JP2777329B2 - Viscoelasticity measurement method - Google Patents

Viscoelasticity measurement method

Info

Publication number
JP2777329B2
JP2777329B2 JP6053519A JP5351994A JP2777329B2 JP 2777329 B2 JP2777329 B2 JP 2777329B2 JP 6053519 A JP6053519 A JP 6053519A JP 5351994 A JP5351994 A JP 5351994A JP 2777329 B2 JP2777329 B2 JP 2777329B2
Authority
JP
Japan
Prior art keywords
sample
jig
viscoelasticity
projection
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6053519A
Other languages
Japanese (ja)
Other versions
JPH07260673A (en
Inventor
善隆 田渕
英彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GAISHI KK
Original Assignee
NIPPON GAISHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GAISHI KK filed Critical NIPPON GAISHI KK
Priority to JP6053519A priority Critical patent/JP2777329B2/en
Publication of JPH07260673A publication Critical patent/JPH07260673A/en
Application granted granted Critical
Publication of JP2777329B2 publication Critical patent/JP2777329B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、試料を一対の円板状治
具に挟んで保持した状態で試料の粘弾性を測定する粘弾
性測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a viscoelasticity measuring method for measuring the viscoelasticity of a sample while holding the sample between a pair of disk-shaped jigs.

【0002】[0002]

【従来の技術】従来から、塗料等の弾性率の低い試料の
粘弾性を測定する装置として、円板状の試料を一対の円
板状平板治具に挟んだ状態で正弦波的な振動歪を加え、
そのときに加えたトルクとその位相の遅れを検出するこ
とにより試料の粘弾性を測定するねじり試験型の粘弾性
測定装置が知られている。
2. Description of the Related Art Conventionally, as a device for measuring the viscoelasticity of a sample having a low elastic modulus, such as a paint, a sinusoidal vibration distortion is produced by sandwiching a disc-shaped sample between a pair of disc-shaped flat jigs. And add
There is known a torsional test type viscoelasticity measuring device that measures the viscoelasticity of a sample by detecting a torque applied at that time and a phase delay thereof.

【0003】図4は上述した粘弾性測定装置における粘
弾性の測定状態を示す図であり、11は円板状試料、1
2−1、12−2は試料11を挟んで保持する一対の円
板状平板治具、13は回動軸14を介して円板状平板治
具12−2に正弦波的な振動歪を加えるためのアクチュ
エータ、15は回動軸16を介して円板状平板治具12
−1の位相の遅れを測定するトランスデューサである。
FIG. 4 is a view showing a state of measurement of viscoelasticity in the above-mentioned viscoelasticity measuring apparatus.
Reference numerals 2-1 and 12-2 denote a pair of disc-shaped flat jigs that hold the sample 11 therebetween, and 13 denotes a sinusoidal vibration distortion on the disc-shaped flat jig 12-2 via a rotating shaft 14. An actuator 15 to be added is connected to a disc-shaped flat jig 12 via a rotation shaft 16.
This is a transducer for measuring a phase delay of -1.

【0004】一方、弾性率の高い物質例えば粘土状のセ
ラミック坏土等においては、セラミック坏土に測定具を
差し込んだ時の進入抵抗を測定する等のことは行われて
いるものの、この場合でもセラミック坏土の硬さのパラ
メータしか得ることができず、より詳しい物性を求めて
管理したいという要望が近年高くなっている。
On the other hand, in the case of a substance having a high elastic modulus, for example, a clay-like ceramic clay, the penetration resistance when a measuring tool is inserted into the ceramic clay is measured. In recent years, only the parameter of the hardness of the ceramic clay has been obtained, and there has been a growing demand in recent years for more detailed physical properties to be managed.

【0005】[0005]

【発明が解決しようとする課題】そのため、従来から知
られている上述した粘弾性測定装置において、弾性率の
高いセラミック坏土を測定しようとしても、そのまま適
用しただけでは正しいセラミック坏土の粘弾性を測定で
きなかった。すなわち、セラミック坏土等の試料を円板
状の試験片に形成し、それを一対の円板状平板治具12
−1,12−2間に挟み、その状態で振動歪を加える
と、セラミック坏土等の試料と円板状平板治具12−
1、12−2の表面との間ですべりが発生して、正弦波
的な振動歪を試料に加えることができない問題があっ
た。
Therefore, even if the above-mentioned known viscoelasticity measuring apparatus is used to measure a ceramic clay having a high elastic modulus, the viscoelasticity of the ceramic clay is correct only by directly applying the same. Could not be measured. That is, a sample such as a ceramic clay is formed on a disk-shaped test piece, which is then placed on a pair of disk-shaped flat jigs 12.
-1 and 12-2, when vibration strain is applied in this state, a sample such as a ceramic clay and a disc-shaped flat jig 12-
There was a problem in that slip occurred between the surfaces of the specimens 1 and 12-2, and sinusoidal vibration distortion could not be applied to the sample.

【0006】一方、この問題を解消するために、セラミ
ック坏土等の試料と円板状平板治具12−1、12−2
との間を接着剤により固定することも考えられるが、そ
の場合は試料毎に固定する必要があるため、その作業が
煩雑となる問題があった。また、図5にその一例を示す
ように、円板状平板治具12の表面に断面が四角形の突
起13を設けた治具も知られているが、この治具を弾性
率の高いセラミック坏土等の保持に使用しても、やはり
十分に振動歪を試料に加えることができなかった。
[0006] On the other hand, in order to solve this problem, a sample such as a ceramic clay and a disc-shaped flat jig 12-1 and 12-2 are used.
It is also conceivable to fix the gap between them with an adhesive, but in that case, since it is necessary to fix each sample, there is a problem that the operation becomes complicated. Further, as shown in FIG. 5, an example is known in which a disc-shaped flat jig 12 is provided with a projection 13 having a rectangular cross section on the surface thereof. Even when used for holding soil or the like, sufficient vibration strain could not be applied to the sample.

【0007】本発明の目的は上述した課題を解消して、
セラミック坏土等の高弾性率を有する物質でも正確に粘
弾性を測定することができる粘弾性測定方法を提供しよ
うとするものである。
An object of the present invention is to solve the above-mentioned problems,
It is an object of the present invention to provide a viscoelasticity measuring method capable of accurately measuring viscoelasticity even with a material having a high elastic modulus such as ceramic clay.

【0008】[0008]

【課題を解決するための手段】本発明の粘弾性測定方法
は、貯蔵弾性率G’が、歪量0.05%、周波数1Hz
のとき1×105 〜1×107 Paのセラミック坏土か
らなる試料を一対の円板状治具に挟んで保持した状態で
試料の粘弾性を測定する粘弾性測定方法において、前記
円板状治具として、試料と接する面に先端ほど断面積を
小さくした突起を、円板状治具の半径をrとしたとき、
円板状治具の表面においてr/2の半径を有する円の外
側の領域に存在させた円板状治具を使用することを特徴
とするものである。
According to the method for measuring viscoelasticity of the present invention, the storage elastic modulus G ′ is such that the strain amount is 0.05% and the frequency is 1 Hz.
In the viscoelasticity measuring method for measuring the viscoelasticity of a sample while holding a sample made of ceramic clay of 1 × 10 5 to 1 × 10 7 Pa between a pair of disk-shaped jigs, As a jig, a protrusion having a smaller cross-sectional area toward the tip on the surface in contact with the sample, and the radius of the disc-shaped jig is r,
The present invention is characterized in that a disc-shaped jig is used in a region outside a circle having a radius of r / 2 on the surface of the disc-shaped jig.

【0009】[0009]

【作用】上述した構成において、試料と接する面に突起
を設けることで、この突起が試料にくい込んで侵入した
状態で粘弾性測定装置にセットでき、その結果振動歪を
効率良く試料に伝達することができ、従来の粘弾性測定
装置でも正確な粘弾性を求めることができる。なお、突
起の形状を先端ほど断面積を小さくさせたのは、本発明
の測定対象である貯蔵弾性率G’が、歪量0.05%、
周波数1Hzのとき1×105 〜1×107 Paの高い
弾性率を有する材料に対し、400g/cm2 以下の力
で侵入できる構造であるからである。
In the above-described configuration, by providing a projection on the surface in contact with the sample, the projection can be set in the viscoelasticity measuring device in a state where the projection enters the sample, and as a result, vibration strain can be efficiently transmitted to the sample. Thus, accurate viscoelasticity can be obtained even with a conventional viscoelasticity measuring device. The reason why the shape of the protrusion is made smaller in cross section toward the tip is that the storage elastic modulus G ′ to be measured in the present invention has a strain amount of 0.05%,
This is because the structure can penetrate a material having a high elastic modulus of 1 × 10 5 to 1 × 10 7 Pa at a frequency of 1 Hz with a force of 400 g / cm 2 or less.

【0010】また、本願発明の測定対象であるセラミッ
ク坏土等の高い弾性率を有する物質からなる試料に対し
てねじりによる振動歪を伝達するには、円板状治具の中
心部近傍よりも外周部近傍に突起を設けた方が効率良
く、この観点から、突起が、円板状治具の半径をrとし
たとき、円板状治具の表面においてr/2の半径を有す
る円の外側の領域に存在する治具を使用することが好ま
しい。
Further, in order to transmit vibration strain due to torsion to a sample made of a material having a high elastic modulus, such as a ceramic clay, which is a measurement object of the present invention, it is required to transmit the vibration strain more than near the center of the disc-shaped jig. It is more efficient to provide a protrusion near the outer peripheral portion. From this viewpoint, when the radius of the disc-shaped jig is r, the protrusion has a radius of r / 2 on the surface of the disc-shaped jig. It is preferable to use a jig existing in the outer region.

【0011】さらに、上記の高い弾性率を有するセラミ
ック坏土等の物質に有効にねじり歪を加えるためには、
後述する実施例から明らかなように、試料を保持した状
態において、前記突起のうち実際に試料中に侵入した部
分の断面積を前記治具表面の面積で除した値が、3.8
%以上62%以下である治具を使用すること、また突起
の先端の頂角が120°以下である治具を使用するこ
と、さらに突起の高さが試料厚に対して20%未満であ
る治具を使用することが好ましい。
Further, in order to effectively apply torsional strain to a material such as ceramic clay having a high elastic modulus,
As is clear from the examples described later, in a state where the sample is held, the value obtained by dividing the cross-sectional area of the portion of the protrusion that actually penetrated the sample by the area of the jig surface is 3.8.
% Or less, and a jig having a tip angle of 120 ° or less at the tip of the projection, and the height of the projection is less than 20% with respect to the sample thickness. It is preferable to use a jig.

【0012】[0012]

【実施例】図1は本発明の粘弾性測定方法において使用
する治具の一例の構成を示す図である。図1に示す例で
は、円板状治具1を、試料と接する面のうちr/2
(r:治具の半径)の半径を有する円の外側に、先端ほ
ど断面積を小さくした断面が三角形の山形の突起2を1
8個設けて構成している。また、図2は本発明の粘弾性
測定方法において使用する治具の他の例の構成を示す図
である。図2に示す例では、円板状治具1を、試料と接
する面のうちr/2の半径を有する円の外側に、断面が
三角形の三角錐の突起2を一ラジアル方向に3個づつ1
8ラジアル方向に合計で54個設けて構成している。
FIG. 1 is a view showing the structure of an example of a jig used in the viscoelasticity measuring method of the present invention. In the example shown in FIG. 1, the disc-shaped jig 1 is set at r / 2 of the surface in contact with the sample.
Outside the circle having a radius of (r: radius of the jig), a protrusion 2 having a triangular cross section with a smaller cross-sectional area toward the tip is formed.
Eight are provided. FIG. 2 is a diagram showing the configuration of another example of a jig used in the viscoelasticity measuring method of the present invention. In the example shown in FIG. 2, three disk-shaped jigs 1 each having three triangular pyramid projections 2 each having a triangular cross section are arranged radially outside a circle having a radius of r / 2 on a surface in contact with the sample. 1
A total of 54 are provided in 8 radial directions.

【0013】上述した本発明の円板状治具1に設けた突
起2は、先端ほど断面積を小さくすれば、対象となる試
料が貯蔵弾性率G’で、歪量0.05%、周波数1Hz
のとき1×105 〜1×107 (Pa)のセラミック坏
土等の高い弾性率を有する物質であっても、円板状に形
成された試料を一対の円板状治具1で挟めば試料中に侵
入し、振動歪等のトルクの伝達を効率良くすることがで
きる。突起2の試料への侵入程度は、突起2の全体が試
料内に入り、しかも突起2の存在しない円板状治具1の
表面と試料とが接触する状態になることが好ましい。そ
のため、突起2先端の頂角は120°以下、さらに好ま
しくは90°以下で、突起2の高さは試料の厚さに対し
て20%未満であることが好ましい。
If the cross-sectional area of the protrusion 2 provided on the disk-shaped jig 1 of the present invention is reduced toward the tip, the target sample has a storage elastic modulus G ′, a strain of 0.05%, and a frequency of 0.05%. 1 Hz
In this case, even if the material has a high elastic modulus, such as a ceramic clay of 1 × 10 5 to 1 × 10 7 (Pa), a disk-shaped sample is sandwiched between a pair of disk-shaped jigs 1. For example, it can penetrate into the sample and efficiently transmit torque such as vibration distortion. The degree of the protrusion 2 entering the sample is preferably such that the whole of the protrusion 2 enters the sample and the surface of the disc-shaped jig 1 where the protrusion 2 does not exist comes into contact with the sample. Therefore, the apex angle of the tip of the projection 2 is preferably 120 ° or less, more preferably 90 ° or less, and the height of the projection 2 is preferably less than 20% of the thickness of the sample.

【0014】また、突起2の存在する領域、すなわち突
起2によりねじりによる振動歪を効率良く試料に伝達で
きる領域を確保するため、セラミック坏土を試料とし、
突起を有さない一対の円板状平板治具で試料を挟み、約
10%のねじり歪で400g/cm2 の力を加えたとこ
ろ、円板状平板治具の表面においてr/2の半径を有す
る円の外側の領域にすべり痕跡が認められた。これによ
り、突起2の存在する領域は、円板状治具の表面におい
てr/2の半径を有する円の外側の領域が好ましいこと
がわかる。
In order to secure an area where the projections 2 are present, that is, an area where the projections 2 can efficiently transmit vibrational distortion due to torsion to the sample, a ceramic clay is used as the sample.
When the sample was sandwiched between a pair of disk-shaped jigs having no projection and a force of 400 g / cm 2 was applied with a torsional strain of about 10%, a radius of r / 2 was obtained on the surface of the disk-shaped jig. A trace of slip was observed in the area outside the circle having. Thus, it is understood that the region where the protrusion 2 exists is preferably a region outside a circle having a radius of r / 2 on the surface of the disc-shaped jig.

【0015】さらに、突起2の試料へ侵入する部分の状
態について、突起2のうち実際に試料中にくい込んで侵
入した部分の断面積Aを、治具の表面積Bで除した値に
より評価した。ます、以下のいずれの例においても、治
具の直径が25mmでその表面積Bが491mm2 であ
り、また試料厚さは7mmであった。図1に示す本発明
例では、1個の突起2全体が試料中に侵入し、その突起
高さが0.7mmで幅が6mmであるため1個の断面積
は0.7×6=4.2mm2 となり、それが18個存在
するため断面積Aは18×4.2=75.6mm2 であ
るため、A/Bは15.4%となる(試料No.1)。
Further, the condition of the portion of the protrusion 2 that penetrated the sample was evaluated by dividing the cross-sectional area A of the portion of the protrusion 2 that actually penetrated into the sample by the surface area B of the jig. First, in each of the following examples, the jig had a diameter of 25 mm, a surface area B of 491 mm 2 , and a sample thickness of 7 mm. In the example of the present invention shown in FIG. 1, one projection 2 as a whole penetrates into the sample, and the projection has a height of 0.7 mm and a width of 6 mm, so that one cross-sectional area is 0.7 × 6 = 4. .2 mm 2 , and since there are 18 of them, the cross-sectional area A is 18 × 4.2 = 75.6 mm 2 , so that A / B is 15.4% (sample No. 1).

【0016】図2に示す本発明例では、1個の突起2が
直径1mmで突起高さ0.7mmであるため、その断面
積は1×0.7/2=0.35mm2 となり、それが5
4個あるため断面積Aは0.35×54=18.9mm
2 であり、A/Bは3.8%となる(試料No.2)。
一方、図5に示す従来例では、突起13が断面四角形で
あるため、突起高さ0.4mmで長さ6mmの突起13
のうち実際に試料中に侵入する量は0.05mm程度で
あり、1個の断面積は0.05×6=0.3mm2 とな
り、それが18個あるため断面積Aは0.3×18=
5.4mm2 であり、A/Bは1.1%となる(試料N
o.3)。
In the example of the present invention shown in FIG. 2, since one projection 2 has a diameter of 1 mm and a height of 0.7 mm, its cross-sectional area is 1 × 0.7 / 2 = 0.35 mm 2 . Is 5
Since there are four, the cross-sectional area A is 0.35 × 54 = 18.9 mm
2 , and A / B is 3.8% (Sample No. 2).
On the other hand, in the conventional example shown in FIG. 5, since the projection 13 has a square cross section, the projection 13 has a projection height of 0.4 mm and a length of 6 mm.
Of these, the amount that actually penetrates into the sample is about 0.05 mm, the cross-sectional area of one piece is 0.05 × 6 = 0.3 mm 2 , and since there are 18 of them, the cross-sectional area A is 0.3 × 18 =
5.4 mm 2 and A / B is 1.1% (sample N
o. 3).

【0017】また、上限については、実際に円板状治具
の表面に突起を形成できるかどうかと400g/cm2
以下の力で侵入できるかどうかが問題となるが、本発明
では図1に示す例において、最大突起高さ1.4mm
(試料厚さの20%)、最大突起数36個と考え、A/
Bの値を求めると62%となり、上限は62%であると
好ましいと考えた(試料No.4)。
The upper limit is determined by whether or not projections can be actually formed on the surface of the disc-shaped jig and whether the projections are 400 g / cm 2.
Although it is important to be able to enter with the following force, in the present invention, in the example shown in FIG. 1, the maximum protrusion height is 1.4 mm.
(20% of the sample thickness), the maximum number of protrusions was assumed to be 36,
The value of B was determined to be 62%, and the upper limit was considered to be preferably 62% (Sample No. 4).

【0018】以上の試料No.1〜4および従来の突起
のない平板治具を使用した例(試料No.5)、さらに
平板治具に試料を接着剤で固定した例(試料No.6)
について、同一の試料について実際に粘弾性測定装置で
試料に1%歪を加えたときの検出トルクを測定し、平板
治具に試料を接着剤で固定した例(試料No.6)の検
出トルクを100%として、それぞれの治具表面積に対
する突起の断面積(A/B)と検出トルクとの関係を求
めた。図3にその結果を示す。図3の例からわかるよう
に、90%以上のトルク伝達が可能な下限は3.8%で
あり、A/Bの値は3.8〜62%であると好ましいこ
とがわかる。
The above sample No. Examples using a flat jig having no projections 1 to 4 and a conventional projection (sample No. 5), and an example of fixing a sample to the flat jig with an adhesive (sample No. 6)
For the same sample, the detected torque was measured when a 1% strain was actually applied to the sample with a viscoelasticity measuring device, and the detected torque of an example (sample No. 6) in which the sample was fixed to a flat jig with an adhesive was used. Was set as 100%, the relationship between the sectional area (A / B) of the projection and the detected torque with respect to the surface area of each jig was determined. FIG. 3 shows the result. As can be seen from the example of FIG. 3, the lower limit at which torque transmission of 90% or more is possible is 3.8%, and the value of A / B is preferably 3.8 to 62%.

【0019】[0019]

【発明の効果】以上の説明から明かなように、本発明に
よれば、試料と接する面に突起を設けているため、この
突起が試料にくい込んで侵入した状態で粘弾性測定装置
にセットでき、その結果振動歪を効率良く試料に伝達す
ることができ、従来の粘弾性測定装置でも正確な粘弾性
を求めることができる。
As is clear from the above description, according to the present invention, since the projection is provided on the surface in contact with the sample, the projection can be set in the viscoelasticity measuring device in a state where the projection enters the sample and enters. As a result, vibration strain can be efficiently transmitted to the sample, and accurate viscoelasticity can be obtained even with a conventional viscoelasticity measuring device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の粘弾性測定方法において使用する治具
の一例の構成を示す図である。
FIG. 1 is a diagram showing a configuration of an example of a jig used in a viscoelasticity measuring method of the present invention.

【図2】本発明の粘弾性測定方法において使用する治具
の他の例の構成を示す図である。
FIG. 2 is a view showing the configuration of another example of a jig used in the viscoelasticity measuring method of the present invention.

【図3】治具表面積に対する突起の断面積と検出トルク
との関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a sectional area of a protrusion and a detected torque with respect to a jig surface area.

【図4】粘弾性測定方法を説明するための図である。FIG. 4 is a diagram for explaining a viscoelasticity measuring method.

【図5】従来の治具の一例の構成を示す図である。FIG. 5 is a diagram showing a configuration of an example of a conventional jig.

【符号の説明】[Explanation of symbols]

1 円板状治具、2 突起 1 disk-shaped jig, 2 protrusions

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01N 19/00 G01N 11/00 G01N 3/00 - 3/62──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 6 , DB name) G01N 19/00 G01N 11/00 G01N 3/00-3/62

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】貯蔵弾性率G’が、歪量0.05%、周波
数1Hzのとき1×105 〜1×107 Paのセラミッ
ク坏土からなる試料を一対の円板状治具に挟んで保持し
た状態で試料の粘弾性を測定する粘弾性測定方法におい
て、前記円板状治具として、試料と接する面に先端ほど
断面積を小さくした突起を、円板状治具の半径をrとし
たとき、円板状治具の表面においてr/2の半径を有す
る円の外側の領域に存在させた円板状治具を使用するこ
とを特徴とする粘弾性測定方法。
1. A sample made of ceramic clay having a storage elastic modulus G ′ of 1 × 10 5 to 1 × 10 7 Pa at a strain amount of 0.05% and a frequency of 1 Hz is sandwiched between a pair of disk-shaped jigs. In the viscoelasticity measuring method for measuring the viscoelasticity of a sample while holding the sample, the disk-shaped jig is provided with a projection having a smaller cross-sectional area toward the tip on a surface in contact with the sample, the radius of the disk-shaped jig being r. A method of measuring viscoelasticity, wherein a disc-shaped jig is used in a region outside a circle having a radius of r / 2 on the surface of the disc-shaped jig.
【請求項2】試料を保持した状態において、前記突起の
うち実際に試料中にくい込んで侵入した部分の断面積を
前記治具表面の面積で除した値が、3.8%以上62%
以下である治具を使用する請求項1記載の粘弾性測定方
法。
2. A value obtained by dividing the cross-sectional area of a portion of the projection that has actually penetrated into the sample by the area of the jig surface while holding the sample is 3.8% to 62%.
The viscoelasticity measuring method according to claim 1, wherein the following jig is used.
【請求項3】前記突起の先端の頂角が120゜以下であ
る治具を使用する請求項1記載の粘弾性測定方法。
3. The method for measuring viscoelasticity according to claim 1, wherein a jig having an apex angle of a tip of said projection of 120 ° or less is used.
【請求項4】前記突起の高さが試料厚に対して20%未
満である治具を使用する請求項1記載の粘弾性測定方
法。
4. The viscoelasticity measuring method according to claim 1, wherein a jig having a height of said projection of less than 20% with respect to a sample thickness is used.
JP6053519A 1994-03-24 1994-03-24 Viscoelasticity measurement method Expired - Lifetime JP2777329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6053519A JP2777329B2 (en) 1994-03-24 1994-03-24 Viscoelasticity measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6053519A JP2777329B2 (en) 1994-03-24 1994-03-24 Viscoelasticity measurement method

Publications (2)

Publication Number Publication Date
JPH07260673A JPH07260673A (en) 1995-10-13
JP2777329B2 true JP2777329B2 (en) 1998-07-16

Family

ID=12945078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6053519A Expired - Lifetime JP2777329B2 (en) 1994-03-24 1994-03-24 Viscoelasticity measurement method

Country Status (1)

Country Link
JP (1) JP2777329B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL197801B1 (en) 1998-04-09 2008-04-30 Ajinomoto Kk Aspartyl dipeptide ester derivatives and sweeteners
JP4956098B2 (en) * 2006-08-31 2012-06-20 株式会社東芝 Deterioration diagnosis apparatus for lubricant and viscous material and deterioration diagnosis method thereof
WO2024105795A1 (en) * 2022-11-16 2024-05-23 京セラ株式会社 Evaluation method and evaluation device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515490U (en) * 1974-06-28 1976-01-16
JPH0348520Y2 (en) * 1984-11-29 1991-10-16

Also Published As

Publication number Publication date
JPH07260673A (en) 1995-10-13

Similar Documents

Publication Publication Date Title
JPH05332911A (en) Apparatus for measuring rheological characteristics of viscoelastic test pieace and method therefor
US4429580A (en) Stress transducer for fabrics and flexible sheet materials
US5010773A (en) Sensor tip for a robotic gripper and method of manufacture
US20090266138A1 (en) Method and Apparatus for Shear Strain Testing of Strain Sensors
US3854328A (en) Resiliency testing device
JP2021512293A (en) Measuring devices and methods for defining forces and / or torque in torque transmission shafts
JP2777329B2 (en) Viscoelasticity measurement method
US20030037619A1 (en) Apparatus and method for characterizing physical properties of a test piece
JP2005539230A (en) Measurement of torsional strain using a simple-to-use clip device (SAW)
US6609428B2 (en) Nonresonant technique for estimation of the mechanical properties of viscoelastic materials
CN115096424B (en) Universal rock and soil sample sonic wave velocity test control platform
JP3631946B2 (en) Fatigue crack measuring method and displacement crack measuring instrument
JPS63269041A (en) Viscoelasticity measuring apparatus
Simmons et al. Vector calibration of ultrasonic and acoustic emission transducers
JP3733528B2 (en) Bender element installation jig
CN109696479B (en) Acoustic emission test system and method for asymmetric arrangement of cuboid samples
Kim et al. Acoustic emissions from penny‐shaped cracks in glass. I. Radiation pattern and crack orientation
Anderson et al. Embedded piezoelectric sensors to measure peel stresses in adhesive joints
JP4356218B2 (en) Strength estimation method for concrete structures
CN212807371U (en) Ultrasonic transducer surface temperature testing device
Mrvos Estimating the Elastic Modulus of Ti-6Al-4V and 353 Brass Using Various Test Methods
CN114623962B (en) Bolt transverse load distribution measurement method based on phased array ultrasonic rotary scanning
CN114623956B (en) Ultrasonic measurement method for random transverse load and acting direction of bolt
Ricketts et al. Wave propagation in an anisotropic half-space
Kosmatka et al. Experimental spin testing of integrally damped composite blades

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980331