sensor utilizing the spin valve effect. The sensor comprises a rectangular multilayer structure deposited on a glass or other suitable substrate. The first and second ferromagnetic layers are separated by a thin copper spacer layer. The magnetization of the first layer is determined by using a hard magnetic material as the first layer, or by pinning the first layer by exchange coupling using an antiferromagnetic layer if that is preferred. Is fixed in a direction orthogonal to the width of The magnetization of the second layer is usually in the direction along the length of the sensor, but is free to rotate at an angle determined by the magnitude of the magnetic field to be sensed. Thus, the sensor is an analog device.

【0004】[B]American Physical Society、Vol.3
9、 No.7、 p.4828(1989年)に発表された"Enhanced Magne
toresistance in Layered Magnetic Structures With A
ntiferromagnetic Interlayer Exchange"と題する論文
では、これらの層の間の反強磁性結合によって、強磁性
膜層中で磁化が反平行に整列するため、磁気抵抗効果が
大幅に増大するので、MR磁界センサなどの応用例にと
って魅力的であると指摘している。
[B] American Physical Society, Vol.3
9, No. 7, p. 4828 (1989) "Enhanced Magne
toresistance in Layered Magnetic Structures With A
In the paper entitled "ntiferromagnetic Interlayer Exchange", the antiferromagnetic coupling between these layers causes the magnetization to be aligned antiparallel in the ferromagnetic film layer, greatly increasing the magnetoresistance effect. It is attractive for applications.

【0005】[C]J. Appl. Physics、69(8)、(1991年4
月15日、 p.5760以降)に発表された"Memory Implication
s of the Spin-Valve Effect in Soft Multilayers"と
題する論文は、以下でさらに詳細に説明するいくつかの
欠陥も持つMR記憶素子を記載している。
[C] J. Appl. Physics, 69 (8), (1991, 4
On March 15, p.5760) "Memory Implication"
A paper entitled "s of the Spin-Valve Effect in Soft Multilayers" describes an MR storage element that also has some deficiencies, which are described in further detail below.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的はこれら
の欠陥を解決する次のような非揮発性磁気記憶装置を提
供することにある。 (1)状態照会(state interrogation)を必要とせず
に直流読取りを実行する。状態照会は読取り信号と同義
であり、その状態が"1"か"0"を決定する。 (2)磁気層の全(full)δR/R(すなわち、利用可
能なδR/R)を使用して、高感度を実現する。 (3)ロックイン検出を不要にすることによって読取り
アクセス時間を改善する。ロックイン検出は長期間にわ
たり平均化する反復信号である。(この信号が小さいと
きは、ノイズにより検出が困難であるので、多数回にわ
たり読取りが行なわれるとともに、"それをロックイン"
して平均化がなされる。) (4)主として、MR記憶素子の幅を短縮することによ
ってスピン・バルブ・セルのサイズを縮小できるように
し、信号レベルを上げる。 (5)高速の書込み動作および消去動作を可能にする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a nonvolatile magnetic memory device which solves these defects as follows. (1) Perform DC reading without the need for state interrogation. The status inquiry is synonymous with the read signal and determines whether the status is "1" or "0". (2) High sensitivity is achieved using the full δR / R of the magnetic layer (ie, available δR / R). (3) Improve read access time by eliminating the need for lock-in detection. Lock-in detection is a repetitive signal that averages over time. (When this signal is small, it is difficult to detect due to noise, so it is read many times and "lock it in."
Averaging is then performed. (4) Mainly, by reducing the width of the MR storage element, the size of the spin valve cell can be reduced, and the signal level is increased. (5) Enable high-speed write and erase operations.

【0007】[0007]

【課題を解決するための手段】基板と、非磁性金属材料
層によって分離された2つの強磁性材料層を含む、基板
に付着された長方形の多層構造とを備えた非揮発性磁気
抵抗記憶素子が記述される。両方の強磁性層の磁化容易
軸は、記憶素子のほぼ長さ方向に配向している。一方の
強磁性層の磁化は、記憶素子のほぼ長さ方向である1つ
の方向に固定され、他方の強磁性層の磁化は、印加され
る磁界に応じて、固定方向に対してほぼ平行な方向とほ
ぼ反平行な方向との間で自由に変化する。
SUMMARY OF THE INVENTION A non-volatile magnetoresistive storage element comprising a substrate and a rectangular multilayer structure attached to the substrate, including two layers of ferromagnetic material separated by a layer of non-magnetic metal material. Is described. The easy axes of the two ferromagnetic layers are oriented substantially in the length direction of the storage element. The magnetization of one ferromagnetic layer is fixed in one direction, which is substantially the length direction of the storage element, and the magnetization of the other ferromagnetic layer is substantially parallel to the fixed direction depending on the applied magnetic field. It changes freely between the direction and a direction substantially parallel to the anti-parallel.

【0008】記憶素子の幅は、多層構造の層の磁壁の幅
より短い。
[0008] The width of the storage element is shorter than the width of the domain wall of the layer of the multilayer structure.

【0009】印加される磁界は、強磁性層の磁化方向が
平行であるか反平行であるかによって、記憶素子をそれ
ぞれ論理"1"または論理"0"を表す2つの状態の間で切
り替える。一方の強磁性層の磁化方向は、反強磁性層と
の交換結合によって固定することができる。あるいは、
それが好ましければ、前記他方の層の保磁力よりも大き
な保磁力または十分に大きな異方性を持つ硬磁性材料を
一方の層に使用して、状態切替え動作時にその磁化を保
持することもできる。
The applied magnetic field switches the storage element between two states representing logic "1" or logic "0", respectively, depending on whether the magnetization directions of the ferromagnetic layers are parallel or anti-parallel. The magnetization direction of one ferromagnetic layer can be fixed by exchange coupling with the antiferromagnetic layer. Or,
If it is preferable, a hard magnetic material having a coercive force larger than the coercive force of the other layer or a sufficiently large anisotropy is used for one layer to retain its magnetization during the state switching operation. Can also.

【0010】[0010]

【実施例】図1および2は、参照文献[C]に記載され
た種類のMR記憶素子を示す。このMR記憶素子は、薄
い非磁性スペーサ層14によって分離された2つの強磁
性層11、12を備えている。強磁性層11、12の磁
化方向は矢印15、16(図1)で示すように反平行で
あり、これらの磁化方向がどちらも、矢印17、18
(図2)で示すように書込み電流に応じてほぼ180°
変化し、磁化容易軸異方性は矢印19で示すセンス電流
の方向に対して垂直であることに留意されたい。
1 and 2 show an MR storage element of the kind described in reference [C]. This MR storage element comprises two ferromagnetic layers 11, 12 separated by a thin non-magnetic spacer layer 14. The magnetization directions of the ferromagnetic layers 11 and 12 are antiparallel as shown by arrows 15 and 16 (FIG. 1), and both of these magnetization directions are arrows 17 and 18.
As shown in FIG. 2, almost 180 ° according to the write current
Note that the variable easy axis anisotropy is perpendicular to the direction of the sense current indicated by arrow 19.

【0011】この2つの磁気状態は同じ直流出力を与え
るので、MR記憶装置に動的に照会して既存の状態を決
定するためには、書込み/照会電流13によって提供さ
れる縦方向磁界が必要である。読取り時の状態の切替え
の結果、記憶された情報が破壊されるのを防止するため
に、磁化の回転は小さな量しか許されない。このため、
磁気センサ層のδR/Rが十分に利用できない。
Since the two magnetic states provide the same DC output, the longitudinal magnetic field provided by the write / query current 13 is required to dynamically query the MR storage to determine the existing state. It is. Only a small amount of rotation of the magnetization is allowed to prevent the stored information from being destroyed as a result of the switching of states during reading. For this reason,
ΔR / R of the magnetic sensor layer cannot be fully utilized.

【0012】たとえば、1メガビット・アレイにおい
て、読取り動作中の2つの状態間の回転の差は、0.2
2%のδR/Rに対応する。この値は、多層構造の2.
5%という総δR/R(すなわち、利用可能なδR/
R)の10分の1より小さい。また、状態が変化しない
ように、センス電流の大きさを制限する必要がある。
For example, in a 1 megabit array, the difference in rotation between the two states during a read operation is 0.2
This corresponds to a δR / R of 2%. This value corresponds to 2.
5% total δR / R (ie, available δR / R
R) less than 1/10. Further, it is necessary to limit the magnitude of the sense current so that the state does not change.

【0013】δR/Rの利用が不十分であり、かつセン
ス電流が低いため、感度が低いので、低速の「ロックイ
ン」検出が必要となり、したがって低速の読取りアクセ
ス時間が必要となる。
Insufficient utilization of δR / R and low sense current, resulting in low sensitivity, requires slow "lock-in" detection and therefore slow read access time.

【0014】この構成は、超高密度記憶装置には拡張で
きない。というのは、形状の異方性と磁壁の縁反りのた
めに、磁化の横配向が妨げられるからである。その結
果、記憶素子の幅をあまり狭くすることはできない。ス
ピン・バルブ・セルのサイズを小さくして幅を縮める
と、記憶素子の長さが短くなり、すでに低い信号レベル
がさらに下がる。
This configuration cannot be extended to an ultra-high density storage device. This is because the lateral orientation of magnetization is hindered by the shape anisotropy and the warpage of the domain wall. As a result, the width of the storage element cannot be reduced too much. Reducing the size and width of the spin valve cell reduces the length of the storage element, further reducing already low signal levels.

【0015】これらの欠陥は、本発明者等の新規のスピ
ン・バルブ・セル構成によって解決される。図3および
4に示すように、本発明を実施する記憶素子20は、ガ
ラス、セラミック、半導体などの適切な基板22を備え
ており、この基板の上に、第1の軟強磁性材料の薄膜層
24、銅などの非磁性金属材料の薄膜層26、および第
2の強磁性材料の薄膜層28が付着される。
[0015] These deficiencies are solved by our novel spin valve cell configuration. As shown in FIGS. 3 and 4, a storage element 20 embodying the present invention includes a suitable substrate 22, such as glass, ceramic, or semiconductor, on which a thin film of a first soft ferromagnetic material is deposited. A layer 24, a thin film layer 26 of a non-magnetic metal material such as copper, and a thin film layer 28 of a second ferromagnetic material are deposited.

【0016】記憶素子20が長方形であり、磁化容易軸
が記憶素子の長さに沿っていることに留意されたい。第
2の強磁性層28の磁化方向は、反強磁性層30との交
換結合などによって、記憶素子の長さ方向に平行になる
ように固定される(矢印29を参照)。しかし、第2の
強磁性層28が状態切替え動作中に磁化を保持するのに
十分な硬磁気材料であるか、または十分な異方性を持つ
場合に限り、それが好ましければ、反強磁性層30を除
去することができる。
Note that the storage element 20 is rectangular and the easy axis is along the length of the storage element. The magnetization direction of the second ferromagnetic layer 28 is fixed to be parallel to the length direction of the storage element by exchange coupling with the antiferromagnetic layer 30 or the like (see arrow 29). However, if the second ferromagnetic layer 28 is of a sufficient hard magnetic material or has sufficient anisotropy during the state switching operation or if it has sufficient anisotropy, The ferromagnetic layer 30 can be removed.

【0017】第1の軟強磁性層24の磁化は、一軸異方
性および幾何形状によって、記憶素子20の長さ方向、
すなわち第2の強磁性層28の固定磁化方向に平行(図
3の矢印31を参照)または反平行(図4の矢印33を
参照)になるように拘束される。記憶素子20の"1"状
態(図3)と"0"状態(図4)の間での切替えは、記憶
素子20に横磁界と縦磁界を同時に印加することによっ
て行う。縦磁界は、記憶素子20の長さ方向に直交して
延びる導体によって提供される書込み線34中の縦方向
書込み電流32によって誘導される。横磁界は、記憶素
子20を通ってその長さ方向に流れる横書込み/センス
電流36によって誘導される。横磁界を強化することに
よって安定性を増したい場合は、記憶素子20を通って
その長さ方向に延び、基板22と第1の軟強磁性層24
に接触する絶縁層33との間に挿入される、任意選択の
別個の導体37によって追加の横書込み/センス電流を
提供することができる。導体37は、図3だけに示して
ある。
The magnetization of the first soft magnetic layer 24, the uniaxial anisotropy and geometry, the longitudinal direction of the storage element 20,
That is, the second ferromagnetic layer 28 is constrained to be parallel (see arrow 31 in FIG. 3) or antiparallel (see arrow 33 in FIG. 4) to the fixed magnetization direction. Switching between the “1” state (FIG. 3) and the “0” state (FIG. 4) of the storage element 20 is performed by simultaneously applying a horizontal magnetic field and a vertical magnetic field to the storage element 20. Vertical magnetic field is induced by longitudinal write current 32 in a write line 34 provided by the conductors extending perpendicular to the longitudinal direction of the storage element 20. The transverse magnetic field is induced by a transverse write / sense current 36 that flows through the storage element 20 in its length direction. If you want to increase stability by strengthening the transverse magnetic field,
The substrate 22 and the first soft ferromagnetic layer 24 extend in the length direction thereof.
An additional lateral write / sense current can be provided by an optional separate conductor 37 inserted between the insulating layer 33 and the contact. The conductor 37 is shown only in FIG.

【0018】記憶素子20が2つの2進状態だけを示す
ようにするため、記憶素子20の短寸法(図3及び図4
の幅W)を磁壁の幅よりも小さくする必要がある。50
〜90Åの典型的なスピン・バルブ厚さでは、ネール壁
の幅が約1.2μmである。ネール壁は、薄強磁性材料
において2磁区を分ける領域である。ネール壁の幅とは
強磁性薄膜における磁壁の幅となる。これは、記憶素子
20の幅を1μm以下にすれば、状態間の遷移が確実に
なるはずであることを示している。実際の試験で、幅
0.75μmの記憶素子では、平行状態と反平行状態の
間で一回の鋭い遷移がもたらされることが分かった。電
気抵抗は、第1の軟強磁性層24の磁化が固定された第
2の強磁性層28の磁化に平行であるとき最小となり、
第1の軟強磁性層24の磁化が固定された第2の強磁性
層28の磁化と反平行であるとき最大となる。
In order for the storage element 20 to show only two binary states, the short dimension of the storage element 20 (FIGS. 3 and 4)
It is necessary to reduce the width W) than the width of the domain wall. 50
At a typical spin valve thickness of Å90 °, the width of the nail wall is about 1.2 μm. The nail wall is an area that separates two magnetic domains in a thin ferromagnetic material. The width of the Neel wall is the width of the domain wall in the ferromagnetic thin film. This indicates that if the width of the storage element 20 is 1 μm or less, the transition between states should be ensured. In actual tests, it has been found that a memory element having a width of 0.75 μm causes one sharp transition between the parallel state and the antiparallel state. The electric resistance is minimized when the magnetization of the first soft ferromagnetic layer 24 is parallel to the magnetization of the fixed second ferromagnetic layer 28,
It becomes maximum when the magnetization of the first soft ferromagnetic layer 24 is antiparallel to the magnetization of the fixed second ferromagnetic layer 28.

【0019】記憶素子20のスピン・バルブ・セル構成
が、前述の諸目標を達成することが今や理解できよう。
2つの状態がスピン・バルブ効果による最大および最小
の直流抵抗に対応するので、直流抵抗を検出し、それを
直接読出しに使用することができる。状態の照会は必要
でなく、非破壊読出しが保証される。
It can now be seen that the spin valve cell configuration of storage element 20 achieves the goals set forth above.
Since the two states correspond to the maximum and minimum DC resistance due to the spin valve effect, the DC resistance can be detected and used directly for reading. No status inquiry is required and non-destructive read is guaranteed.

【0020】磁気層24、28の総δR/Rが使用され
る。たとえば、NiFe(90Å)/Cu(20Å)/
NiFe(70Å)/MnFe(120Å)から成り、
δR/Rが3.6%、Rが20Ω/cm2である典型的
なスピン・バルブ構造を仮定する。幅1μm、長さ5μ
m、センス電流5mAの記憶素子では、信号レベルは約
18mVである。この値は、高速実時間検出を実行し、
かつ1メガビットの記憶装置で使用するのに十分な程度
である。セル・サイズをさらに縮小すると、さらに改善
が達成できる。
The total δR / R of the magnetic layers 24, 28 is used. For example, NiFe (90 °) / Cu (20 °) /
NiFe (70 °) / MnFe (120 °)
Assume a typical spin valve structure with δR / R 3.6% and R 20 Ω / cm 2 . 1μm width, 5μ length
m, the signal level is about 18 mV for a storage element with a sense current of 5 mA. This value performs fast real-time detection,
And it is sufficient for use in a 1 megabit storage device. Further improvements can be achieved by further reducing the cell size.

【0021】本発明では、バルクハウゼン雑音の問題や
線形性の要件はない。高い異方性/保磁力をもつCoや
他のCo合金などの材料により、記憶素子の安定性を強
化すると共に、感度を2倍または3倍に増大することが
できる。
In the present invention, there is no Barkhausen noise problem or linearity requirement. Materials with high anisotropy / coercivity, such as Co and other Co alloys, can enhance the stability of the storage element and increase the sensitivity by a factor of two or three.

【0022】図5は、本発明を実施する2×2記憶アレ
イ40で読取りおよび書込み動作を実施するための記憶
セル選択回路を示す。図のように、アレイ40は、4つ
の同じ記憶セル50A、50B、50C、50Dと、2
つのセンス増幅器51X、51Yを備えている。各記憶
セル50AないしDは、活動MR記憶素子52と参照M
R記憶素子53を備えており、差分出力を生成する。ア
レイにおける信号の分岐を防ぐために、各記憶素子5
2、53は2組のスイッチで付勢される。たとえば、記
憶セル50Aに書き込むには、記憶セル50Aのスイッ
チ55とスイッチ57を閉じて線B1と線W1を接続す
ると、MR記憶素子52中を流れる書込み電流(図3の
32)が横磁界を誘導することができる。また、書込み
線W1Sを大地に接続すると、流れる電流が縦磁界を誘
導することができる。記憶セル50Aの内容を読み出す
には、記憶セル50Aのスイッチ55とスイッチ57を
閉じて線B1と線W1を接続し、さらに記憶セル50A
のスイッチ54とスイッチ56を閉じて線B1'と線W
1'を接続すると、記憶セル50Aの活動MR記憶素子
52と参照MR記憶素子53の両方にセンス電流が流入
することができる。これらの記憶素子の差分出力が、セ
ンス増幅器51Xによって差分出力電圧として感知され
る。
FIG. 5 shows a storage cell selection circuit for performing read and write operations in a 2.times.2 storage array 40 embodying the present invention. As shown, the array 40 has four identical storage cells 50A, 50B, 50C, 50D, 2
And two sense amplifiers 51X and 51Y. Each storage cell 50A-D includes an active MR storage element 52 and a reference M
An R storage element 53 is provided to generate a difference output. Each storage element 5 is used to prevent signal divergence in the array.
2, 53 are energized by two sets of switches. For example, when writing to the memory cell 50A, the switch 55 and the switch 57 of the memory cell 50A are closed and the line B1 and the line W1 are connected, and the write current (32 in FIG. 3) flowing through the MR storage element 52 causes a transverse magnetic field. Can be guided. Further, connecting the write lines W1 S to ground, can current flow induces longitudinal field. To read the contents of the storage cell 50A, the switches 55 and 57 of the storage cell 50A are closed, the line B1 is connected to the line W1, and the storage cell 50A is further read.
Switch 54 and switch 56 are closed, and line B1 'and line W
When 1 ′ is connected, a sense current can flow into both the active MR storage element 52 and the reference MR storage element 53 of the storage cell 50A. The differential output of these storage elements is sensed by the sense amplifier 51X as a differential output voltage.

【0023】したがって、記憶セル50Bに書き込むに
は、記憶セル50Bのスイッチ55とスイッチ54を閉
じてW2Sの書込み電流を活動化し、記憶セル50Cに
書き込むには、記憶セル50Cのスイッチ55とスイッ
チ59を閉じてW1Sの書込み電流を活動化することは
明らかであろう。他の場合についても同様である。記憶
セル50Bの内容をセンス増幅器51Yに読み出すに
は、記憶セル50Bのスイッチ55とスイッチ57を閉
じて線B1と線W2を接続し、記憶セル50Bのスイッ
チ54とスイッチ56を閉じて線B1'と線W2'を接続
する。記憶セル50Cの内容をセンス増幅器51Xに読
み出すには、記憶セル50Cのスイッチ55とスイッチ
59を閉じて線B2と線W1を接続し、記憶セル50C
のスイッチ54とスイッチ58を閉じて線B2'と線W
1'を接続する。このように、記憶セル50AないしD
のうちの選択可能な1つに向けられる2つの磁界の組合
せによって、選択されたセルだけで切替えが誘導され
る。
[0023] Thus, to write to the storage cells 50B, closing switch 55 and the switch 54 of the memory cells 50B activates the write current W2 S, to write to the cell 50C, a switch 55 of the cell 50C switch it will be apparent to activate the write current W1 S close 59. The same applies to other cases. To read the contents of the memory cell 50B to the sense amplifier 51Y, the switches 55 and 57 of the memory cell 50B are closed to connect the lines B1 and W2, and the switches 54 and 56 of the memory cell 50B are closed and the line B1 'is closed. And the line W2 '. To read the contents of the memory cell 50C to the sense amplifier 51X, the switches 55 and 59 of the memory cell 50C are closed, the lines B2 and W1 are connected, and the memory cell 50C is read.
Switch 54 and switch 58 are closed, and line B2 'and line W
Connect 1 '. Thus, the storage cells 50A to 50D
The combination of two magnetic fields directed to a selectable one of the above causes a switch to be induced in only the selected cell.

【0024】図6は、図5に示したアレイ40を実施す
る記憶装置60を示す。アドレス・バス64がアドレス
・デコーダ62にアドレスを供給すると、アドレス・デ
コーダ62は、選択されたワード線およびビット線のス
イッチを活動化し、アレイ40中の記憶セル50Aない
しDのうちの特定の1つが選択されるようになる。読取
り信号が読取り/書込み選択線66を介して送られると
き、選択されたセルの内容が照会され、データ入出力装
置68に移動され、後でデータ・バス70に送られる。
読取り/書込み選択線66を介して書込みコマンドを受
け取るとき、アドレス・デコーダ62はスイッチを活動
化し、データ入出力68の情報に従って選択された特定
のセルにデータを書き込むために、該セルに適切な書込
み電流を送る。
FIG. 6 shows a storage device 60 implementing the array 40 shown in FIG. When the address bus 64 provides an address to the address decoder 62, the address decoder 62 activates the selected word line and bit line switches to activate a particular one of the storage cells 50A-D in the array 40. One will be selected. When a read signal is sent over the read / write select line 66, the contents of the selected cell are queried, moved to the data input / output device 68, and later sent to the data bus 70.
When receiving a write command via the read / write select line 66, the address decoder 62 activates the switch and applies the appropriate data to the selected cell in accordance with the information on the data input / output 68 to write the data to that particular cell. Send write current.

【0025】[0025]

【図面の簡単な説明】[Brief description of the drawings]

【図1】最後に引用した従来技術のMR記憶素子の"1"
および"0"情報状態を示す分解斜視図である。
FIG. 1 shows the last cited prior art MR storage element "1"
FIG. 4 is an exploded perspective view showing a “0” information state.

【図2】最後に引用した従来技術のMR記憶素子の"1"
および"0"情報状態を示す分解斜視図である。
FIG. 2 shows the last cited prior art MR storage element “1”.
FIG. 4 is an exploded perspective view showing a “0” information state.

【図3】本発明を実施するMR記憶素子の"1"および"
0"情報状態を示す分解斜視図である。
FIG. 3 shows “1” and “1” of the MR storage element embodying the present invention.
It is an exploded perspective view showing a 0 "information state.

【図4】本発明を実施するMR記憶素子の"1"および"
0"情報状態を示す分解斜視図である。
FIG. 4 shows “1” and “1” of an MR storage element embodying the present invention.
It is an exploded perspective view showing a 0 "information state.

【図5】本発明の1つの実施態様を示す2x2MR記憶
アレイの概略図である。
FIG. 5 is a schematic diagram of a 2 × 2 MR storage array illustrating one embodiment of the present invention.

【図6】図5に示した記憶アレイを実施する記憶装置の
概略図である。
FIG. 6 is a schematic diagram of a storage device implementing the storage array shown in FIG.

【符号の説明】[Explanation of symbols]

20 記憶素子 22 基板 24 第1の軟強磁性材料薄膜層 26 非磁性金属材料薄膜層 28 第2の強磁性材料薄膜層 30 反強磁性層 32 縦書込み電流 34 書込み線 36 横書込み/センス電流 40 アレイ 50 記憶セル 51 センス増幅器 52 MR記憶素子 55 スイッチ 62 アドレス・デコーダ 64 アドレス・バス 66 読取り/書込み選択線 68 データ入出力装置 70 データ・バス REFERENCE SIGNS LIST 20 storage element 22 substrate 24 first soft ferromagnetic material thin film layer 26 nonmagnetic metal material thin film layer 28 second ferromagnetic material thin film layer 30 antiferromagnetic layer 32 vertical write current 34 write line 36 horizontal write / sense current 40 Array 50 Storage cell 51 Sense amplifier 52 MR storage element 55 Switch 62 Address decoder 64 Address bus 66 Read / write select line 68 Data input / output device 70 Data bus

───────────────────────────────────────────────────── フロントページの続き (72)発明者 デニー・ドゥアン=リー・タン アメリカ合衆国95070 カリフォルニア 州サラトガ カニンガム・プレース 20407 (72)発明者 ワン・ポー・カン アメリカ合衆国95120 カリフォルニア 州サンノゼ シャドウ・ブルック・ドラ イブ 1007 (56)参考文献 特開 平6−84347(JP,A) 特開 平5−266651(JP,A) ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Denny Duan-Lee Than United States 95070 Saratoga, California Cunningham Place 20407 (72) Inventor Wang Po Khan United States 95120 San Jose, California Shadow Brook Drive 1007 (56) References JP-A-6-84347 (JP, A) JP-A-5-266651 (JP, A)

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一の基板と、一の非磁性金属層によって分
離された2つの強磁性層を含む、前記基板上に付着され
た長方形の多層構造とを備えた非揮発性磁気抵抗記憶素
子であって、前記2つの強磁性層の磁化容易軸が前記記
憶素子のほぼ長さ方向にそれぞれ配向され、前記2つの
強磁性層のうち一方の強磁性層の磁化が前記記憶素子の
ほぼ長さ方向である1つの方向に固定され、前記2つの
強磁性層のうち他方の強磁性層の磁化が、印加される磁
界に応じて、前記固定された1つの方向に対してほぼ平
行な方向とほぼ反平行な方向との間で自由に切り替わ
り、さらに交換結合によって、前記一方の強磁性層を前
記固定された1つの方向に磁化させる反強磁性層を含む
ことを特徴とする、前記記憶素子。
1. A non-volatile magnetoresistive storage element comprising: a substrate; and a rectangular multilayer structure deposited on said substrate, comprising two ferromagnetic layers separated by a nonmagnetic metal layer. Wherein the easy axes of magnetization of the two ferromagnetic layers are oriented substantially in the length direction of the storage element, and the magnetization of one of the two ferromagnetic layers is substantially equal to the length of the storage element. is fixed to one direction is the direction, the magnetization of the other ferromagnetic layer of the two ferromagnetic layers, in accordance with an applied magnetic field, a direction substantially parallel to the fixed one direction And an antiferromagnetic layer that switches freely between a direction substantially parallel to the antiferromagnetic layer and that magnetizes the one ferromagnetic layer in the fixed one direction by exchange coupling. element.
【請求項2】各々が請求項1で定義される種類の一の活
動記憶素子をそれぞれ備える複数のスピン・バルブ・セ
ルと、前記複数のセルのうち選択された1つのセル内に
ある活動記憶素子に横書込み電流を供給して横磁界を誘
導するのと同時に、前記選択されたセルに縦書込み電流
を供給して縦磁界を誘導することによって、前記活動記
憶素子の前記2つの強磁性層の磁化方向がほぼ平行であ
るかまたはほぼ反平行であるかに応じて、前記選択され
たセルに「1」または「0」を書き込む手段とを備える
ことを特徴とする、非揮発性磁気抵抗記憶アレイ。
2. A plurality of spin valve cells each comprising an active storage element of the type defined in claim 1, and an active memory in a selected one of said plurality of cells. The two ferromagnetic layers of the active storage element are provided by supplying a lateral write current to the element to induce a transverse magnetic field and simultaneously supplying a vertical write current to the selected cell to induce a longitudinal magnetic field. Means for writing "1" or "0" to the selected cell depending on whether the magnetization direction of the cell is substantially parallel or substantially antiparallel. Storage array.
【請求項3】前記選択されたセル内にある活動記憶素子
に追加の横書込み電流を供給して安定性を増すため、前
記基板と他の層との間に挿入され且つ前記記憶素子を通
して当該記憶素子の長さ方向に延びる、別個の導体を含
むことを特徴とする、請求項に記載の非揮発性磁気抵
抗記憶アレイ。
3. An active storage element in the selected cell is inserted between the substrate and another layer and provided through the storage element to provide additional lateral write current to increase stability. 3. The non-volatile magnetoresistive storage array of claim 2 , comprising a separate conductor extending the length of the storage element .
【請求項4】各々が請求項1で定義される種類の一の活
動記憶素子と一の参照記憶素子をそれぞれ備える複数の
スピン・バルブ・セルと、 少なくとも1つの差分増幅器と、 前記複数のセルのうち選択された1つのセル内にある活
動記憶素子および参照記憶素子を介して関連する差分増
幅器にセンス電流を供給して、前記選択されたセルのそ
の時点の磁気状態を示す大きさの差分出力電圧を提供す
る手段とを備えることを特徴とする、非揮発性磁気抵抗
記憶アレイ。
4. A plurality of spin valve cells each comprising one active storage element and one reference storage element of the type defined in claim 1 , at least one difference amplifier, and the plurality of cells. Providing a sense current to an associated difference amplifier via an active storage element and a reference storage element in a selected one of the cells to provide a difference of magnitude indicative of a current magnetic state of the selected cell. Means for providing an output voltage.
【請求項5】所望の1つのセルにデータを記憶するた
め、前記センス電流の方向に直交する方向に流れる書込
み電流を前記所望の1つのセルに印加するのと同時に、
前記所望のセル内にある活動記憶素子だけに前記センス
電流を供給する手段を含むことを特徴とする、請求項
に記載の非揮発性磁気抵抗記憶アレイ。
5. A method for storing data in a desired one cell while applying a write current flowing in a direction orthogonal to a direction of the sense current to the desired one cell,
5. The apparatus according to claim 4 , further comprising means for supplying said sense current only to active storage elements in said desired cell.
3. The nonvolatile magnetoresistive storage array according to claim 1.
【請求項6】前記センス電流で横磁界を誘導し、前記書
込み電流で縦磁界を誘導することによって、前記選択さ
れたセル内にある活動記憶素子の前記2つの強磁性層の
磁化方向がほぼ平行であるかまたはほぼ反平行であるか
に応じて、前記選択されたセルに「1」または「0」を
書き込むことを特徴とする、請求項に記載の非揮発性
磁気抵抗記憶アレイ。
6. A magnetic field induced by the sense current and a vertical magnetic field induced by the write current, whereby the magnetization directions of the two ferromagnetic layers of the active storage element in the selected cell are substantially changed. 5. The non-volatile magnetoresistive storage array of claim 4 , wherein "1" or "0" is written to the selected cell depending on whether it is parallel or nearly anti-parallel.
【請求項7】各々が一の基板と、一の非磁性金属層によ
って分離された2つの強磁性層を含む多層構造とをそれ
ぞれ備える複数の磁気抵抗記憶素子であって、各記憶素
子内にある前記2つの強磁性層の磁化容易軸が、前記記
憶素子のほぼ長さ方向で且つ印加されるセンス電流の方
向にほぼ平行に配向され、前記2つの強磁性層のうち一
方の強磁性層の磁化方向が記憶素子のほぼ長さ方向であ
る方向に固定され、前記2つの強磁性層のうち他方の強
磁性層の磁化方向が、前記一方の強磁性層の磁化方向に
対してほぼ平行またはほぼ反平行である2つのディジタ
ル状態の間で自由に切り替わり、さらに交換結合によっ
て、前記一方の強磁性層を前記固定された1つの方向に
磁化させる反強磁性層を含み、各記憶素子の幅がその長
さよりも、前記他方の強磁性層を前記2つのディジタル
状態のうち選択された1つの状態のままにしておく量
け短い、前記複数の磁気抵抗記憶素子と、データを書き
込むために、書込み電流を生成して、前記複数の磁気抵
抗記憶素子のうち選択された1つの記憶素子を前記2つ
のディジタル状態の一方から反対の状態に切り替える手
段と、 前記選択された記憶素子内のデータを読み取るために、
前記センス電流を印加して、前記選択された記憶素子内
にその時点で存在する状態を感知する手段とを備えるこ
とを特徴とする、非揮発性磁気抵抗記憶装置。
7. A plurality of magnetoresistive storage elements each comprising one substrate and a multilayer structure including two ferromagnetic layers separated by one nonmagnetic metal layer, wherein each storage element has The easy axes of the two ferromagnetic layers are oriented substantially in the length direction of the storage element and substantially parallel to the direction of the applied sense current, and one of the two ferromagnetic layers is magnetization direction is fixed in a direction that is substantially longitudinal direction of the storage element, said two magnetization direction of the other ferromagnetic layer of the ferromagnetic layer is substantially parallel to the magnetization direction of the one ferromagnetic layer Or switch freely between two digital states that are almost antiparallel, and further by exchange coupling.
To move the one ferromagnetic layer in the fixed one direction.
Includes an antiferromagnetic layer to magnetize than the width a length of each of the memory elements, it remains a manner you Ku of one state selected among the other ferromagnetic layer the two digital states <br Generating a write current to write data to the selected one of the plurality of magnetoresistive storage elements to store the selected one of the plurality of magnetoresistive storage elements in the two digital states; Means for switching from one side to the opposite state, and for reading data in the selected storage element,
Means for applying the sense current to sense a state currently present in the selected storage element.
JP6022669A 1993-02-23 1994-02-21 Magnetoresistance storage element, array and device Expired - Fee Related JP2784439B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US021413 1993-02-23
US08/021,413 US5343422A (en) 1993-02-23 1993-02-23 Nonvolatile magnetoresistive storage device using spin valve effect

Publications (2)

Publication Number Publication Date
JPH06295419A JPH06295419A (en) 1994-10-21
JP2784439B2 true JP2784439B2 (en) 1998-08-06

Family

ID=21804078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6022669A Expired - Fee Related JP2784439B2 (en) 1993-02-23 1994-02-21 Magnetoresistance storage element, array and device

Country Status (3)

Country Link
US (1) US5343422A (en)
EP (1) EP0613148A3 (en)
JP (1) JP2784439B2 (en)

Families Citing this family (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2688907B1 (en) * 1992-03-20 1994-05-27 Kiota Int METHOD FOR RECORDING AND PLAYING A TWO-LAYER MAGNETIC TAPE AND SYSTEM FOR IMPLEMENTING THE SAME.
US6275411B1 (en) 1993-07-23 2001-08-14 Nonvolatile Electronics, Incorporated Spin dependent tunneling memory
US5949707A (en) * 1996-09-06 1999-09-07 Nonvolatile Electronics, Incorporated Giant magnetoresistive effect memory cell
US5452163A (en) * 1993-12-23 1995-09-19 International Business Machines Corporation Multilayer magnetoresistive sensor
JPH08510095A (en) * 1994-02-21 1996-10-22 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Method and device for partially changing the magnetization direction of a magnetic body
CN1195294C (en) * 1994-03-10 2005-03-30 国际商业机器公司 Edge offset magnetic-resistance sensor
US5841611A (en) * 1994-05-02 1998-11-24 Matsushita Electric Industrial Co., Ltd. Magnetoresistance effect device and magnetoresistance effect type head, memory device, and amplifying device using the same
US6256222B1 (en) 1994-05-02 2001-07-03 Matsushita Electric Industrial Co., Ltd. Magnetoresistance effect device, and magnetoresistaance effect type head, memory device, and amplifying device using the same
US5546253A (en) * 1994-05-06 1996-08-13 Quantum Corporation Digitial output magnetoresistive (DOMR) head and methods associated therewith
US5515314A (en) * 1994-05-27 1996-05-07 Fujitsu Limited Storage device
US5898546A (en) * 1994-09-08 1999-04-27 Fujitsu Limited Magnetoresistive head and magnetic recording apparatus
JP2933841B2 (en) * 1994-12-22 1999-08-16 沖電気工業株式会社 Information recording medium, information recording / reproducing method, and information recording / reproducing device
US5587943A (en) * 1995-02-13 1996-12-24 Integrated Microtransducer Electronics Corporation Nonvolatile magnetoresistive memory with fully closed flux operation
US5583727A (en) * 1995-05-15 1996-12-10 International Business Machines Corporation Multiple data layer magnetic recording data storage system with digital magnetoresistive read sensor
US5585986A (en) * 1995-05-15 1996-12-17 International Business Machines Corporation Digital magnetoresistive sensor based on the giant magnetoresistance effect
DE69619166T2 (en) * 1995-06-15 2002-06-20 Tdk Corp Magnetoresistive transducer with "spin valve" structure and manufacturing process
SG46731A1 (en) * 1995-06-30 1998-02-20 Ibm Spin valve magnetoresistive sensor with antiparallel pinned layer and improved exchange bias layer and magnetic recording system using the senor
DE19534856A1 (en) * 1995-09-20 1997-03-27 Forschungszentrum Juelich Gmbh Digital memory device with spin coupled magnetic layer for read=out and/or write operation
US5835003A (en) * 1995-09-29 1998-11-10 Hewlett-Packard Company Colossal magnetoresistance sensor
US5702831A (en) 1995-11-06 1997-12-30 Motorola Ferromagnetic GMR material
JP3767930B2 (en) * 1995-11-13 2006-04-19 沖電気工業株式会社 Information recording / reproducing method and information storage device
US5659499A (en) * 1995-11-24 1997-08-19 Motorola Magnetic memory and method therefor
JPH09251616A (en) * 1996-03-15 1997-09-22 Sony Corp Thin film magnetic head
US5640343A (en) * 1996-03-18 1997-06-17 International Business Machines Corporation Magnetic memory array using magnetic tunnel junction devices in the memory cells
US5708358A (en) * 1996-03-21 1998-01-13 Read-Rite Corporation Spin valve magnetoresistive transducers having permanent magnets
TW367493B (en) * 1996-04-30 1999-08-21 Toshiba Corp Reluctance component
US5703805A (en) * 1996-05-08 1997-12-30 Motorola Method for detecting information stored in a MRAM cell having two magnetic layers in different thicknesses
US6690553B2 (en) 1996-08-26 2004-02-10 Kabushiki Kaisha Toshiba Magnetoresistance effect device, magnetic head therewith, magnetic recording/reproducing head, and magnetic storing apparatus
US5966322A (en) * 1996-09-06 1999-10-12 Nonvolatile Electronics, Incorporated Giant magnetoresistive effect memory cell
US5745408A (en) * 1996-09-09 1998-04-28 Motorola, Inc. Multi-layer magnetic memory cell with low switching current
US5734605A (en) * 1996-09-10 1998-03-31 Motorola, Inc. Multi-layer magnetic tunneling junction memory cells
US6034847A (en) * 1996-12-25 2000-03-07 Hitachi, Ltd. Apparatus and thin film magnetic head with magnetic membrane layers of different resistivity
US5757695A (en) * 1997-02-05 1998-05-26 Motorola, Inc. Mram with aligned magnetic vectors
US5900729A (en) * 1997-03-20 1999-05-04 International Business Machines Corporation Magnetic force microscopy probe with integrated coil
US5900728A (en) * 1997-03-20 1999-05-04 International Business Machines Corporation Alternating current magnetic force microscopy system with probe having integrated coil
US5774394A (en) * 1997-05-22 1998-06-30 Motorola, Inc. Magnetic memory cell with increased GMR ratio
US5917749A (en) * 1997-05-23 1999-06-29 Motorola, Inc. MRAM cell requiring low switching field
US5768071A (en) * 1997-06-19 1998-06-16 International Business Machines Corporation Spin valve sensor with improved magnetic stability of the pinned layer
TW411471B (en) * 1997-09-17 2000-11-11 Siemens Ag Memory-cell device
DE19744095A1 (en) * 1997-10-06 1999-04-15 Siemens Ag Memory cell array has stacked layer magnetoresistive effect layer memory elements
JP3679593B2 (en) 1998-01-28 2005-08-03 キヤノン株式会社 Magnetic thin film element, magnetic thin film memory element and recording / reproducing method thereof
US6169688B1 (en) 1998-03-23 2001-01-02 Kabushiki Kaisha Toshiba Magnetic storage device using unipole currents for selecting memory cells
US5936882A (en) * 1998-03-31 1999-08-10 Motorola, Inc. Magnetoresistive random access memory device and method of manufacture
US6055179A (en) * 1998-05-19 2000-04-25 Canon Kk Memory device utilizing giant magnetoresistance effect
DE19823826A1 (en) 1998-05-28 1999-12-02 Burkhard Hillebrands MRAM memory and method for reading / writing digital information into such a memory
EP1097457B1 (en) * 1998-07-15 2003-04-09 Infineon Technologies AG Storage cell system in which an electric resistance of a storage element represents an information unit and can be influenced by a magnetic field, and method for producing same
US6081445A (en) * 1998-07-27 2000-06-27 Motorola, Inc. Method to write/read MRAM arrays
US6111781A (en) * 1998-08-03 2000-08-29 Motorola, Inc. Magnetic random access memory array divided into a plurality of memory banks
US6034887A (en) * 1998-08-05 2000-03-07 International Business Machines Corporation Non-volatile magnetic memory cell and devices
DE19853447A1 (en) * 1998-11-19 2000-05-25 Siemens Ag Magnetic storage
US6005800A (en) * 1998-11-23 1999-12-21 International Business Machines Corporation Magnetic memory array with paired asymmetric memory cells for improved write margin
US6055178A (en) * 1998-12-18 2000-04-25 Motorola, Inc. Magnetic random access memory with a reference memory array
US6391483B1 (en) 1999-03-30 2002-05-21 Carnegie Mellon University Magnetic device and method of forming same
US6331773B1 (en) 1999-04-16 2001-12-18 Storage Technology Corporation Pinned synthetic anti-ferromagnet with oxidation protection layer
US6611405B1 (en) * 1999-09-16 2003-08-26 Kabushiki Kaisha Toshiba Magnetoresistive element and magnetic memory device
US6191973B1 (en) 1999-09-27 2001-02-20 Motorola Inc. Mram cam
US6285581B1 (en) * 1999-12-13 2001-09-04 Motorola, Inc. MRAM having semiconductor device integrated therein
SG97139A1 (en) * 2000-02-15 2003-07-18 Motorola Inc Method to write/read mram arrays
US6269016B1 (en) 2000-06-19 2001-07-31 Motorola Inc. MRAM cam
DE10032275A1 (en) * 2000-07-03 2002-01-24 Infineon Technologies Ag Integrated memory with memory cells with a magnetoresistive memory effect and method for operating such a memory
US6538921B2 (en) 2000-08-17 2003-03-25 Nve Corporation Circuit selection of magnetic memory cells and related cell structures
TW584976B (en) * 2000-11-09 2004-04-21 Sanyo Electric Co Magnetic memory device
DE10058047A1 (en) 2000-11-23 2002-06-13 Infineon Technologies Ag Integrated memory with an arrangement of non-volatile memory cells and method for producing and operating the integrated memory
JP2002299575A (en) * 2001-03-29 2002-10-11 Toshiba Corp Semiconductor memory
US6674664B2 (en) 2001-05-07 2004-01-06 Nve Corporation Circuit selected joint magnetoresistive junction tunneling-giant magnetoresistive effects memory cells
US6466471B1 (en) 2001-05-29 2002-10-15 Hewlett-Packard Company Low power MRAM memory array
JP2002367364A (en) 2001-06-06 2002-12-20 Sanyo Electric Co Ltd Magnetic memory device
US20030002232A1 (en) * 2001-06-29 2003-01-02 Storage Technology Corporation Apparatus and method of making a reduced sensitivity spin valve sensor apparatus in which a flux carrying capacity is increased
US20030002231A1 (en) * 2001-06-29 2003-01-02 Dee Richard Henry Reduced sensitivity spin valve head for magnetic tape applications
US6777730B2 (en) * 2001-08-31 2004-08-17 Nve Corporation Antiparallel magnetoresistive memory cells
US6545906B1 (en) 2001-10-16 2003-04-08 Motorola, Inc. Method of writing to scalable magnetoresistance random access memory element
US6829157B2 (en) * 2001-12-05 2004-12-07 Korea Institute Of Science And Technology Method of controlling magnetization easy axis in ferromagnetic films using voltage, ultrahigh-density, low power, nonvolatile magnetic memory using the control method, and method of writing information on the magnetic memory
US6760244B2 (en) 2002-01-30 2004-07-06 Sanyo Electric Co., Ltd. Magnetic memory device including storage elements exhibiting a ferromagnetic tunnel effect
US6739132B2 (en) 2002-04-30 2004-05-25 Adc Telecommunications, Inc. Thermal micro-actuator based on selective electrical excitation
US6879512B2 (en) * 2002-05-24 2005-04-12 International Business Machines Corporation Nonvolatile memory device utilizing spin-valve-type designs and current pulses
US7095646B2 (en) 2002-07-17 2006-08-22 Freescale Semiconductor, Inc. Multi-state magnetoresistance random access cell with improved memory storage density
JP4596230B2 (en) * 2002-09-13 2010-12-08 Tdk株式会社 Magnetic memory device and manufacturing method thereof
US6809958B2 (en) 2002-09-13 2004-10-26 Hewlett-Packard Development Company, L.P. MRAM parallel conductor orientation for improved write performance
JP4404182B2 (en) * 2002-09-25 2010-01-27 Tdk株式会社 Magnetic memory device and reading method thereof
US6775183B2 (en) * 2002-10-22 2004-08-10 Btg International Ltd. Magnetic memory device employing giant magnetoresistance effect
US6639830B1 (en) 2002-10-22 2003-10-28 Btg International Ltd. Magnetic memory device
US6956257B2 (en) * 2002-11-18 2005-10-18 Carnegie Mellon University Magnetic memory element and memory device including same
JP4365591B2 (en) * 2003-01-17 2009-11-18 Tdk株式会社 Magnetic memory device, write current drive circuit, and write current drive method
JP4283011B2 (en) 2003-03-13 2009-06-24 Tdk株式会社 Magnetic memory device and reading method thereof
JP4419408B2 (en) * 2003-03-14 2010-02-24 Tdk株式会社 Magnetoresistive element and magnetic memory device
JP4729836B2 (en) * 2003-03-28 2011-07-20 Tdk株式会社 Magnetic storage cell, magnetic memory device, and method of manufacturing magnetic memory device
US6816431B1 (en) * 2003-05-28 2004-11-09 International Business Machines Corporation Magnetic random access memory using memory cells with rotated magnetic storage elements
US6956763B2 (en) 2003-06-27 2005-10-18 Freescale Semiconductor, Inc. MRAM element and methods for writing the MRAM element
US20050013060A1 (en) * 2003-07-14 2005-01-20 International Business Machines Corporation Magnetoresistive sensor
JP2005044847A (en) * 2003-07-23 2005-02-17 Tdk Corp Magnetoresistive element, magnetic storage cell, magnetic memory device, and method of manufacturing them
JP4492052B2 (en) * 2003-08-21 2010-06-30 Tdk株式会社 Magnetic storage cell and magnetic memory device
US6967366B2 (en) 2003-08-25 2005-11-22 Freescale Semiconductor, Inc. Magnetoresistive random access memory with reduced switching field variation
JP4544396B2 (en) * 2003-09-05 2010-09-15 Tdk株式会社 Magnetic storage cell and magnetic memory device
JP2005093488A (en) * 2003-09-12 2005-04-07 Sony Corp Magnetoresistive effect element, its manufacturing method, magnetic memory device, and its manufacturing method
JP2005109266A (en) * 2003-09-30 2005-04-21 Tdk Corp Magnetic memory device and manufacturing method of magnetic memory device
JP4868431B2 (en) * 2003-10-10 2012-02-01 Tdk株式会社 Magnetic storage cell and magnetic memory device
JP4438375B2 (en) * 2003-10-21 2010-03-24 Tdk株式会社 Magnetoresistive element, magnetic memory cell, and magnetic memory device
FR2866750B1 (en) * 2004-02-23 2006-04-21 Centre Nat Rech Scient MAGNETIC MEMORY MEMORY WITH MAGNETIC TUNNEL JUNCTION AND METHOD FOR ITS WRITING
US7129098B2 (en) 2004-11-24 2006-10-31 Freescale Semiconductor, Inc. Reduced power magnetoresistive random access memory elements
JP4779608B2 (en) * 2005-11-30 2011-09-28 Tdk株式会社 Magnetic memory
US7483295B2 (en) * 2007-04-23 2009-01-27 Mag Ic Technologies, Inc. MTJ sensor including domain stable free layer
FR2924851B1 (en) * 2007-12-05 2009-11-20 Commissariat Energie Atomique MAGNETIC ELEMENT WITH THERMALLY ASSISTED WRITING.
WO2009074411A1 (en) * 2007-12-13 2009-06-18 Crocus Technology Magnetic memory with a thermally assisted writing procedure
FR2925747B1 (en) 2007-12-21 2010-04-09 Commissariat Energie Atomique MAGNETIC MEMORY WITH THERMALLY ASSISTED WRITING
FR2929041B1 (en) * 2008-03-18 2012-11-30 Crocus Technology MAGNETIC ELEMENT WITH THERMALLY ASSISTED WRITING
EP2124228B1 (en) * 2008-05-20 2014-03-05 Crocus Technology Magnetic random access memory with an elliptical junction
US8031519B2 (en) * 2008-06-18 2011-10-04 Crocus Technology S.A. Shared line magnetic random access memory cells
EP2249349B1 (en) 2009-05-08 2012-02-08 Crocus Technology Magnetic memory with a thermally assisted writing procedure and reduced writng field
EP2249350B1 (en) 2009-05-08 2012-02-01 Crocus Technology Magnetic memory with a thermally assisted spin transfer torque writing procedure using a low writing current

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3623038A (en) * 1969-12-19 1971-11-23 Gte Sylvania Inc Pheral layer magnetic thin film element
US3701983A (en) * 1969-12-19 1972-10-31 Sylvania Electric Prod Magnetostatically coupled thin-film magnetic memory devices
US4547866A (en) * 1983-06-24 1985-10-15 Honeywell Inc. Magnetic thin film memory with all dual function films
US4857418A (en) * 1986-12-08 1989-08-15 Honeywell Inc. Resistive overlayer for magnetic films
FR2648942B1 (en) * 1989-06-27 1995-08-11 Thomson Csf SENSOR WITH MAGNETORESISTIVE EFFECT
US5173873A (en) * 1990-06-28 1992-12-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration High speed magneto-resistive random access memory
US5159513A (en) * 1991-02-08 1992-10-27 International Business Machines Corporation Magnetoresistive sensor based on the spin valve effect
JP2911290B2 (en) * 1992-03-19 1999-06-23 三菱電機株式会社 Magnetic thin film memory element and recording method thereof
JP2911312B2 (en) * 1992-09-02 1999-06-23 三菱電機株式会社 Magnetic thin film memory and recording method thereof

Also Published As

Publication number Publication date
EP0613148A2 (en) 1994-08-31
EP0613148A3 (en) 1995-01-04
JPH06295419A (en) 1994-10-21
US5343422A (en) 1994-08-30

Similar Documents

Publication Publication Date Title
JP2784439B2 (en) Magnetoresistance storage element, array and device
JP4896341B2 (en) Magnetic random access memory and operating method thereof
KR101318035B1 (en) Spin torque transfer cell structure utilizing field-induced antiferromagnetic or ferromagnetic coupling
US9171601B2 (en) Scalable magnetic memory cell with reduced write current
US7502248B2 (en) Multi-bit magnetic random access memory device
JP5015600B2 (en) Magnetic memory device
KR20000017086A (en) Non-volatile magnetic memory cell and devices
KR20050034726A (en) Magnetoresistive random access memory with soft magnetic reference layer
US5375082A (en) Integrated, nonvolatile, high-speed analog random access memory
JP4532909B2 (en) Multistage cell magnetoresistive random access memory
EP1580758A2 (en) Soft-reference three conductor magnetic memory storage device
JP4125465B2 (en) Magnetic memory device
JP3788964B2 (en) Magnetic random access memory
Everitt et al. Size dependence of switching thresholds for pseudo spin valve MRAM cells
JP2006156957A (en) Magnetic random-access memory having reference magneto-resistance and read-out method therefor
KR101586271B1 (en) Magnetic random access memory device and Data writing and reading method of the Same
US6980466B2 (en) Soft-reference four conductor magnetic memory storage device
JP3634761B2 (en) Magnetoresistive element, memory element using the magnetoresistive element, magnetic random access memory, and recording / reproducing method
US6898115B2 (en) Magnetoresistive element, and magnetic memory using the same
JP2004282074A (en) Magnetic sensor
Wang et al. Design, simulation, and realization of solid state memory element using the weakly coupled GMR effect
JP2004087870A (en) Magnetoresistive effect element and magnetic memory device
US20090273967A1 (en) Method and integrated circuit for determining the state of a resistivity changing memory cell
JP2005513795A (en) High magnetic stability device suitable for use as submicron memory
Dagotto et al. Brief Introduction to Giant Magnetoresistance (GMR)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090529

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees