JP2779210B2 - Conductor for current lead - Google Patents

Conductor for current lead

Info

Publication number
JP2779210B2
JP2779210B2 JP1151030A JP15103089A JP2779210B2 JP 2779210 B2 JP2779210 B2 JP 2779210B2 JP 1151030 A JP1151030 A JP 1151030A JP 15103089 A JP15103089 A JP 15103089A JP 2779210 B2 JP2779210 B2 JP 2779210B2
Authority
JP
Japan
Prior art keywords
current lead
conductor
current
oxide superconductor
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1151030A
Other languages
Japanese (ja)
Other versions
JPH0316202A (en
Inventor
章二 志賀
直樹 宇野
憲嗣 榎本
祐行 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1151030A priority Critical patent/JP2779210B2/en
Publication of JPH0316202A publication Critical patent/JPH0316202A/en
Application granted granted Critical
Publication of JP2779210B2 publication Critical patent/JP2779210B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電流供給源から液体He等で冷却された超電
導マグネット等の超電導素子へ電流を供給する為に用い
られる電流リード用導体に関する。
Description: TECHNICAL FIELD The present invention relates to a current lead conductor used to supply a current from a current supply source to a superconducting element such as a superconducting magnet cooled with liquid He or the like.

〔従来の技術及びその課題〕[Conventional technology and its problems]

超電導を利用したマグネット、送電ケーブル又はSQUI
Dやジョセフソン素子等を組込んだ電子機器等は液体He
等により冷却して用いられるもので、これら電子機器等
への電流の供給は、運転開始又は運転中に外部電源より
電流リード用導体を通してなされる。
Magnet using superconductivity, power transmission cable or SQUI
Electronic devices incorporating D and Josephson elements are liquid He
The electric current is supplied to these electronic devices and the like from an external power supply through a current lead conductor during or after operation.

ところで電流リード用導体には従来、銅材が用いられ
ているが超電導マグネット等では大電流を必要とし、従
って電流リード用導体はサイズを太くして、ジュール発
熱の低減や過電流による溶断防止が計られている。しか
しながら電流リード用導体を太くすると外部からの流入
熱量が増加し、その結果He等の冷媒の蒸発量が増え冷却
コストが増大するという問題があった。
By the way, copper materials are conventionally used for current lead conductors, but superconducting magnets and the like require large currents.Thus, current lead conductors must be large in size to reduce Joule heat generation and prevent fusing due to overcurrent. Is measured. However, when the current lead conductor is made thicker, the amount of heat flowing in from the outside increases, and as a result, there is a problem that the amount of evaporation of the refrigerant such as He increases and the cooling cost increases.

このようなことから、近年第3図に示したような液体
窒素温度で超電導を示す酸化物超電導体5に電気良伝導
体からなる支持体6を被覆した電流リード用導体が提案
された(特開昭63−245910)。
For this reason, a current lead conductor has recently been proposed in which an oxide superconductor 5 that exhibits superconductivity at the temperature of liquid nitrogen as shown in FIG. 63-245910).

この電流リード用導体においては、電流は液体He等で
冷却された超電導素子側では主に酸化物超電導体を通
り、又常温の電流供給源側では金属被覆層を通って供給
されるもので、酸化物超電導体は、液体He等で冷却され
た超電導素子側では抵抗ゼロの為通電によるジュール発
熱がなく、又酸化物超電導体は熱伝導性が低い為外部か
らの熱流入が少なく、電流リード用導体としては優れた
特性を有するものである。しかしながら電流リード用導
体は長さが数10cmと短い上、一端が常温、他端が極低温
に冷却され、しかもこの温度間でのヒートサイクルが何
回も繰り返される為に熱歪により酸化物超電導体内にク
ラックが生じたり、或いは、酸化物超電導体と金属被覆
層とが剥離したりして通電抵抗が増大して電流リード用
導体が焼損し又は性能が経時的に劣化する等耐久性に劣
るという問題があった。
In this current lead conductor, current is supplied mainly through an oxide superconductor on the superconducting element side cooled by liquid He or the like, and is supplied through a metal coating layer on a current supply source at room temperature. Oxide superconductors have no resistance on the superconducting element side cooled with liquid He or the like because they have zero resistance, and do not generate Joule heat due to energization.In addition, oxide superconductors have low thermal conductivity, so there is little heat inflow from the outside and current leads It has excellent characteristics as a conductor for use. However, the current lead conductor is as short as several tens of centimeters, one end is cooled to room temperature and the other end is cooled to cryogenic temperature, and the heat cycle between these temperatures is repeated many times. Poor durability, such as cracks in the body, or separation of the oxide superconductor and the metal coating layer, resulting in an increase in current-carrying resistance and burning of the current lead conductor or deterioration of performance over time. There was a problem.

更に上記酸化物超電導体は層状ペロブスカイト型結晶
構造の為結晶異方性が強く、電流はCu−O原子を含むab
面に流れ易く、従って通電方向に対し垂直な方向にC軸
を配向させるのが高いJcを得るのに必要な要件である。
しかしながら前記の従来の酸化物超電導体は結晶配向が
ランダムな為に、十分に高いJc値が得られず、電流供給
に長時間を要し、又電流供給を早めるとジュール熱が発
生する。その結果液体Heが大量に蒸発してしまうという
問題があった。
Furthermore, the oxide superconductor has a layered perovskite-type crystal structure and therefore has a strong crystal anisotropy, and the current is ab including Cu-O atoms.
Easily flows on the surface, therefore to orient the C axis in a direction perpendicular to current direction is a necessary requirement for obtaining a high J c.
However, since the conventional oxide superconductor has a random crystal orientation, a sufficiently high Jc value cannot be obtained, a long time is required for current supply, and Joule heat is generated when the current supply is accelerated. As a result, there is a problem that a large amount of liquid He evaporates.

〔課題を解決するための手段〕[Means for solving the problem]

本発明はかかる状況に鑑み鋭意研究を進めた結果なさ
れたものでその目的とするところは、耐久性に優れ且つ
液体He等の冷媒の蒸発量を低減し得る電流リード用導体
を提供することにある。
The present invention has been made as a result of intensive research in view of such circumstances, and it is an object of the present invention to provide a current lead conductor which has excellent durability and can reduce the evaporation amount of a refrigerant such as liquid He. is there.

即ち本発明は、電流供給源から超電導素子へ電流を供
給する為の金属導体からなる電流リード用導体であっ
て、少なくとも超電導素子に接続される側の部分では金
属導体中に酸化物超電導体の粒状物が分散されているこ
とを特徴とするものである。
That is, the present invention is a current lead conductor made of a metal conductor for supplying a current from a current supply source to a superconducting element, and at least a portion connected to the superconducting element has an oxide superconductor in the metal conductor. It is characterized in that the particulate matter is dispersed.

本発明の電流リード用導体は金属導体からなり且つ少
なくとも超電導素子に接続される側の上記金属導体中に
酸化物超電導体が粒状に分散したものである。
The current lead conductor of the present invention is made of a metal conductor, and at least the oxide superconductor is dispersed in the metal conductor on the side connected to the superconducting element in a granular form.

而して上記金属導体には、良導電性のCu、Al、Au、Ag
等又はこれらの合金が適用される。又上記金属導体中に
分散させる酸化物超電導体としては、臨界温度(Tc)が
〜93KのYBa2Cu3O7−δ又は上記Yを他の希土類元素で置
換したもの、Tcが90〜110KのBi2Sr2CaCu2O8、Bi2Sr2Ca2
Cu3O10、Tcが100〜125KのTl2Ba2CaCu2O8、Tl2Ba2Ca2Cu3
O10、TlBa2Ca2Cu3O8.5等であり、更に上記各々の酸化物
超電導体を構成する金属元素の一部をPb、In、Sb、アル
カリ金属等で置換したもの、又はOの一部をFで置換し
たもの等が含まれる。
Thus, the above-mentioned metal conductors have good conductivity Cu, Al, Au, Ag
Or an alloy thereof is applied. Also, as the oxide superconductor dispersed in the metal conductor, which critical temperature (T c) is substituted the YBa 2 Cu 3 O 7 -δ or the Y of ~93K by other rare earth elements, T c is 90 ~ 110K Bi 2 Sr 2 CaCu 2 O 8 , Bi 2 Sr 2 Ca 2
Cu 3 O 10 , Tl 2 Ba 2 CaCu 2 O 8 with T c of 100 to 125 K, Tl 2 Ba 2 Ca 2 Cu 3
O 10 , TlBa 2 Ca 2 Cu 3 O 8.5 and the like, and further, a part of the metal elements constituting each of the above oxide superconductors is replaced with Pb, In, Sb, an alkali metal or the like, or one of O And the like where the part is replaced by F.

以下に本発明の電流リード用導体の構成を図を参照し
て説明する。
Hereinafter, the configuration of the current lead conductor of the present invention will be described with reference to the drawings.

第1図イ〜ホは本発明の電流リード用導体の実施例を
示すそれぞれ縦断面図で、図の右端部が電流供給源に接
続され、左端部が超電導素子に接続される。電流リード
用導体は断面円型で図中1は金属導体、2は分散された
酸化物超電導体粒状物である。
1A to 1E are longitudinal sectional views showing an embodiment of a current lead conductor according to the present invention. The right end of the figure is connected to a current supply source and the left end is connected to a superconducting element. The current lead conductor has a circular cross section. In the figure, 1 is a metal conductor, and 2 is a dispersed oxide superconductor granular material.

同図イに示した電流リード用導体は、超電導素子と接
続される側の金属導体1の中に酸化物超電導体粒状物2
を分散させた構造のものである。同図ロ、ハに示した電
流リード用導体は、その外径を超電導体素子側から電流
供給源に向けてそれぞれ段階的に又はテーパー状に太く
して長手方向の抵抗を均一化してジュール熱の発生を低
減し、更に超電導体素子への熱流入を抑制するようにし
たものである。同図ニに示した電流リード用導体は、上
記図ハに示した電流リード用導体に補強等の目的でSU
S、Cu−Ni系合金、Al−Mg−Cu系合金等の金属支持体3
を外被したもの、又同図ホに示した電流リード用導体は
上記図ニに示した電流リード用導体の電流供給源側に導
電性金属片4を接合して接続性を改善したものである。
The conductor for a current lead shown in FIG. 2A has a metal conductor 1 on the side connected to the superconducting element and an oxide superconductor granular material 2 in the metal conductor 1.
Are dispersed. The outer diameter of the current lead conductor shown in FIGS. 2 (b) and 2 (c) is gradually increased or tapered from the superconductor element side to the current supply source to make the resistance in the longitudinal direction uniform so that Joule heat is generated. Is reduced, and furthermore, the heat flow into the superconductor element is suppressed. The current lead conductor shown in Fig. 4D is replaced with the current lead conductor shown in Fig.
Metal support 3 such as S, Cu-Ni alloy, Al-Mg-Cu alloy
The conductor for the current lead shown in FIG. 5E is one in which the conductive metal piece 4 is joined to the current supply source side of the conductor for the current lead shown in FIG. is there.

第2図イ〜ハは、本発明の電流リード用導体における
金属導体1中の酸化物超電導体粒状物2の分布形態の例
を示す縦断面図である。同図イに示した電流リード用導
体は単結晶の酸化物超電導体粒状物2が、又同図ロ、ハ
に示した電流リード用導体は、一方向に配向した多結晶
体の粒状物2がそれぞれ金属導体1内にC軸配向して分
散したものである。上記粒状物としては、ウィスカー、
ファイバー、造粒体等も含まれる。
2 (a) to 2 (c) are longitudinal sectional views showing examples of the distribution form of the oxide superconductor particulates 2 in the metal conductor 1 in the current lead conductor of the present invention. The current lead conductor shown in FIG. 2A is a single crystal oxide superconductor granular material 2, and the current lead conductor shown in FIGS. 2B and 2C is a polycrystalline granular material 2 oriented in one direction. Are C-axis oriented and dispersed in the metal conductor 1 respectively. Whisker,
Fibers and granules are also included.

本発明において金属導体1中に分散させる酸化物超電
導体粒状物2の量は、使用条件つまり冷却条件や磁場の
強さによって決められるものであり、通電量は電流リー
ド用導体のJcを超えない値とする必要がある。
The amount of the oxide superconductor granules 2 to be dispersed in the metal conductor 1 in the present invention, which is determined by the strength of the use conditions, i.e. cooling conditions or a magnetic field, the power supply amount is greater than the J c current lead conductor Must not be a value.

本発明において金属導体1中に酸化物超電導体粒状物
2を分布させる方法としては上記酸化物超電導体粒状物
2をマトリックスの金属粉末と混合する粉末冶金方法、
上記酸化物超電導体粒状物2を金属融液に分散させ凝固
させる方法、酸化物超電導体及びマトリックス金属の板
状体を積層し圧延して酸化物超電導板状体を金属板状体
間で粉砕して分散させる塑性加工方法等が適用させる。
In the present invention, as a method of distributing the oxide superconductor granules 2 in the metal conductor 1, a powder metallurgy method of mixing the oxide superconductor granules 2 with a matrix metal powder,
A method of dispersing and solidifying the oxide superconductor granular material 2 in a metal melt, laminating and rolling the oxide superconductor and a matrix metal plate to pulverize the oxide superconductor plate between the metal plates And a plastic working method of dispersing.

上記酸化物超電導体粒状物は、酸化物超電導体となし
得る原料物質を焼成し粉砕する方法、共沈法、気相法、
急冷法等により合成することができ、又単結晶粒状物
は、粗大な多結晶粒を粉砕することにより効率よく製造
することができる。
The above-mentioned oxide superconductor granular material is a method of firing and pulverizing a raw material that can be made into an oxide superconductor, a coprecipitation method, a gas phase method,
It can be synthesized by a quenching method or the like, and a single crystal granular material can be efficiently produced by crushing coarse polycrystalline particles.

酸化物超電導体粒状物に金属をコーティングしておく
と上記酸化物超電導体粒状物とマトリックス金属との接
合性を向上せしめることができる。上記コーティング法
としては、スパッタリング法、CVD法等の気相成長法、
メカニカルアロイイング等の固相法又は融液法が適用さ
れる。
When the metal is coated on the oxide superconductor granular material, the bonding property between the oxide superconductor granular material and the matrix metal can be improved. As the coating method, a sputtering method, a vapor phase growth method such as a CVD method,
A solid phase method such as mechanical alloying or a melt method is applied.

本発明において、酸化物超電導体粒状物を接続部とな
るその端部に少なく分散させることにより接続用金属を
複合するような必要がなく、依って電流リード用導体の
構造が簡素化され、又接触抵抗に伴う発熱も低く抑える
ことができる。
In the present invention, it is not necessary to composite the connecting metal by dispersing the oxide superconductor particulates at the ends serving as connecting portions, and thus the structure of the current lead conductor is simplified, and Heat generation due to contact resistance can also be suppressed low.

本発明の電流リード用導体は、分散させた酸化物超電
導体の臨界温度(Tc)より低い温度の冷媒例えば液体窒
素等により冷却して用いることによりその効果が一層発
現される。
The effect of the conductor for a current lead of the present invention is further enhanced by cooling it with a coolant having a temperature lower than the critical temperature (T c ) of the dispersed oxide superconductor, such as liquid nitrogen.

〔作用〕[Action]

本発明の電流リード用導体は、金属導体の少なくとも
超電導素子に接続される側に酸化物超電導体粒状物を分
散させたものなので、超電導体素子側では金属導体内部
の超電導体粒状物が液体He等の冷媒により冷却されて電
気抵抗が零となってジュール発熱が抑制され、又酸化物
超電導体は熱電導性が悪いので外部からの熱流入が阻止
され、依って液体He等の冷媒の蒸発が低減される。又電
流供給源側では電流は金属層を流れるので十分な通電量
が得られ、特に常温で絶縁体となる酸化物超電導体粒状
物を電流供給源側に分散させない電流リード用導体はよ
り一段と高い通電量が確保される。
Since the current lead conductor of the present invention is obtained by dispersing oxide superconductor particles at least on the side of the metal conductor connected to the superconducting element, the superconductor particles inside the metal conductor are liquid He on the superconductor element side. The electric resistance becomes zero and the Joule heat is suppressed by cooling by the refrigerant such as, and the heat inflow from the outside is prevented because the oxide superconductor has poor thermal conductivity, so that the refrigerant such as liquid He evaporates. Is reduced. On the current supply source side, the current flows through the metal layer, so that a sufficient amount of current can be obtained.In particular, the current lead conductor that does not disperse the oxide superconductor particles that become an insulator at room temperature to the current supply side is much higher. The amount of energization is secured.

又超電導素子側と電流供給源側との間の温度差により
生じる熱歪は金属層に吸収されるので超電導体粒状物に
クラックが生じてJcが低下するようなことがなく、更に
金属層が連続して形成されているので機械的特性、特に
可撓性や靱性が向上する。
The thermal distortion without such J c becomes lower cracks superconductor granules is absorbed in the metal layer caused by the temperature difference between the superconducting device side and the current supply side, further metal layer Are formed continuously, so that mechanical properties, particularly flexibility and toughness, are improved.

〔実施例〕〔Example〕

以下に本発明を実施例により詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to Examples.

実施例1 平均粒径7μmのYBa2Cu3O7−δの仮焼成粉を930℃12
H加熱して、直径約50μmの粒状体となし、次いでこれ
を粉砕して平均径約20μmの偏平粉を作製した。この偏
平粉に平均粒径3μmのAg粉を50wt%配合し、これにポ
リビニルアルコールとプチルセロソルブを添加し混練し
たのち、この混練体を10mmφの棒材に押出し、この棒材
を酸素気流中にて890℃2H予備焼結した。次いで上記焼
結棒材をAgシースで真空封止したのち、Ar+1.5vol%O2
の1000気圧雰囲気下で880℃×10HのHIP処理を施した。
しかるのちAgシースを剥ぎとり、機械加工により断面6
×4mmの角材に仕上げ、次いでこの角材を酸素気流中に
て600℃12H加熱処理して電流リード用導体を製造した。
Example 1 A calcined powder of YBa 2 Cu 3 O 7 -δ having an average particle diameter of 7 μm was heated at 930 ° C. 12
H heating was performed to obtain a granular material having a diameter of about 50 μm, which was then pulverized to produce a flat powder having an average diameter of about 20 μm. Ag powder having an average particle size of 3 μm was mixed with the flat powder at 50 wt%, and polyvinyl alcohol and butyl cellosolve were added thereto and kneaded. The kneaded body was extruded into a 10 mmφ bar, and the bar was placed in an oxygen stream. Pre-sintering at 890 ° C for 2H. Next, after vacuum-sealing the sintered bar with an Ag sheath, Ar + 1.5 vol% O 2
HIP treatment of 880 ° C. × 10H was performed in a 1000 atmosphere atmosphere.
Then, peel off the Ag sheath, and machine the section 6
A 4 mm square bar was finished, and the square bar was heated at 600 ° C. for 12 hours in an oxygen stream to produce a current lead conductor.

実施例2 実施例1において混練体を押出し加工せずに成形型に
入れて10mmφの棒材に成形した他は実施例1と同じ方法
により電流リード用導体を製造した。
Example 2 A current lead conductor was manufactured in the same manner as in Example 1 except that the kneaded body was put into a forming die and extruded into a 10 mmφ bar without being extruded.

実施例3 平均粒径30μmのBi2Sr2Ca1.1Cu2.3Oxの仮焼成粉を内
径18mmのAgパイプに充填し、これをスエージャー及びド
ローベンチにより縮径加工し、更に圧延により厚さ0.45
mm(内側厚さ0.3mm)のテープ材となした。しかるのち
このテープ材を大気中にて900℃30分間、引続き840℃12
H加熱処理し、次いでこれを20mm長さのチップに切断
し、このチップを内径18mmのAgパイプに、チップの長さ
方向がAgパイプの長さ方向に揃うようにして充填した。
しかるのちこのAgパイプに実施例1と同じ条件でHIP処
理を施し、次いでAgパイプを除去し機械加工により断面
6×4mmの角材に仕上げ、次いでこの角材を大気中にて8
20℃12H加熱処理して電流リード用導体を製造した。
Example 3 A calcined powder of Bi 2 Sr 2 Ca 1.1 Cu 2.3 O x having an average particle size of 30 μm was filled in an Ag pipe having an inner diameter of 18 mm, and this was subjected to diameter reduction by a swager and a draw bench, and further rolled to a thickness of 0.45 mm.
mm (0.3 mm inside thickness) tape material. Thereafter, the tape material was exposed to air at 900 ° C. for 30 minutes, and subsequently at 840 ° C. 12
After H heat treatment, this was cut into chips having a length of 20 mm, and the chips were filled into an Ag pipe having an inner diameter of 18 mm such that the length direction of the chips was aligned with the length direction of the Ag pipe.
Thereafter, the Ag pipe was subjected to a HIP treatment under the same conditions as in Example 1, then the Ag pipe was removed and machined into a square having a cross section of 6 × 4 mm.
Heat treatment was performed at 20 ° C. for 12 hours to produce a current lead conductor.

実施例4 HoBa2Cu3Oxの仮焼成粉をPtルツボ内にて1150℃に加熱
して溶融し、この溶融体を急冷凝固せしめたのち、1050
℃に再加熱して50℃/cmの温度勾配の炉中を1mm/2Hの速
度で移動して一方向凝固処理を施した。しかるのちこの
一方向凝固処理材を粉砕して粒径1mmの粒状体となし、
この粒状体にAg粉を40wt%混合し、この混合体をAg容器
に振動を付与しつつ充填し、しかるのちこのAg容器を真
空封止し、次いでAr+2.5vol%O2の800気圧雰囲気下で8
90℃×24HのHIP処理を施した。次いでAg容器を除去し内
部のHIP処理した混合体を機械加工により断面6×4mmの
角材に仕上げ、次いでこの角材を酸素気流中にて600℃1
2H加熱処理して電流リード用導体を製造した。
Example 4 A calcined powder of HoBa 2 Cu 3 O x was melted by heating to 1150 ° C. in a Pt crucible, and the melt was rapidly cooled and solidified.
C., and was moved in a furnace having a temperature gradient of 50 ° C./cm at a speed of 1 mm / 2H to perform a unidirectional solidification treatment. Then, the unidirectionally solidified material is pulverized into a granular material having a particle size of 1 mm,
Ag powder was mixed with the granules at 40 wt%, and the mixture was filled while applying vibration to the Ag container. Thereafter, the Ag container was vacuum-sealed, and then under an 800 atm atmosphere of Ar + 2.5 vol% O 2. At 8
HIP treatment of 90 ° C × 24H was performed. Next, the Ag container was removed, and the mixture subjected to the HIP treatment was machined into a square bar having a cross section of 6 × 4 mm.
2H heat treatment was performed to produce a current lead conductor.

実施例5 平均粒径2.5μmのErBa2Cu3O7−δの仮焼成粉を平均
粒径1μmのAg粉と重量比で7:3の割合で配合し、これ
をCIP形成後予備焼結して外径19mmのAg−10%Pd合金パ
イプに充填した。次いでこのパイプをスエージャーとド
ローベンチにより外径4mmに縮径加工後圧延して巾5.5mm
厚さ1mmのテープに仕上げた。内部の超電導体とAg粉の
予備焼結体の断面寸法は4.5mm×0.7mmであった。而して
このテープをN2+5vol%O2雰囲気中で900℃12H加熱後、
酸素雰囲気中で600℃24H加熱処理して、電流リード用導
体を製造した。
Example 5 A calcined powder of ErBa 2 Cu 3 O 7 -δ having an average particle size of 2.5 μm was mixed with an Ag powder having an average particle size of 1 μm in a weight ratio of 7: 3, and this was pre-sintered after CIP formation. Then, it was filled into an Ag-10% Pd alloy pipe having an outer diameter of 19 mm. Next, this pipe was reduced in diameter to 4 mm by a swager and a draw bench and then rolled to 5.5 mm in width.
Finished to a 1mm thick tape. The cross-sectional dimension of the pre-sintered body of the inner superconductor and the Ag powder was 4.5 mm × 0.7 mm. After heating this tape at 900 ° C. for 12 hours in an N 2 +5 vol% O 2 atmosphere,
Heat treatment was performed at 600 ° C. for 24 hours in an oxygen atmosphere to produce a current lead conductor.

比較例1 実施例5において、Ag−10wt%Pd合金パイプにErBa2C
u3O7−δの仮焼成粉のみを充填した他は実施例5と同じ
方法により、電流リード用導体を製造した。
Comparative Example 1 In Example 5, ErBa 2 C to Ag-10 wt% Pd alloy pipe
A current lead conductor was manufactured in the same manner as in Example 5 except that only the calcined powder of u 3 O 7 -δ was filled.

比較例2 0.5mmφの純銅線を1200本撚合わせた撚線を電流リー
ド用導体となした。 欺くの如くして得られた各々の電
流リード用導体について、実施例1〜4の導体は400mm
長さに切断し、これに200mm長さの純銅棒をPb−30%Sn
−15%In半田を用いて持続して電流リードとなし、又実
施例5と比較例1の導体は長さ600mmに切断しこれを8
本束ねて、又比較例2の導体は長さ600mmに切断してそ
れぞれ電流リード用導体となした。
Comparative Example 2 A stranded wire obtained by twisting 1200 pure copper wires of 0.5 mmφ was used as a current lead conductor. For each of the current lead conductors obtained as deceiving, the conductors of Examples 1-4 were 400 mm
Cut to length, and add a pure copper rod of 200mm length to this with Pb-30% Sn
A continuous current lead was formed using -15% In solder. The conductors of Example 5 and Comparative Example 1 were cut to a length of 600 mm and cut into 8 mm.
The conductor of Comparative Example 2 was cut into a length of 600 mm to form a current lead conductor.

而して上記各々の電流リード用導体について、酸化物
超電導体粒状物が分散した側を液体Heに周期的に120回
出し入れするヒートサイクル試験を施したのち、この電
流リード用導体を液体Heにて冷却したNb−Ti製直流超電
導マグネットに取付けて4.2K0.6T800Aの条件にて通電
し、通電時の液体Heの蒸発量を測定した。又各々の電流
リード用導体の結晶配向性をX線回析法により求めた。
結果は第1表に製造条件を併記して示した。尚、液体He
の蒸発量は電流リードを取付けない無通電時の液体Heの
蒸発量を上記通電時の蒸発量から差引いて表わした。
Thus, for each of the current lead conductors described above, a heat cycle test was conducted in which the oxide superconductor particulate matter dispersed side was periodically taken in and out of the liquid He 120 times, and then the current lead conductor was transferred to the liquid He. It was mounted on a cooled Nb-Ti DC superconducting magnet and energized under the condition of 4.2K0.6T800A, and the amount of evaporation of liquid He during energization was measured. The crystal orientation of each current lead conductor was determined by X-ray diffraction.
The results are shown in Table 1 together with the production conditions. In addition, liquid He
Is obtained by subtracting the evaporation amount of the liquid He when no current is supplied without the current lead from the evaporation amount when the current is supplied.

第1表より明らかなように本発明品(1〜5)は、比
較品(7)に較べてHeの蒸発量が半分以下と極めて少な
いものであった。本発明品のうち結晶配向性が高いもの
(1,3,4)は、無配向のもの(2)に較べてHe蒸発量が
少なくなっており、これは結晶配向によりJcが向上した
ことに起因している。本発明品のうちNo5のHe蒸発量が
比較的多かった理由は、結晶配向性が低かったことの他
に、電流供給源側にも酸化物超電導体を分散させた為に
電流供給源側での抵抗が増加したことに起因する。
As is clear from Table 1, the products of the present invention (1 to 5) had an extremely small amount of evaporation of He of less than half that of the comparative product (7). Has high crystal orientation of the present invention product (1,3,4) is adapted less He evaporation amount compared to the non-oriented ones (2), which it has improved J c by crystal orientation Is attributed to The reason why the evaporation amount of He of No. 5 was relatively large among the products of the present invention was that, in addition to the low crystal orientation, the oxide superconductor was also dispersed on the current supply side because of the oxide superconductor being dispersed on the current supply side. Due to the increase in the resistance.

これに対し比較品のNo6は、電流リードの内層全体が
酸化物超電導体であった為に通電前のヒートサイクルで
上記酸化物超電導体内にクラックが生じJcが低下して通
電により焼損してしまった。又No7は銅撚線を用いた為
に液体He側でも抵抗を有しジュール熱が発生して液体He
が大量に蒸発した。
No6 of comparative contrast to this, the J c cracks in the oxide superconductor in a heat cycle before the supply to the entire inner layer of the current lead is an oxide superconductor was burnt by energizing decreases Oops. No. 7 has resistance even on the liquid He side due to the use of copper stranded wire, and generates Joule heat to generate liquid He.
Evaporated in large quantities.

〔効果〕〔effect〕

以上述べたように本発明の電流リード用導体は、耐久
性に優れ且つ液体He等の冷媒の蒸発を少なく抑えること
ができ、工業上顕著な効果を奏するものである。
As described above, the current lead conductor of the present invention is excellent in durability and can suppress evaporation of a refrigerant such as liquid He to a small extent, and has an industrially remarkable effect.

【図面の簡単な説明】[Brief description of the drawings]

第1図イ〜ホは、本発明の電流リード用導体の実施例を
示す縦断面図、第2図イ〜ハは本発明の電流リード用導
体における金属導体中の酸化物超電導体粒状物の分散形
態の例を示す縦断面図、第3図は従来の電流リード用導
体の縦断面図である。 1……金属導体、2……酸化物超電導体粒状物。
1 (a) to 1 (e) are longitudinal sectional views showing an embodiment of a current lead conductor of the present invention, and FIGS. 2 (a) to 1 (c) are diagrams of oxide superconductor particulates in a metal conductor in a current lead conductor of the present invention. FIG. 3 is a longitudinal sectional view showing an example of a dispersion mode, and FIG. 3 is a longitudinal sectional view of a conventional current lead conductor. 1 ... metal conductor, 2 ... oxide superconductor granular material.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−123405(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01F 6/00,6/04──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-123405 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01F 6/00, 6/04

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電流供給源から超電導素子へ電流を供給す
る為の金属導体からなる電流リード用導体であって、少
なくとも超電導素子に接続される側の部分では金属導体
中に酸化物超電導体の粒状物が分散されていることを特
徴とする電流リード用導体。
1. A current lead conductor comprising a metal conductor for supplying a current from a current supply source to a superconducting element, wherein at least a portion connected to the superconducting element includes an oxide superconductor in a metal conductor. What is claimed is: 1. A conductor for a current lead, wherein a granular material is dispersed.
JP1151030A 1989-06-14 1989-06-14 Conductor for current lead Expired - Lifetime JP2779210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1151030A JP2779210B2 (en) 1989-06-14 1989-06-14 Conductor for current lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1151030A JP2779210B2 (en) 1989-06-14 1989-06-14 Conductor for current lead

Publications (2)

Publication Number Publication Date
JPH0316202A JPH0316202A (en) 1991-01-24
JP2779210B2 true JP2779210B2 (en) 1998-07-23

Family

ID=15509767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1151030A Expired - Lifetime JP2779210B2 (en) 1989-06-14 1989-06-14 Conductor for current lead

Country Status (1)

Country Link
JP (1) JP2779210B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4568894B2 (en) * 2003-11-28 2010-10-27 Dowaエレクトロニクス株式会社 Composite conductor and superconducting equipment system
JP2010021260A (en) * 2008-07-09 2010-01-28 Sumitomo Electric Ind Ltd Current lead for cryogenic apparatus, and terminal connection structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2509642B2 (en) * 1987-11-06 1996-06-26 株式会社東芝 Superconducting power lead manufacturing method

Also Published As

Publication number Publication date
JPH0316202A (en) 1991-01-24

Similar Documents

Publication Publication Date Title
WO1993020025A1 (en) Bonded element of superconductive oxide materials and its manufacture
JP2636049B2 (en) Method for producing oxide superconductor and method for producing oxide superconducting wire
JP2002373534A (en) Superconducting wire, its producing method, and superconducting magnet using it
EP0456116A2 (en) Oxide superconductor and process for its production
CA1325512C (en) Method of making a body, and article comprising the body
JP2779210B2 (en) Conductor for current lead
EP0286521B1 (en) Superconducting composite
WO1993017969A1 (en) Superconductors having continuous ceramic and elemental metal matrices
JP2514690B2 (en) Superconducting wire manufacturing method
EP0376981A4 (en) Machine workable, thermally conductive, high strength, ceramic superconducting composite
JP2532144B2 (en) Method for manufacturing metal / ceramic composite
JP3536920B2 (en) Alloy superconductor and method of manufacturing the same
JP3709532B2 (en) Manufacturing method of oxide superconductor
JP2590370B2 (en) Superconducting material and manufacturing method thereof
JP3709531B2 (en) Manufacturing method of oxide superconductor
JP3450488B2 (en) Boron-containing metal oxide superconducting wire
JPH06243737A (en) Oxide superconductive coil
JPH0319206A (en) Conductor for current lead
JP4200234B2 (en) Oxide superconducting wire and method for producing the same
Roberge Status of the development of high-field A15 superconductors
JP2519741B2 (en) Manufacturing method of superconducting material
JPH03237094A (en) High temperature oxide superconductor, superconducting wire, coil using the wire and production of them
JP2556545B2 (en) Method for manufacturing oxide superconducting wire
Samanta Processing and Superconducting Properties of YBa2Cu3O7-X+ Ag2O Microcomposite for Fabrication of High Tc, Flexible Wire
Balkin et al. The Effect of Er2BaCuo5 Additions on the Microstructure and Magnetic Properties of Zone Melt Textured YBa2Cu3O6+ x Wires