JP2780580B2 - Swing type rotary compressor - Google Patents

Swing type rotary compressor

Info

Publication number
JP2780580B2
JP2780580B2 JP30524792A JP30524792A JP2780580B2 JP 2780580 B2 JP2780580 B2 JP 2780580B2 JP 30524792 A JP30524792 A JP 30524792A JP 30524792 A JP30524792 A JP 30524792A JP 2780580 B2 JP2780580 B2 JP 2780580B2
Authority
JP
Japan
Prior art keywords
roller
peripheral surface
groove
eccentric disk
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30524792A
Other languages
Japanese (ja)
Other versions
JPH06147165A (en
Inventor
正典 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP30524792A priority Critical patent/JP2780580B2/en
Publication of JPH06147165A publication Critical patent/JPH06147165A/en
Application granted granted Critical
Publication of JP2780580B2 publication Critical patent/JP2780580B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、冷暖房用空調機や冷
凍機等に使用される揺動型ロータリ圧縮機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oscillating rotary compressor used for an air conditioner or a refrigerator for cooling and heating.

【0002】[0002]

【従来の技術】従来、揺動型ロータリ圧縮機としては、
図4に示すように、円筒形状のシリンダ室1aとこのシ
リンダ室1aに開口する断面が円筒形状の穴12とを有
するハウジング1と、上記シリンダ室1a内に配置さ
れ、半径方向に延びる板状のブレード2aを有する円筒
形状のローラ2と、回転軸3に偏心して固定され、上記
ローラ2の内周に回転自在に嵌合された偏心円板3aと
を備えたものがある。上記円筒形状の穴12内には、断
面が半円形状の揺動ブッシュ4,5を配置し、この摺動
ブッシュ4,5の平面部が上記ローラ2のブレード2a
の両側面を摺接するようにしている。上記穴12の右側
のハウジング1に、シリンダ室1aに開口する吸入ポー
ト1bを設けている。上記穴12の左側のハウジング1
に、シリンダ室1aに開口する吐出ポート1cを設けて
いる。
2. Description of the Related Art Conventionally, as a swing type rotary compressor,
As shown in FIG. 4, a housing 1 having a cylindrical cylinder chamber 1a and a hole 12 having a cylindrical cross section opened to the cylinder chamber 1a, and a plate-shaped member disposed in the cylinder chamber 1a and extending in the radial direction. And an eccentric disk 3a eccentrically fixed to the rotating shaft 3 and rotatably fitted to the inner periphery of the roller 2. Oscillating bushes 4 and 5 having a semicircular cross section are arranged in the cylindrical hole 12, and the flat portions of the sliding bushes 4 and 5 correspond to the blade 2 a of the roller 2.
Are made to slide on both sides. The housing 1 on the right side of the hole 12 is provided with a suction port 1b opening to the cylinder chamber 1a. Housing 1 on left side of hole 12
Is provided with a discharge port 1c opening to the cylinder chamber 1a.

【0003】図5は図4のB−B線に沿って上記揺動型
ロータリ圧縮機を切断した断面図であり、上記ローラ2
と偏心円板3aとの両端面はハウジング6,7で挟ま
れ、ハウジング6,7に対して摺動自在に接触してい
る。また、上記偏心円板3aの軸方向の両端に周方向の
溝3b,3cを設けている。
FIG. 5 is a sectional view of the oscillating rotary compressor cut along the line BB of FIG.
Both ends of the eccentric disk 3a are sandwiched between the housings 6 and 7, and are slidably in contact with the housings 6 and 7. Further, circumferential grooves 3b and 3c are provided at both axial ends of the eccentric disk 3a.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記従来の
揺動型ロータリ圧縮機において、上記偏心円板3aの回
転により、上記ローラ2が圧縮行程にあるときローラ2
の圧縮室11側の外周面が圧縮された冷媒ガスの高い圧
力を受ける。したがって、上記圧縮室11側のローラ2
の内周面は偏心円板3aの外周面に押し付けられるが、
吸入室10側のローラ2の内周面と偏心円板3aとの間
の接触圧力は小さくなり、あるいはそれらの間に隙間が
生じることになる。したがって、吸入室10側のローラ
2の内周面の幅および偏心円板の幅は、圧縮室11側の
それらの幅よりも、耐面圧の観点からは小さくすること
ができるはずである。
In the conventional oscillating rotary compressor, when the roller 2 is in the compression stroke due to the rotation of the eccentric disk 3a, the roller 2 is turned off.
The outer peripheral surface on the compression chamber 11 side receives a high pressure of the compressed refrigerant gas. Therefore, the roller 2 on the compression chamber 11 side
Is pressed against the outer peripheral surface of the eccentric disk 3a,
The contact pressure between the inner peripheral surface of the roller 2 on the suction chamber 10 side and the eccentric disk 3a is reduced, or a gap is formed between them. Therefore, the width of the inner peripheral surface of the roller 2 on the suction chamber 10 side and the width of the eccentric disk should be smaller than those on the compression chamber 11 side from the viewpoint of surface pressure resistance.

【0005】しかるに、上記従来の揺動型ロータリ圧縮
機では、ローラ2の内周面の幅および偏心円板3aの外
周面の幅は全周に渡って同じであるため、ローラ2およ
び偏心円板3aの接触面積が必要以上に大きくなり、摺
動抵抗と潤滑油の粘性抵抗による動力損失が大きいとい
う欠点がある。
However, in the above-described conventional oscillating rotary compressor, since the width of the inner peripheral surface of the roller 2 and the width of the outer peripheral surface of the eccentric disk 3a are the same over the entire circumference, the roller 2 and the eccentric circular There is a disadvantage that the contact area of the plate 3a becomes unnecessarily large and power loss due to sliding resistance and viscous resistance of lubricating oil is large.

【0006】そこで、この発明の目的は、冷媒ガスの圧
力に耐えることができる上に摺動抵抗と粘性抵抗を低減
して、動力損失を低減できる揺動型ロータリ圧縮機を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an oscillating rotary compressor that can withstand the pressure of a refrigerant gas and reduce power loss by reducing sliding resistance and viscous resistance. .

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、この発明のロータリ圧縮機は、シリンダ室とそのシ
リンダ室に開口する穴を有するハウジングと、上記シリ
ンダ室内に配置されたローラと、回転軸に偏心して固定
され、上記ローラの内周に回転自在に嵌合された偏心円
板と、上記ローラに連結されると共に、上記穴に出没自
在に嵌合されて、上記シリンダ室内を吸入室と圧縮室と
に区画するブレードを備えた揺動型ロータリ圧縮機にお
いて、上記ローラの内周面の吸入室側に溝を設けると共
に、上記ローラが所定圧力以上に冷媒ガスの圧縮を行っ
た圧縮行程にある際に、上記ローラに作用する冷媒ガス
の圧力の合力の作用する方向で、かつ上記吸入室側の上
記偏心円板の外周面に溝を設けたことを特徴としてい
る。
In order to achieve the above object, a rotary compressor according to the present invention comprises a housing having a cylinder chamber and a hole opened in the cylinder chamber, a roller disposed in the cylinder chamber, An eccentric disk fixed eccentrically to a shaft and rotatably fitted to the inner periphery of the roller, connected to the roller, and fitted to the hole so as to be able to protrude and retract so that the suction chamber in the cylinder chamber In the oscillating rotary compressor having a blade partitioned into a compression chamber and a compression chamber, a groove is provided on the suction chamber side of the inner peripheral surface of the roller, and the roller compresses the refrigerant gas to a predetermined pressure or more. A groove is provided in the direction in which the resultant force of the pressure of the refrigerant gas acting on the roller acts during the stroke and on the outer peripheral surface of the eccentric disk on the suction chamber side.

【0008】[0008]

【作用】上記構成の揺動型ロータリ圧縮機によれば、上
記ローラは、上記シリンダ室内を全半径方向に移動しな
がら、上記穴に支持されたブレードを中心として揺動運
動をしているので、上記ローラの内周面の吸入室側に設
けられた溝は常に吸入室側にあって変化することはな
い。一方、ローラの圧縮室側の内周面は偏心円板に押し
付けられているが、ローラの圧縮室側の内周面には溝が
ないため受圧面積が大きくて面圧が過大になることはな
い。また、ローラの吸入室側の内周面は偏心円板に押し
付けられていないから、溝が有ってもローラ内周面の面
圧が過大になることがなく、かつ、摺動面積が小さいか
ら摺動抵抗が小さくなる。さらに溝のために潤滑油の層
の厚さが厚くなるため粘性抵抗も小さくなる。上記偏心
円板の回転にともない上記偏心円板の外周面に設けられ
た溝は回転して全方向に向くが、上記偏心円板の溝はロ
ーラが所定圧力以上に圧縮室内の冷媒ガスの圧縮を行う
圧縮行程にあるときは冷媒ガスの圧力の合力の作用する
方向で、かつ吸入室側にある。したがって、圧縮室内の
冷媒ガスの圧力が上記所定圧力以上になって、ローラを
偏心円板に強く押し付けても、このローラが押し付けら
れる圧縮室側の偏心円板の外周には溝がなく、かつロー
ラの圧縮室側の内周面にも溝がないので、偏心円板とロ
ーラとの圧縮室側の互いに押し付けあう部分の接触面積
を大きくして、それらの面圧が小さくなって、焼付等の
損傷が生じることはない。一方、このとき、上記偏心円
板の吸入室側の内周面に溝があるためローラの吸入室側
の内周面に溝があるときと相重なって、ローラおよび偏
心円板の吸入室側の互いに摺動する部分の面積が小さく
なって、摺動抵抗が小さくなる。上記ローラの内周面の
溝と偏心円板の外周面の溝とが互いに対向するときに
は、両溝の底間の距離が大きくなるから、潤滑油層の厚
さが厚くなって粘性抵抗が小さくなる。また、上記ロー
ラ内周の溝と偏心円板の溝とが互いに対向しないとき
は、互いに摺動する部分の面積が極めて少なくなって摺
動抵抗が低減する。
According to the oscillating rotary compressor having the above construction, the roller is oscillating about the blade supported by the hole while moving in the entire radial direction in the cylinder chamber. The groove provided on the suction chamber side of the inner peripheral surface of the roller is always on the suction chamber side and does not change. On the other hand, the inner peripheral surface of the roller on the compression chamber side is pressed against the eccentric disk, but since there is no groove on the inner peripheral surface of the roller on the compression chamber side, the pressure receiving area is large and the surface pressure does not become excessive. Absent. Further, since the inner peripheral surface of the roller on the suction chamber side is not pressed against the eccentric disk, the surface pressure of the inner peripheral surface of the roller does not become excessive even with the groove, and the sliding area is small. Therefore, the sliding resistance is reduced. Further, since the thickness of the lubricating oil layer is increased due to the grooves, the viscous resistance is also reduced. With the rotation of the eccentric disk, the groove provided on the outer peripheral surface of the eccentric disk rotates and faces in all directions, but the groove of the eccentric disk compresses the refrigerant gas in the compression chamber when the roller exceeds a predetermined pressure. Is in the direction in which the resultant of the pressure of the refrigerant gas acts and on the suction chamber side. Therefore, even if the pressure of the refrigerant gas in the compression chamber becomes equal to or higher than the predetermined pressure and the roller is strongly pressed against the eccentric disk, there is no groove on the outer circumference of the eccentric disk on the compression chamber side where the roller is pressed, and Since there is no groove on the inner peripheral surface of the roller on the compression chamber side, the contact area between the eccentric disk and the roller that presses against each other on the compression chamber side is increased, and their surface pressure is reduced, causing seizure, etc. No damage will occur. On the other hand, at this time, since the groove is formed on the inner peripheral surface of the eccentric disk on the suction chamber side, the groove overlaps with the groove on the inner peripheral surface of the roller on the suction chamber side, and the roller and the eccentric disk are formed on the suction chamber side. The area of the parts sliding on each other is reduced, and the sliding resistance is reduced. When the groove on the inner peripheral surface of the roller and the groove on the outer peripheral surface of the eccentric disk face each other, the distance between the bottoms of both grooves increases, so the thickness of the lubricating oil layer increases and the viscous resistance decreases. . Further, when the groove on the inner circumference of the roller and the groove on the eccentric disk do not face each other, the area of the parts sliding on each other is extremely small, and the sliding resistance is reduced.

【0009】一方、上記所定圧力以上に冷媒ガスを圧縮
していない場合には、例えば偏心円板の外周面の溝は圧
縮室側に位置するが、このとき、冷媒ガスの圧力は極く
小さいので偏心円板の圧縮室側の外周面の面圧が過大に
なることはない。つまり、圧縮された冷媒ガスの圧力の
合力は偏心円板の溝のない外周面で受けるから、焼付等
を防止でき、かつ偏心円板の溝の有る外周面は、ローラ
から力を受けない位置に有るから摺動抵抗・粘性抵抗を
低減して、動力損失を低減することができる。
On the other hand, when the refrigerant gas is not compressed to the predetermined pressure or more, for example, the groove on the outer peripheral surface of the eccentric disk is located on the compression chamber side, but at this time, the pressure of the refrigerant gas is extremely small. Therefore, the surface pressure of the outer peripheral surface of the eccentric disk on the compression chamber side does not become excessive. That is, since the resultant force of the pressure of the compressed refrigerant gas is received on the outer peripheral surface of the eccentric disk without the groove, seizure or the like can be prevented, and the outer peripheral surface of the eccentric disk with the groove is at a position where no force is applied from the roller. Therefore, sliding resistance and viscous resistance can be reduced, and power loss can be reduced.

【0010】[0010]

【実施例】以下、この発明の揺動型ロータリ圧縮機を実
施例により詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an oscillating rotary compressor according to the present invention will be described in detail with reference to embodiments.

【0011】図1はこの発明の実施例の揺動型ロータリ
圧縮機の断面図を示しており、図2は図1のA−A線断
面図である。1はシリンダ室1aとこのシリンダ室1a
内に開口する断面が円筒形状の穴12を有するハウジン
グ、2は半径方向に延びる板状のブレード2aを有し、
上記シリンダ室1a内に配置された円筒形状のローラ、
3は上記ローラ2の内周に回転自在に嵌合された偏心円
板3aが固定された回転軸、4,5は上記穴12内に配
置され、平面部が上記ローラ2のブレード2aの両側面
に摺接する断面が半円形状の揺動ブッシュである。上記
揺動ブッシュ4,5は、上記穴12内でブレード2aの
動きに合わせて所定の角度範囲内で回転するとともに、
ブレード2aを出没自在に支持する。したがって、上記
ローラ2は揺動ブッシュ4,5つまりブレード2aを中
心として、揺動すると共に、シリンダ室1aの内周に摺
接して全半径方向に移動する。また、上記穴12の右側
のハウジング1に、シリンダ室1aに開口する吸入ポー
ト1bを設け、上記穴12の左側のハウジング1に、シ
リンダ室1aに開口する吐出ポート1cを設けている。
FIG. 1 is a sectional view of an oscillating rotary compressor according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along line AA of FIG. 1 is a cylinder chamber 1a and this cylinder chamber 1a
A housing 2 having a cylindrical hole 12 having a cylindrical cross section that opens into the inside, has a plate-like blade 2a extending in the radial direction,
A cylindrical roller disposed in the cylinder chamber 1a,
Reference numeral 3 denotes a rotating shaft on which an eccentric disk 3a rotatably fitted to the inner periphery of the roller 2 is fixed. Reference numerals 4 and 5 are disposed in the hole 12 and flat portions are formed on both sides of the blade 2a of the roller 2. The swing bush has a semicircular cross section that slides on the surface. The swing bushes 4 and 5 rotate within a predetermined angle range in accordance with the movement of the blade 2a in the hole 12, and
The blade 2a is supported so that it can come and go. Therefore, the roller 2 swings around the swinging bushes 4 and 5, ie, the blade 2a, and slides on the inner periphery of the cylinder chamber 1a and moves in all radial directions. The housing 1 on the right side of the hole 12 is provided with a suction port 1b opening to the cylinder chamber 1a, and the housing 1 on the left side of the hole 12 is provided with a discharge port 1c opening in the cylinder chamber 1a.

【0012】図2に示すように、上記ローラ2と偏心円
板3aとの両端面はハウジング6,7で挟まれ、ハウジ
ング6,7に対して摺動自在に接触している。また、上
記偏心円板3aの軸方向の両端に周方向の溝3b,3c
を設けている。図1,2に示すように、上記ハウジング
1の内周の図1における最下点に上記ローラ2の外周の
最下点が位置するとき、つまり、ブレード2aが穴5か
ら最も突出して、ブレード2aの右側の吸入室10とブ
レード2aの左側の圧縮室11とを形成しているとき、
上記ローラ2の内周面の右側略半分の領域かつ軸方向の
両端に周方向の溝21,22を設けている。また、上記
偏心円板3aの外周面の図1における右側略半分の領域
かつ軸方向の両端に周方向の溝23,24を設け、この
溝23,24とローラの溝21,22とが互いに対向す
るようにしている。そのため、上記ローラ2の溝21,
22に挟まれた内周面2bと、偏心円板3aの溝23,
24に挟まれた外周面3bとが互いに対向する。
As shown in FIG. 2, both end surfaces of the roller 2 and the eccentric disk 3a are sandwiched between housings 6 and 7, and slidably contact the housings 6 and 7. Also, circumferential grooves 3b, 3c are provided at both ends of the eccentric disk 3a in the axial direction.
Is provided. As shown in FIGS. 1 and 2, when the lowermost point of the outer periphery of the roller 2 is located at the lowermost point in FIG. 1 of the inner periphery of the housing 1, that is, the blade 2 a projects most from the hole 5, When the suction chamber 10 on the right side of 2a and the compression chamber 11 on the left side of the blade 2a are formed,
Circumferential grooves 21 and 22 are provided in substantially the right half area of the inner peripheral surface of the roller 2 and at both ends in the axial direction. Further, circumferential grooves 23 and 24 are provided in the outer circumferential surface of the eccentric disk 3a in substantially the right half area in FIG. 1 and at both ends in the axial direction, and these grooves 23 and 24 and the grooves 21 and 22 of the roller are mutually They face each other. Therefore, the grooves 21 of the roller 2,
22, the inner peripheral surface 2b and the groove 23 of the eccentric disk 3a,
The outer peripheral surface 3b sandwiched between the two opposes each other.

【0013】また、上記回転軸3の一端は図示しないモ
ータに連結して、図1において矢印Rの方向に回転軸3
を回転させて、上記回転軸3に固定された偏心円板3a
をローラ2の内側で偏心回転運動させて、ローラ2がシ
リンダ室1aの内周面に接しながら揺動するようにして
いる。
One end of the rotating shaft 3 is connected to a motor (not shown), and the rotating shaft 3 is moved in the direction of arrow R in FIG.
To rotate the eccentric disk 3a fixed to the rotation shaft 3.
Is rotated eccentrically inside the roller 2 so that the roller 2 swings while being in contact with the inner peripheral surface of the cylinder chamber 1a.

【0014】上記ローラ2は、回転軸3つまり偏心円板
3aの回転に応じて次のように動作する。
The roller 2 operates as follows according to the rotation of the rotating shaft 3, ie, the eccentric disk 3a.

【0015】図3(a)に示すように、上記ローラ2の
ブレード2aの上端面が穴12内に最も没入し、上記ハ
ウジング1とローラ2に挟まれた空間に冷媒ガスが充満
しているとする。このとき、上記ローラ2の内周面の溝
21と図示しない溝22は右側半分にあり、ローラ2の
内周面2bは偏心円板3aに押し付けられていないか
ら、ローラ2の内周面2bの面圧が過大になることがな
く、摺動面積が小さいので摺動抵抗が小さくなる。さら
に上記溝21と図示しない溝22のために潤滑油の層の
厚さが厚くなるため粘性抵抗も小さくなる。また、上記
偏心円板3aの外周面の溝23と図示しない溝24は左
側半分にあり、冷媒ガスを所定圧力以上に圧縮していな
いので、冷媒ガスの圧力の合力は極めて小さく、上記偏
心円板3aの外周面3bの面圧が過大になることはな
く、摺動面積が小さいから摺動抵抗が小さくなる。さら
に上記溝22と図示しない溝24のために潤滑油の層の
厚さが厚くなるため粘性抵抗も小さくなる。
As shown in FIG. 3A, the upper end surface of the blade 2a of the roller 2 is most immersed in the hole 12, and the space between the housing 1 and the roller 2 is filled with the refrigerant gas. And At this time, the groove 21 on the inner peripheral surface of the roller 2 and the groove 22 (not shown) are on the right half, and the inner peripheral surface 2b of the roller 2 is not pressed against the eccentric disk 3a. The surface pressure does not become excessive and the sliding area is small, so that the sliding resistance is small. Further, since the thickness of the lubricating oil layer is increased due to the groove 21 and the groove 22 (not shown), the viscosity resistance is also reduced. Further, the groove 23 on the outer peripheral surface of the eccentric disk 3a and the groove 24 (not shown) are located on the left half and the refrigerant gas is not compressed to a predetermined pressure or more, so that the resultant force of the pressure of the refrigerant gas is extremely small. The surface pressure of the outer peripheral surface 3b of the plate 3a does not become excessive, and the sliding area is small, so that the sliding resistance is small. Further, the thickness of the lubricating oil layer is increased by the grooves 22 and the grooves 24 (not shown), so that the viscous resistance is also reduced.

【0016】図3(b)に示すように、図3(a)から
矢印Rの方向に上記回転軸3を60度回転すると、上記
ローラ2はハウジング1の内周の右斜め上側に移動す
る。このローラ2の動きに合わせて、上記ブレード2a
の上端面は穴12内を図3(a)の位置より下がる。こ
のとき、上記ローラ2の内周面の溝21と図示しない溝
22は吸入室10側にあり、ローラ2の内周面2bは偏
心円板3aに押し付けられていないから、ローラ2の内
周面2bの面圧が過大になることがなく、摺動面積が小
さいので摺動抵抗が小さくなる。さらに上記溝21と図
示しない溝22のために潤滑油の層の厚さが厚くなるた
め粘性抵抗も小さくなる。また、上記偏心円板3aの外
周面の溝23と図示しない溝24は、回転軸3の回転に
ともなって図3(a)の位置より矢印Rの方向に60度
回転する。このとき、冷媒ガスを所定圧力以上に圧縮し
ていないので、冷媒ガスの圧力の合力Fbは極めて小さ
く、上記偏心円板3aの外周面3bの面圧が過大になる
ことはなく、摺動面積が小さいから摺動抵抗が小さくな
る。さらに上記溝22と図示しない溝24のために潤滑
油の層の厚さが厚くなるため粘性抵抗も小さくなる。ま
た、上記ローラ2の内周面の溝21と図示しない溝22
と、偏心円板3aの外周面の溝23と図示しない溝24
とは、略50度の範囲で吸入室10側で互いに対向し、
溝21と23との底間の距離と、溝22と24との底間
の距離とが大きくなるから潤滑油層の厚さが厚くなって
粘性抵抗がさらに小さくなる。そして、上記ガス圧力の
合力Fbによりローラ2が押し付けられる圧縮室11側
の偏心円板3aの外周面には溝23,24がなく、かつ
ローラ2の圧縮室11側の内周面にも溝21,22がな
いので、偏心円板3aとローラ2との圧縮室11側の互
いに押し付けあう部分の接触面積を大きくして、それら
の面圧を小さくしている。上記吸入ポート1bから吸入
室10に冷媒ガスを吸い込む一方、図3(a)でハウジ
ング1とローラ2に挟まれていた空間は、上記圧縮室1
1になり冷媒ガスを圧縮する。
As shown in FIG. 3 (b), when the rotation shaft 3 is rotated by 60 degrees in the direction of arrow R from FIG. 3 (a), the roller 2 moves to the upper right of the inner circumference of the housing 1. . In accordance with the movement of the roller 2, the blade 2a
Of the upper end of the hole 12 is lower than the position shown in FIG. At this time, the groove 21 on the inner peripheral surface of the roller 2 and the groove 22 (not shown) are located on the suction chamber 10 side, and the inner peripheral surface 2b of the roller 2 is not pressed against the eccentric disk 3a. Since the surface pressure of the surface 2b does not become excessive and the sliding area is small, the sliding resistance is reduced. Further, since the thickness of the lubricating oil layer is increased due to the groove 21 and the groove 22 (not shown), the viscosity resistance is also reduced. The groove 23 on the outer peripheral surface of the eccentric disk 3a and the groove 24 (not shown) are rotated by 60 degrees in the direction of arrow R from the position shown in FIG. At this time, since the refrigerant gas is not compressed to a predetermined pressure or more, the resultant force Fb of the pressure of the refrigerant gas is extremely small, and the surface pressure of the outer peripheral surface 3b of the eccentric disk 3a does not become excessive, and the sliding area does not increase. Is small, the sliding resistance is small. Further, the thickness of the lubricating oil layer is increased by the grooves 22 and the grooves 24 (not shown), so that the viscous resistance is also reduced. A groove 21 on the inner peripheral surface of the roller 2 and a groove 22 (not shown)
And a groove 23 on the outer peripheral surface of the eccentric disk 3a and a groove 24 (not shown).
Are opposed to each other on the suction chamber 10 side within a range of approximately 50 degrees,
Since the distance between the bottoms of the grooves 21 and 23 and the distance between the bottoms of the grooves 22 and 24 are increased, the thickness of the lubricating oil layer is increased and the viscous resistance is further reduced. The grooves 23 and 24 are not provided on the outer peripheral surface of the eccentric disk 3a on the compression chamber 11 side where the roller 2 is pressed by the resultant force Fb of the gas pressure, and the grooves are also provided on the inner peripheral surface of the roller 2 on the compression chamber 11 side. Since there is no roller 21 or 22, the contact area between the eccentric disk 3a and the roller 2 on the compression chamber 11 side where they are pressed against each other is increased, and their surface pressure is reduced. While the refrigerant gas is sucked into the suction chamber 10 from the suction port 1b, the space between the housing 1 and the roller 2 in FIG.
It becomes 1 and compresses the refrigerant gas.

【0017】図3(c)に示すように、図3(a)から
矢印Rの方向に上記回転軸3が120度回転すると、上
記ローラ2はハウジング1の内周の右斜め下側に移動す
る。このローラ2の動きに合わせて、上記ブレード2a
の上端面は穴12内を図3(b)の位置より下がる。こ
のとき、上記ローラ2の内周面の溝21と図示しない溝
22は吸入室10側にあり、ローラ2の内周面2bは偏
心円板3aに押し付けられていないから、ローラ2の内
周面2bの面圧が過大になることがなく、摺動面積が小
さいので摺動抵抗が小さくなる。さらに上記溝21と図
示しない溝22のために潤滑油の層の厚さが厚くなるた
め粘性抵抗も小さい。また、上記偏心円板3aの外周面
の溝23と図示しない溝24は、回転軸3の回転にとも
なって圧縮室11側の位置より矢印Rの方向に120度
回転する。上記偏心円板3aの外周面3bはローラ2に
押し付けられていないから、偏心円板3aの外周面3b
の面圧が過大になることはなく、摺動面積が小さいから
摺動抵抗が小さくなる。さらに上記溝22と図示しない
溝24のために潤滑油の層の厚さが厚くなるため粘性抵
抗も小さくなる。また、上記ローラ2の内周面の溝21
と図示しない溝22と、偏心円板3aの外周面の溝23
と図示しない溝24とは、略110度の範囲で互いに対
向し、溝21と23との底間の距離と、溝22と24と
の底間の距離とが大きくなるから、潤滑油層の厚さが厚
くなって粘性抵抗がさらに小さくなる。このとき、冷媒
ガスを所定圧力以上に圧縮していないので、冷媒ガスの
圧力の合力はFcと小さく、上記ローラ2の外周面の圧
縮室11側はガス圧力の合力Fcを受ける。上記ガス圧
力の合力Fcによりローラ2が押し付けられる圧縮室1
1側の偏心円板3aの外周面には溝23,24がなく、
かつローラ2の圧縮室11側の内周面にも溝21,22
がないので、偏心円板3aとローラ2との圧縮室11側
の互いに押し付けあう部分の接触面積を大きくして、そ
れらの面圧を小さくしている。上記吸入ポート1bから
吸入室10に冷媒ガスを吸い込む一方、図3(a)でハ
ウジング1とローラ2に挟まれた空間は、上記圧縮室1
1へと変化し、容積が徐々に小さくなり、圧縮室11は
冷媒ガスを圧縮する。
As shown in FIG. 3 (c), when the rotation shaft 3 rotates 120 degrees in the direction of arrow R from FIG. 3 (a), the roller 2 moves diagonally right below the inner circumference of the housing 1. I do. In accordance with the movement of the roller 2, the blade 2a
Of the upper end of the hole 12 is lower than the position shown in FIG. At this time, the groove 21 on the inner peripheral surface of the roller 2 and the groove 22 (not shown) are located on the suction chamber 10 side, and the inner peripheral surface 2b of the roller 2 is not pressed against the eccentric disk 3a. Since the surface pressure of the surface 2b does not become excessive and the sliding area is small, the sliding resistance is reduced. Further, since the thickness of the lubricating oil layer is increased due to the groove 21 and the groove 22 (not shown), the viscous resistance is small. The groove 23 on the outer peripheral surface of the eccentric disk 3a and the groove 24 (not shown) rotate 120 degrees in the direction of arrow R from the position on the compression chamber 11 side with the rotation of the rotating shaft 3. Since the outer peripheral surface 3b of the eccentric disk 3a is not pressed against the roller 2, the outer peripheral surface 3b of the eccentric disk 3a
The surface pressure does not become excessive and the sliding area is small, so that the sliding resistance is small. Further, the thickness of the lubricating oil layer is increased by the grooves 22 and the grooves 24 (not shown), so that the viscous resistance is also reduced. The groove 21 on the inner peripheral surface of the roller 2
And a groove 22, not shown, and a groove 23 on the outer peripheral surface of the eccentric disk 3a.
And the not-shown groove 24 are opposed to each other within a range of approximately 110 degrees, and the distance between the bottoms of the grooves 21 and 23 and the distance between the bottoms of the grooves 22 and 24 are increased. And the viscous drag is further reduced. At this time, since the refrigerant gas has not been compressed to a predetermined pressure or more, the resultant force of the refrigerant gas pressure is as small as Fc, and the compression chamber 11 side of the outer peripheral surface of the roller 2 receives the resultant force Fc of the gas pressure. The compression chamber 1 against which the roller 2 is pressed by the resultant Fc of the gas pressure.
There are no grooves 23, 24 on the outer peripheral surface of the eccentric disk 3a on one side,
Grooves 21 and 22 are also provided on the inner peripheral surface of the roller 2 on the compression chamber 11 side.
Therefore, the contact area between the eccentric disk 3a and the roller 2 on the compression chamber 11 side where the eccentric disk 3a and the roller 2 press against each other is increased, and their surface pressure is reduced. While the refrigerant gas is sucked into the suction chamber 10 from the suction port 1b, the space between the housing 1 and the roller 2 in FIG.
1 and the volume gradually decreases, and the compression chamber 11 compresses the refrigerant gas.

【0018】図3(d)に示すように、図3(a)から
矢印Rの方向に上記回転軸3が180度回転すると、上
記ローラ2はハウジング1の内周の最下点に移動する。
このローラ2の動きに合わせて、上記ブレード2aの上
端面は穴12内を図3(c)の位置よりさらに下がり、
最下点に位置する。このとき、上記ローラ2の内周面の
溝21と図示しない溝22は吸入室10側にあり、ロー
ラ2の内周面2bは偏心円板3aに押し付けられていな
いから、ローラ2の内周面2bの面圧が過大になること
がなく、摺動面積が小さいので摺動抵抗が小さくなる。
さらに上記溝21と図示しない溝22のために潤滑油の
層の厚さが厚くなるため粘性抵抗も小さい。また、上記
偏心円板3aの外周面の溝23と図示しない溝24は吸
入室10側にあり、偏心円板3aの外周面3bはローラ
2に押し付けられていないから、偏心円板3aの外周面
3bの面圧が過大になることがなく、摺動面積が小さい
から摺動抵抗が小さくなる。さらに上記溝23と図示し
ない溝24のために潤滑油の層の厚さが厚くなるため粘
性抵抗も小さい。また、上記ローラ2の内周面の溝21
と図示しない溝22と、偏心円板3aの外周面の溝23
と図示しない溝24とは、吸入室10側で互いに対向
し、溝21と23との底間の距離と、溝22と24との
底間の距離とが大きくなるから、潤滑油層の厚さが厚く
なって粘性抵抗が小さくなる。このとき、冷媒ガスを所
定圧力以上に圧縮しているので、冷媒ガスの圧力の合力
はFdと大きくなり、上記ローラ2の外周面の圧縮室1
1側はガス圧力の合力Fdを受ける。上記ガス圧力の合
力Fdによりローラ2が押し付けられる圧縮室11側の
偏心円板3aの外周面には溝23,24がなく、かつロ
ーラ2の圧縮室11側の内周面にも溝21,22がない
ので、偏心円板3aとローラ2との圧縮室11側の互い
に押し付けあう部分の接触面積を大きくして、それらの
面圧が小さくしている。上記吸入室10の容積は図3
(c)より大きくなり、上記吸入ポート1bから吸入す
る冷媒ガスが増える一方、上記圧縮室11の容積は図3
(a)でハウジング1とローラ2に挟まれていた空間の
容積の半分になり、圧縮室11は冷媒ガスを圧縮する。
As shown in FIG. 3D, when the rotation shaft 3 rotates 180 degrees in the direction of arrow R from FIG. 3A, the roller 2 moves to the lowest point on the inner circumference of the housing 1. .
In accordance with the movement of the roller 2, the upper end surface of the blade 2a is further lowered in the hole 12 from the position shown in FIG.
It is located at the lowest point. At this time, the groove 21 on the inner peripheral surface of the roller 2 and the groove 22 (not shown) are located on the suction chamber 10 side, and the inner peripheral surface 2b of the roller 2 is not pressed against the eccentric disk 3a. Since the surface pressure of the surface 2b does not become excessive and the sliding area is small, the sliding resistance is reduced.
Further, since the thickness of the lubricating oil layer is increased due to the groove 21 and the groove 22 (not shown), the viscous resistance is small. The groove 23 on the outer peripheral surface of the eccentric disk 3a and the groove 24 (not shown) are located on the suction chamber 10 side, and the outer peripheral surface 3b of the eccentric disk 3a is not pressed against the roller 2, so that the outer peripheral surface of the eccentric disk 3a The surface pressure of the surface 3b does not become excessive, and the sliding area is small, so that the sliding resistance is small. Further, since the thickness of the lubricating oil layer is increased due to the groove 23 and the groove 24 (not shown), the viscous resistance is small. The groove 21 on the inner peripheral surface of the roller 2
And a groove 22, not shown, and a groove 23 on the outer peripheral surface of the eccentric disk 3a.
And the groove 24 (not shown) are opposed to each other on the suction chamber 10 side, and the distance between the bottoms of the grooves 21 and 23 and the distance between the bottoms of the grooves 22 and 24 are increased. And the viscous drag decreases. At this time, since the refrigerant gas has been compressed to a predetermined pressure or more, the resultant force of the refrigerant gas pressure becomes large as Fd, and the compression chamber 1 on the outer peripheral surface of the roller 2 is compressed.
One side receives a resultant force Fd of gas pressure. The grooves 23 and 24 are not formed on the outer peripheral surface of the eccentric disk 3a on the compression chamber 11 side where the roller 2 is pressed by the resultant force Fd of the gas pressure, and the grooves 21 and 24 are also formed on the inner peripheral surface of the roller 2 on the compression chamber 11 side. Since there is no 22, the contact area between the eccentric disk 3 a and the roller 2 on the compression chamber 11 side where they are pressed against each other is increased, and their surface pressure is reduced. The volume of the suction chamber 10 is shown in FIG.
(C), the refrigerant gas sucked from the suction port 1b increases, while the volume of the compression chamber 11 increases as shown in FIG.
In (a), the volume of the space between the housing 1 and the roller 2 is reduced to half, and the compression chamber 11 compresses the refrigerant gas.

【0019】図3(e)に示すように、図3(a)から
矢印Rの方向に上記回転軸3が240度回転すると、上
記ローラ2はハウジング1の内周の左斜め下側に移動す
る。このローラ2の動きに合わせて、上記ブレード2a
の上端面は穴12内を図3(d)の位置より上がる。こ
のとき、上記ローラ2の内周面の溝21と図示しない溝
22は吸入室10側にあり、ローラ2の内周面2bは偏
心円板3aに押し付けられていないから、ローラ2の内
周面2bの面圧が過大になることがなく、摺動面積が小
さいので摺動抵抗が小さくなる。さらに上記溝21と図
示しない溝22のために潤滑油の層の厚さが厚くなるた
め粘性抵抗も小さい。また、上記偏心円板3aの外周面
の溝23と図示しない溝24は、回転軸3の回転にとも
なって図3(a)の位置より矢印Rの方向に240度回
転する。上記偏心円板3aの外周面3bはローラ2に押
し付けられていないから、偏心円板3aの外周面3bの
面圧が過大になることはなく、摺動面積が小さいから摺
動抵抗が小さくなる。さらに上記溝22と図示しない溝
24のために潤滑油の層の厚さが厚くなるため粘性抵抗
も小さくなる。また、ローラ2の内周面の溝21と図示
しない溝22と偏心円板3aの外周面の溝23と図示し
ない溝24は、略120度の範囲で互いに対向し、溝2
1と23との底間の距離と、溝22と24との底間の距
離とが大きくなるから、潤滑油層の厚さが厚くなって粘
性抵抗がさらに小さくなる。このとき、冷媒ガスを所定
圧力以上に圧縮しているので、冷媒ガスの圧力の合力は
Feと大きくなる。上記ガス圧力の合力Feによりロー
ラ2が押し付けられる圧縮室11側の偏心円板3aの外
周面には溝23,24がなく、かつローラの圧縮室11
側の内周面にも溝21,22がないので、偏心円板3a
とローラ2との圧縮室11側の互いに押し付けあう部分
の接触面積を大きくして、それらの面圧を小さくしてい
る。上記吸入室10の容積は図3(d)より大きくな
り、上記吸入ポート1bから吸入する冷媒ガスが増える
一方、上記圧縮室11の容積は図3(d)よりさらに小
さくなり、圧縮室11は冷媒ガスを圧縮する。そして、
図示しない弁が開き、上記吐出ポート1cから圧縮した
冷媒ガスを吐き出す。
As shown in FIG. 3 (e), when the rotation shaft 3 rotates 240 degrees in the direction of arrow R from FIG. 3 (a), the roller 2 moves diagonally to the lower left of the inner circumference of the housing 1. I do. In accordance with the movement of the roller 2, the blade 2a
The upper end surface rises from the position shown in FIG. At this time, the groove 21 on the inner peripheral surface of the roller 2 and the groove 22 (not shown) are located on the suction chamber 10 side, and the inner peripheral surface 2b of the roller 2 is not pressed against the eccentric disk 3a. Since the surface pressure of the surface 2b does not become excessive and the sliding area is small, the sliding resistance is reduced. Further, since the thickness of the lubricating oil layer is increased due to the groove 21 and the groove 22 (not shown), the viscous resistance is small. The groove 23 on the outer peripheral surface of the eccentric disk 3a and the groove 24 (not shown) rotate 240 degrees in the direction of arrow R from the position shown in FIG. Since the outer peripheral surface 3b of the eccentric disk 3a is not pressed against the roller 2, the surface pressure of the outer peripheral surface 3b of the eccentric disk 3a does not become excessive, and the sliding area is small, so that the sliding resistance is reduced. . Further, the thickness of the lubricating oil layer is increased by the grooves 22 and the grooves 24 (not shown), so that the viscous resistance is also reduced. The groove 21 on the inner peripheral surface of the roller 2, the groove 22 not shown, and the groove 23 on the outer peripheral surface of the eccentric disk 3 a and the groove 24 not shown oppose each other within a range of approximately 120 degrees.
Since the distance between the bottoms 1 and 23 and the distance between the bottoms of the grooves 22 and 24 increase, the thickness of the lubricating oil layer increases and the viscous resistance further decreases. At this time, since the refrigerant gas has been compressed to a predetermined pressure or more, the resultant force of the refrigerant gas pressure becomes large with Fe. There is no groove 23, 24 on the outer peripheral surface of the eccentric disk 3a on the compression chamber 11 side where the roller 2 is pressed by the resultant force Fe of the gas pressure, and the roller compression chamber 11
Eccentric disk 3a because there are no grooves 21 and 22 on the inner peripheral surface on the side.
The area of contact between the roller and the roller 2 on the side of the compression chamber 11 pressed against each other is increased to reduce the surface pressure thereof. The capacity of the suction chamber 10 becomes larger than that of FIG. 3D, and the refrigerant gas sucked from the suction port 1b increases, while the capacity of the compression chamber 11 becomes smaller than that of FIG. Compress refrigerant gas. And
A valve (not shown) opens to discharge the compressed refrigerant gas from the discharge port 1c.

【0020】図3(f)に示すように、図3(a)から
矢印Rの方向に上記回転軸3が300度回転すると、上
記ローラ2はハウジング1の内周の左斜め上側に移動す
る。このローラ2の動きに合わせて、上記ブレード2a
の上端面は穴12内を図3(e)の位置より上がる。こ
のとき、上記ローラ2の内周面の溝21と図示しない溝
22は吸入室10側にあり、ローラ2の内周面2bは偏
心円板3aに押し付けられていないから、ローラ2の内
周面2bの面圧が過大になることがなく、摺動面積が小
さいので摺動抵抗が小さくなる。さらに上記溝21と図
示しない溝22のために潤滑油の層の厚さが厚くなるた
め粘性抵抗も小さい。また、上記偏心円板3aの外周面
の溝23と図示しない溝24は、回転軸3の回転にとも
なって図3(a)の位置より矢印Rの方向に300度回
転する。上記偏心円板3aの外周面3bはローラ2に押
し付けられていないから、偏心円板3aの外周面3bの
面圧が過大になることはなく、摺動面積が小さいから摺
動抵抗が小さくなる。さらに上記溝22と図示しない溝
24のために潤滑油の層の厚さが厚くなるため粘性抵抗
も小さくなる。また、上記ローラ2の内周面の溝21と
図示しない溝22と偏心円板3aの外周面の溝23と図
示しない溝24は、略60度の範囲で互いに対向し、溝
21と23との底間の距離と、溝22と24との底間の
距離とが大きくなるから、潤滑油層の厚さが厚くなって
粘性抵抗がさらに小さくなる。このとき、冷媒ガスを所
定圧力以上に圧縮しているので、冷媒ガスの圧力の合力
はFfと大きくなる。上記ガス圧力の合力Ffによりロ
ーラ2が押し付けられる圧縮室11側の偏心円板3aの
外周面には溝23,24がなく、かつローラの圧縮室1
1側の内周面にも溝21,22がないので、偏心円板3
aとローラ2との圧縮室11側の互いに押し付けあう部
分の接触面積を大きくして、それらの面圧を小さくして
いる。上記吸入室10の容積は図3(e)より大きくな
り、上記吸入ポート1bから吸入する冷媒ガスが増える
一方、上記圧縮室11の容積は図3(e)よりさらに小
さくなり、圧縮室11は冷媒ガスを圧縮する。そして、
図示しない弁が開き、上記吐出ポート1cから圧縮した
冷媒ガスを吐き出す。
As shown in FIG. 3 (f), when the rotation shaft 3 rotates 300 degrees in the direction of arrow R from FIG. 3 (a), the roller 2 moves to the upper left of the inner circumference of the housing 1. . In accordance with the movement of the roller 2, the blade 2a
The upper end surface rises from the position shown in FIG. At this time, the groove 21 on the inner peripheral surface of the roller 2 and the groove 22 (not shown) are located on the suction chamber 10 side, and the inner peripheral surface 2b of the roller 2 is not pressed against the eccentric disk 3a. Since the surface pressure of the surface 2b does not become excessive and the sliding area is small, the sliding resistance is reduced. Further, since the thickness of the lubricating oil layer is increased due to the groove 21 and the groove 22 (not shown), the viscous resistance is small. The groove 23 on the outer peripheral surface of the eccentric disk 3a and the groove 24 (not shown) are rotated by 300 degrees in the direction of arrow R from the position shown in FIG. Since the outer peripheral surface 3b of the eccentric disk 3a is not pressed against the roller 2, the surface pressure of the outer peripheral surface 3b of the eccentric disk 3a does not become excessive, and the sliding area is small, so that the sliding resistance is reduced. . Further, the thickness of the lubricating oil layer is increased by the grooves 22 and the grooves 24 (not shown), so that the viscous resistance is also reduced. The groove 21 on the inner peripheral surface of the roller 2 and the groove 22 (not shown) and the groove 23 on the outer peripheral surface of the eccentric disk 3a and the groove 24 (not shown) are opposed to each other within a range of approximately 60 degrees. And the distance between the bottoms of the grooves 22 and 24 are increased, so that the thickness of the lubricating oil layer is increased and the viscous resistance is further reduced. At this time, since the refrigerant gas is compressed to a predetermined pressure or more, the resultant of the pressure of the refrigerant gas becomes large as Ff. There is no groove 23, 24 on the outer peripheral surface of the eccentric disk 3a on the compression chamber 11 side where the roller 2 is pressed by the resultant force Ff of the gas pressure, and the roller compression chamber 1
Since there are no grooves 21 and 22 on the inner peripheral surface on the first side, the eccentric disk 3
The contact area between the roller a and the roller 2 on the compression chamber 11 side where they are pressed against each other is increased to reduce their surface pressure. The volume of the suction chamber 10 is larger than that of FIG. 3 (e), and the refrigerant gas sucked from the suction port 1b is increased, while the volume of the compression chamber 11 is smaller than that of FIG. 3 (e). Compress refrigerant gas. And
A valve (not shown) opens to discharge the compressed refrigerant gas from the discharge port 1c.

【0021】このようして、再び図3(a)に戻り、図
3(a)〜図3(f)の一つのサイクルは終わる。上記
図3(a)では、吸入ポート1bと吐出ポート1cがシ
リンダ室1aを介して連通するが、この吐出ポート1c
は図示しない弁で閉じているので、上記冷媒ガスが吐出
ポート1cからシリンダ室1a内に逆戻りすることはな
い。このように、上記図3(a)〜図3(f)のサイク
ルを繰り返すことにより、この揺動型ロータリ圧縮機
は、上記ハウジング1の吸入室10に吸入ポート1bよ
り冷媒ガスを吸入し、上記ハウジング1の圧縮室11に
より冷媒ガスを圧縮し、上記吐出ポート1cより冷媒ガ
スを吐出する動作を行う。
Thus, returning to FIG. 3A, one cycle of FIGS. 3A to 3F is completed. In FIG. 3A, the suction port 1b and the discharge port 1c communicate with each other via the cylinder chamber 1a.
Is closed by a valve not shown, so that the refrigerant gas does not return to the cylinder chamber 1a from the discharge port 1c. As described above, by repeating the cycle of FIGS. 3A to 3F, the oscillating rotary compressor sucks the refrigerant gas into the suction chamber 10 of the housing 1 from the suction port 1b. An operation of compressing the refrigerant gas by the compression chamber 11 of the housing 1 and discharging the refrigerant gas from the discharge port 1c is performed.

【0022】上記実施例では、上記ロータ2の内周面に
設けた溝21,22と偏心円板3aの外周面に溝23,
24の周方向の長さは、回転角にして略180度とした
が、上記のものに限定されないのは勿論である。例え
ば、上記ロータ2の内周面に設けた溝21,22と偏心
円板3aの外周面に設けた溝23,24の周方向の長さ
を夫々略150度にしてもよい。
In the above embodiment, the grooves 21 and 22 provided on the inner peripheral surface of the rotor 2 and the grooves 23 and 22 are provided on the outer peripheral surface of the eccentric disk 3a.
The circumferential length of 24 is set to approximately 180 degrees as a rotation angle, but is not limited to the above. For example, the circumferential length of the grooves 21 and 22 provided on the inner peripheral surface of the rotor 2 and the grooves 23 and 24 provided on the outer peripheral surface of the eccentric disk 3a may be approximately 150 degrees.

【0023】また、上記実施例では、上記ロータ2の内
周面に軸方向の両端に溝21,22を設け、上記偏心円
板3aの外周面に軸方向の両端に溝23,24を設け、
溝21,23と溝22,24の2組の溝が互いに対向す
るようにしたが、上記ロータ2の内周面と偏心円板3a
の外周面との軸方向の中央に1組の溝を設けたものでも
よい。
In the above embodiment, grooves 21 and 22 are provided at both ends in the axial direction on the inner peripheral surface of the rotor 2, and grooves 23 and 24 are provided at both ends in the axial direction on the outer peripheral surface of the eccentric disk 3a. ,
Although the two sets of grooves 21 and 23 and the grooves 22 and 24 are opposed to each other, the inner peripheral surface of the rotor 2 and the eccentric disk 3a
A set of grooves may be provided at the center in the axial direction with respect to the outer peripheral surface.

【0024】また、上記実施例では、上記ロータ2とブ
レード2aが一体形状で、上記ブレード2aによりシリ
ンダ室1aを吸入室10と圧縮室11とに区画したが、
ブレードがロータとは一体でなくブレードの先端がロー
タの外周に設けられたU字形状の溝に摺動自在に嵌合さ
れたものでもよい。
Further, in the above embodiment, the rotor 2 and the blade 2a are integrally formed, and the cylinder chamber 1a is divided into the suction chamber 10 and the compression chamber 11 by the blade 2a.
The blade may not be integral with the rotor, and the tip of the blade may be slidably fitted in a U-shaped groove provided on the outer periphery of the rotor.

【0025】[0025]

【発明の効果】以上より明らかなように、この発明の揺
動型ロータリ圧縮機は、ローラの内周面の吸入室側に溝
を設けると共に、上記ローラが所定圧力以上に冷媒ガス
の圧縮を行った圧縮行程にある際に、上記ローラに作用
する冷媒ガスの合力の作用する方向で、かつ上記吸入室
側の上記偏心円板の外周面に溝を設けたものである。し
たがって、この発明によれば、冷媒ガスの圧縮が所定圧
力以上でないとき、上記ローラの内周面に設けられた溝
は吸入室側にあり、上記偏心円板の外周面に設けられた
溝は圧縮室側にあるので、上記吸入室側のローラの内周
面の幅と圧縮室側の偏心円板の外周面の幅は、ローラの
内周面と偏心円板の外周面に溝がないロータリ圧縮機よ
り小さくなる。また、冷媒ガスの圧縮が所定圧力以上の
とき、上記ローラの内周面に設けられた溝は吸入室側に
あり、上記偏心円板の外周面に設けられた溝は吸入室側
にあるので、圧縮された冷媒ガスの圧力の合力を受けて
接触圧力が大きくなる圧縮室側のローラの内周面と偏心
円板の外周面との接触面は、溝のない所定の幅となるの
で、上記接触圧力に耐えることができる。一方、接触圧
力が逆に小さくなる吸入室側のローラの内周面の幅と偏
心円板の外周面の幅は、上記各溝により小さくなる。こ
のように、上記圧縮室内の冷媒ガスの圧力が上記所定圧
力以上になって、ローラを偏心円板に強く押し付けて
も、このローラが押し付けられる圧縮室側の偏心円板の
外周面には溝がなく、かつローラの圧縮室側の内周面に
も溝がないので、偏心円板とローラとの圧縮室側の互い
に押し付けあう部分の接触面積を大きくして、それらの
面圧が小さくなって、焼付等の損傷が生じることはな
い。一方、上記偏心円板の吸入室側の内周面に溝がある
ため、ローラの吸入室側の内周面に溝があることと相俊
って、ローラおよび偏心円板の吸入室側の互いに摺動す
る部分の面積が小さくなって、摺動抵抗が小さくなる。
上記ローラの内周面の溝と偏心円板の外周面の溝とが互
いに対向するときには、両溝の底間の距離が大きくなる
から潤滑油層の厚さが厚くなって粘性抵抗が小さくな
る。したがって、摺動抵抗と潤滑油の粘性抵抗を低減で
き、従来の揺動型ロータリ圧縮機に比して動力損失を大
幅に低減することができる。
As is apparent from the above description, the oscillating rotary compressor of the present invention has a groove on the inner peripheral surface of the roller on the suction chamber side, and the roller compresses the refrigerant gas to a predetermined pressure or more. A groove is provided on the outer peripheral surface of the eccentric disk on the suction chamber side in the direction in which the resultant force of the refrigerant gas acting on the roller acts during the compression stroke performed. Therefore, according to the present invention, when the compression of the refrigerant gas is not more than the predetermined pressure, the groove provided on the inner peripheral surface of the roller is on the suction chamber side, and the groove provided on the outer peripheral surface of the eccentric disk is Since it is on the compression chamber side, the width of the inner peripheral surface of the roller on the suction chamber side and the width of the outer peripheral surface of the eccentric disk on the compression chamber side have no grooves on the inner peripheral surface of the roller and the outer peripheral surface of the eccentric disk. It is smaller than a rotary compressor. Further, when the compression of the refrigerant gas is equal to or higher than the predetermined pressure, the groove provided on the inner peripheral surface of the roller is on the suction chamber side, and the groove provided on the outer peripheral surface of the eccentric disk is on the suction chamber side. The contact surface between the inner peripheral surface of the roller on the compression chamber side and the outer peripheral surface of the eccentric disk, where the contact pressure increases due to the resultant force of the pressure of the compressed refrigerant gas, has a predetermined width without grooves, It can withstand the above contact pressure. On the other hand, the width of the inner peripheral surface of the roller on the suction chamber side and the width of the outer peripheral surface of the eccentric disk, where the contact pressure is conversely reduced, are reduced by the respective grooves. As described above, even if the pressure of the refrigerant gas in the compression chamber becomes equal to or higher than the predetermined pressure and the roller is strongly pressed against the eccentric disk, a groove is formed on the outer peripheral surface of the eccentric disk on the compression chamber side where the roller is pressed. And the inner peripheral surface of the roller on the compression chamber side has no groove, so the contact area between the eccentric disk and the roller pressing against each other on the compression chamber side is increased, and their surface pressure is reduced. Therefore, damage such as seizure does not occur. On the other hand, since the groove is formed on the inner peripheral surface of the eccentric disk on the suction chamber side, the groove is formed on the inner peripheral surface of the roller on the suction chamber side. The area of the parts that slide with each other is reduced, and the sliding resistance is reduced.
When the groove on the inner peripheral surface of the roller and the groove on the outer peripheral surface of the eccentric disk face each other, the distance between the bottoms of both grooves increases, so that the thickness of the lubricating oil layer increases and the viscous resistance decreases. Therefore, the sliding resistance and the viscous resistance of the lubricating oil can be reduced, and the power loss can be greatly reduced as compared with the conventional oscillating rotary compressor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1はこの発明の一実施例の揺動型ロータリ
圧縮機の断面図である。
FIG. 1 is a sectional view of an oscillating rotary compressor according to one embodiment of the present invention.

【図2】 図2は図1のA−A線断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】 図3の(a),(b),(c),(d),
(e),(f)は夫々、上記揺動型ロータリ圧縮機の各
回転位置の状態を示した断面図である。
3 (a), (b), (c), (d),
(E), (f) is sectional drawing which showed the state of each rotation position of the said oscillating rotary compressor, respectively.

【図4】 図4は従来のロータリ圧縮機の断面図であ
る。
FIG. 4 is a sectional view of a conventional rotary compressor.

【図5】 図5は図4のB−B線断面図である。FIG. 5 is a sectional view taken along line BB of FIG. 4;

【符号の説明】[Explanation of symbols]

1…ハウジング、1a…シリンダ室、2…ローラ、3…
回転軸、3a…偏心円板、4,5…揺動ブッシュ、10
…吸入室、11…圧縮室、12…穴。
DESCRIPTION OF SYMBOLS 1 ... Housing, 1a ... Cylinder chamber, 2 ... Roller, 3 ...
Rotating shaft, 3a: eccentric disk, 4, 5: swing bush, 10
... suction chamber, 11 ... compression chamber, 12 ... hole.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 シリンダ室(1a)とそのシリンダ室
(1a)に開口する穴(12)を有するハウジング
(1,6,7)と、上記シリンダ室(1a)内に配置さ
れたローラ(2)と、回転軸(3)に偏心して固定さ
れ、上記ローラ(2)の内周に回転自在に嵌合された偏
心円板(3a)と、上記ローラ(2)に連結されると共
に、上記穴(12)に出没自在に嵌合されて、上記シリ
ンダ室(1a)内を吸入室(10)と圧縮室(11)と
に区画するブレード(2a)を備えた揺動型ロータリ圧
縮機において、 上記ローラ(2)の内周面の吸入室(10)側に溝(2
1,22)を設けると共に、上記ローラ(2)が所定圧
力以上に冷媒ガスの圧縮を行った圧縮行程にある際に、
上記ローラ(2)に作用する冷媒ガスの圧力の合力の作
用する方向で、かつ上記吸入室(10)側の上記偏心円
板(3a)の外周面に溝(23,24)を設けたことを
特徴とする揺動型ロータリ圧縮機。
1. A housing (1, 6, 7) having a cylinder chamber (1a) and a hole (12) opening to the cylinder chamber (1a), and a roller (2) disposed in the cylinder chamber (1a). ), An eccentric disk (3a) eccentrically fixed to the rotating shaft (3) and rotatably fitted to the inner periphery of the roller (2), and connected to the roller (2). An oscillating rotary compressor having a blade (2a) which is fitted in a hole (12) so as to be able to protrude and retract so as to partition the cylinder chamber (1a) into a suction chamber (10) and a compression chamber (11). A groove (2) is formed in the inner peripheral surface of the roller (2) on the suction chamber (10) side.
1, 2), and when the roller (2) is in the compression stroke of compressing the refrigerant gas to a predetermined pressure or more,
Grooves (23, 24) are provided on the outer peripheral surface of the eccentric disk (3a) on the suction chamber (10) side in the direction in which the resultant force of the pressure of the refrigerant gas acting on the roller (2) acts. An oscillating rotary compressor characterized by the following characteristics.
JP30524792A 1992-11-16 1992-11-16 Swing type rotary compressor Expired - Fee Related JP2780580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30524792A JP2780580B2 (en) 1992-11-16 1992-11-16 Swing type rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30524792A JP2780580B2 (en) 1992-11-16 1992-11-16 Swing type rotary compressor

Publications (2)

Publication Number Publication Date
JPH06147165A JPH06147165A (en) 1994-05-27
JP2780580B2 true JP2780580B2 (en) 1998-07-30

Family

ID=17942808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30524792A Expired - Fee Related JP2780580B2 (en) 1992-11-16 1992-11-16 Swing type rotary compressor

Country Status (1)

Country Link
JP (1) JP2780580B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100448549B1 (en) * 2002-01-19 2004-09-13 윤광호 Positive displacement pump
JP3731127B2 (en) * 2004-01-22 2006-01-05 ダイキン工業株式会社 Swing compressor
KR101878670B1 (en) * 2012-01-06 2018-07-16 엘지전자 주식회사 Rotary compressor
JP6930576B2 (en) * 2019-12-17 2021-09-01 ダイキン工業株式会社 Compressor

Also Published As

Publication number Publication date
JPH06147165A (en) 1994-05-27

Similar Documents

Publication Publication Date Title
US11225970B2 (en) Rotary compressor with vane slot disposed at predetermined tilting angle
JPH0656081B2 (en) Scroll machine
JP2780580B2 (en) Swing type rotary compressor
KR20050011523A (en) Variable capacity rotary compressor
KR100531281B1 (en) rotary compressor
JPS6332992B2 (en)
US4904170A (en) Scroll-type fluid machine with different terminal end wrap angles
CN214036117U (en) Pump body assembly and fluid machine with same
KR100539561B1 (en) Rotary compressor having dual capacity
JPS6014950Y2 (en) rotary compressor
JP3212674B2 (en) Fluid compressor
JP3742849B2 (en) Rotary compressor
JP3110831B2 (en) Fluid compressor
JP2588911Y2 (en) Rotary compressor
JPH08303375A (en) Rotary compressor
JPH07247970A (en) Structure of trochoid compressor
JPH07180682A (en) Oscillating rotary compressor
JP2993299B2 (en) Rotary compressor
JP2879045B2 (en) Compressor
JP3243069B2 (en) Fluid compressor
JP2880771B2 (en) Fluid compressor
JP3167051B2 (en) Rotary compressor
JP3140119B2 (en) Fluid compressor
KR20200004748A (en) Scroll compressor
JPH079235B2 (en) Rotary compressor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080515

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090515

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100515

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100515

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110515

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees