JP2775881B2 - Thin film ferromagnetic resonance resonator - Google Patents

Thin film ferromagnetic resonance resonator

Info

Publication number
JP2775881B2
JP2775881B2 JP1216264A JP21626489A JP2775881B2 JP 2775881 B2 JP2775881 B2 JP 2775881B2 JP 1216264 A JP1216264 A JP 1216264A JP 21626489 A JP21626489 A JP 21626489A JP 2775881 B2 JP2775881 B2 JP 2775881B2
Authority
JP
Japan
Prior art keywords
thin film
ferromagnetic resonance
resonator
resonance
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1216264A
Other languages
Japanese (ja)
Other versions
JPH0379103A (en
Inventor
允 窪田
秀夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1216264A priority Critical patent/JP2775881B2/en
Publication of JPH0379103A publication Critical patent/JPH0379103A/en
Application granted granted Critical
Publication of JP2775881B2 publication Critical patent/JP2775881B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、同調型フィルタ装置,同調型発振器等に用
いられる薄膜強磁性共鳴共振子、すなわちYIG(イット
リウム・鉄・ガーネットで、Ga等を添加したものも含ん
で指称するフェリ磁性薄膜の磁気共鳴を利用した薄膜強
磁性共鳴共振子に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a thin film ferromagnetic resonance resonator used in a tunable filter device, a tunable oscillator, etc., that is, a YIG (yttrium / iron / garnet, Ga, etc.) The present invention relates to a thin-film ferromagnetic resonance resonator utilizing the magnetic resonance of a ferrimagnetic thin film, including the one added.

〔発明の概要〕[Summary of the Invention]

本発明は、非磁性基板の一主面上に強磁性共鳴共振薄
膜が形成されて成る強磁性共鳴共振子において、その非
磁性基板の他の主面を平均粗さが1000Å以上の粗面とす
る。あるいは同様の薄膜強磁性共振子において、その非
磁性基板の相対向する主面を互いに非平行とする。この
ような構成をとることによって共振特性の改善をはか
る。
The present invention provides a ferromagnetic resonance resonator in which a ferromagnetic resonance thin film is formed on one main surface of a non-magnetic substrate, wherein the other main surface of the non-magnetic substrate has a rough surface having an average roughness of 1000 ° or more. I do. Alternatively, in a similar thin-film ferromagnetic resonator, the opposing main surfaces of the non-magnetic substrate are not parallel to each other. With such a configuration, the resonance characteristics are improved.

〔従来の技術〕[Conventional technology]

YIG薄膜強磁性共鳴共振子を用いた磁気共振装置例え
ば高周波同調型フィルタ装置は、例えば実開昭63−9240
3号公報にもその開示があるように、例えば第9図にそ
の略線的構成を示すように、対の強磁性共鳴共振子とし
てのYIG薄膜共振子Y1及びY2による2段の帯域通過フィ
ルタ構成をとる。このフィルタにおいては、YIG薄膜共
振子Y1及びY2に対してそれぞれ信号を入力する入力伝送
線路L1と出力信号を取り出す出力伝送線路L2とが磁気的
に結合して設けられ、両YIG薄膜共振子Y1及びY2に差し
渡って結合伝送線路L12が両YIG薄膜共振子Y1及びY2に磁
気的に結合して設けられる。
A magnetic resonance device using a YIG thin film ferromagnetic resonance resonator, for example, a high-frequency tunable filter device is disclosed in, for example, Japanese Utility Model Application Laid-Open No. 63-9240.
As there is a disclosure to 3 JP, for example, as shown the schematic configuration in FIG. 9, to 2-stage band by YIG thin film resonator Y 1 and Y 2 as the ferromagnetic resonance resonator A pass filter configuration is adopted. In this filter, the output transmission line L 2 to retrieve the input transmission line L 1 and the output signal to input a respective signal to the YIG thin film resonator Y 1 and Y 2 are provided with magnetically coupled, both YIG coupled transmission line L 12 over pointing to the thin film resonator Y 1 and Y 2 is magnetically provided coupled to both YIG thin film resonator Y 1 and Y 2.

具体的には、第10図及び第11に示すように例えばSiO2
よりなる誘電体基板(1)の一方の面に伝送線路L1及び
L2がその主たる延長方向が例えばほぼ平行になるように
配置形成され、他方の面に結合伝送線路L12が、主とし
て入力及び出力伝送線路L1及びL2の延長方向(第10図に
おいて紙面と直交する方向)に直交する方向(すなわち
第10図において左右方向)に主として延長させ各線路L1
及びL2と基板(1)を挟んで交差するように延長形成さ
れる。一方、YIG薄膜共振子Y1及びY2は、例えばGGG(ガ
リウム・ガドリニウム・ガーネット)基板よりなる非磁
性基板(2)上にLPE(液相エピタキシー)によって被
着形成し、リソグラフィによってパターン化することに
よって同時に形成される。
Specifically, FIGS. 10 and 11 as shown, for example, SiO 2
Transmission lines L 1 and the one surface of the more becomes the dielectric substrate (1)
L 2 is formed and arranged so that the principal extension direction is substantially parallel example, the other surface in the coupled transmission line L 12, the paper mainly in the extension direction (Figure 10 input and output transmission lines L 1 and L 2 Each of the lines L 1 extends mainly in a direction orthogonal to (ie, a direction orthogonal to
And the extension is formed so as to intersect L 2 and across the substrate (1). On the other hand, YIG thin film resonator Y 1 and Y 2, for example GGG deposited formed by LPE (liquid phase epitaxy) on a (gallium gadolinium garnet) non-magnetic substrate made of a substrate (2), it is patterned by lithography Are formed at the same time.

そして、これら伝送線路L1,L2及びL12を有する誘電体
基板(1)とYIG薄膜共振子Y1及びY2を有する非磁性基
板(2)とは、その各YIG薄膜共振子Y1及びY2が入力及
び出力伝送路L1及びL2と結合伝送線路L12との交差部に
対向するように重ね合わせられ、真鍮等よりなる上部導
体(3),下部導体(4)との間に挟みこまれて保持さ
れると共にこのとき上部導体(3)と下部導体(4)と
が結合伝送線路L12と入出力各伝送線路L1及びL2の端部
に電気的に接触してこれらを接地するようにする。この
ように各伝送線路L1,L2及びL12とYIG薄膜共振子Y1及びY
2とが導体(3)及び(4)によって包囲されてなる装
置本体(5)が構成される。
The dielectric substrate (1) having the transmission lines L 1 , L 2 and L 12 and the non-magnetic substrate (2) having the YIG thin film resonators Y 1 and Y 2 correspond to the respective YIG thin film resonators Y 1 And Y 2 are overlapped so as to face the intersection of the input and output transmission lines L 1 and L 2 and the coupling transmission line L 12, and the upper conductor (3) and the lower conductor (4) made of brass or the like. in this case electrical contact with the end portion of the upper conductor (3) and the lower conductor (4) and is coupled transmission line L 12 and input-output transmission lines L 1 and L 2 together are sandwiched are in held between To ground them. Thus, the transmission lines L 1 , L 2 and L 12 and the YIG thin film resonators Y 1 and Y
2 is surrounded by conductors (3) and (4) to form an apparatus body (5).

そしてこの装置本体(5)は、第11図に示すように例
えば磁気回路(6)内の磁気ギャップ(7)内に配置さ
れる。磁気回路(6)は例えばそれぞれの中心に中心コ
ア(8A)及び(8B)を有してなる対の壷型磁気コア(6
A)及び(6B)よりなり、中心コア(8A)及び(8B)間
に磁気ギャップ(7)が形成されるようになされる。そ
して、これら中心コア(8A)及び(8B)の少くとも一方
に巻線(9)が巻装され、これへの通電によって、磁気
ギャップ(7)内に配置された装置本体(5)のYIG薄
膜共振子Y1及びY2の膜面方向と垂直方向に所要の磁界を
与えてその共振周波数を決定するようになされる。つま
り、この巻線(9)への通電電流の選定によって磁気ギ
ャップ(7)内の磁界の強さが変更されて装置本体
(5)の共振周波数が変更されるようになされる。
The device main body (5) is arranged, for example, in a magnetic gap (7) in a magnetic circuit (6) as shown in FIG. The magnetic circuit (6) comprises, for example, a pair of pot-shaped magnetic cores (6) having central cores (8A) and (8B) at their respective centers.
A) and (6B), so that a magnetic gap (7) is formed between the central cores (8A) and (8B). A winding (9) is wound on at least one of the center cores (8A) and (8B), and by energizing the winding, the YIG of the device body (5) disposed in the magnetic gap (7) is energized. to the film plane direction and the vertical direction of the thin film resonator Y 1 and Y 2 giving the required magnetic field is adapted to determine its resonant frequency. That is, the strength of the magnetic field in the magnetic gap (7) is changed by the selection of the current supplied to the winding (9), so that the resonance frequency of the device body (5) is changed.

ところが、このような磁気共振装置すなわち同調型フ
ィルタ装置の周波数特性をみると、第12図に示すように
所定周波数において矢印aで指し示すように挿入損失の
鋭い劣化部が生ずる場合がある。さらにこの劣化部が数
MHz間隔で発生し、フィルタとしての機能を持たしめる
ことができないという問題が生じている。そして、この
劣化の程度は数100MHzの低域で激しく1GHz以上では無視
し得る。すなわち、使用下限周波数が1GHzに抑えられて
しまう。
However, looking at the frequency characteristics of such a magnetic resonance device, that is, a tuned filter device, there is a case where a sharply degraded portion of the insertion loss occurs as shown by an arrow a at a predetermined frequency as shown in FIG. Furthermore, this deteriorated part
It occurs at the MHz interval, and there is a problem that the function as a filter cannot be provided. The degree of this degradation is severe in the low frequency range of several hundred MHz and negligible above 1 GHz. That is, the lower limit frequency of use is suppressed to 1 GHz.

このような現象はYIG薄膜共振子に起因するものであ
り、バンドパスフィルタはもとより、例えばバンドスト
ップフィルタ,発振器等において各機能がなされなくな
るという問題を生ずる。
Such a phenomenon is caused by the YIG thin-film resonator, and causes a problem that not only the band-pass filter but also the band-stop filter, the oscillator and the like do not perform their functions.

今、例えば第13図にその略線的平面図を示すようにSi
O2等の誘電体基板(31)上に伝送線路Lを形成し、これ
の上にYIG薄膜共振子Yを結合させたバンドストップフ
ィルタを構成した場合においてそのYIG薄膜共振子とし
てGGG非磁性基板上にYIGによる強磁性共鳴共振薄膜が形
成されそのGGG非磁性基板を鏡面にした場合、すなわち
平均粗度Raが30〜40Å程度である場合のバンドパスフィ
ルタについての周波数特性を示すと、第14図A及びBに
示すようになり、その共振劣化部(谷底に双峰が生じて
いる)の発生が著しい。
Now, for example, as shown in FIG.
When a transmission line L is formed on a dielectric substrate (31) of O 2 or the like, and a band stop filter is formed by coupling a YIG thin film resonator Y thereon, a GGG nonmagnetic substrate is used as the YIG thin film resonator. When the ferromagnetic resonance thin film of YIG is formed thereon and the GGG non-magnetic substrate is mirror-finished, that is, when the average roughness Ra is about 30 to 40 °, the frequency characteristics of the bandpass filter are shown in FIG. As shown in FIGS. A and B, the occurrence of the resonance-deteriorated portion (having a double peak at the valley bottom) is remarkable.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明はこのような薄膜強磁性共鳴共振子、具体的に
はYIG共振子における共振特性の劣化を改善することを
その主たる目的とする。
An object of the present invention is to improve deterioration of resonance characteristics of such a thin film ferromagnetic resonance resonator, specifically, a YIG resonator.

すなわち、この種の共振特性の劣化は、その劣化部の
発生周波数間隔がGGG非磁性基板とYIG薄膜との厚さに強
い相関性があることから弾性波であることがわかる。つ
まり、この薄膜強磁性共鳴共振子においては、高周波に
よるスピン歳差運動はある条件下においては磁気弾性波
を介して弾性波とカップリングする。この弾性波はGGG
非磁性基板のYIG薄膜を有する側とは反対側の主面で反
射し再びカップリングしてスピン波に戻り、その位相が
一致して共鳴現象が生じることによると思われる。した
がってこのような現象を回避するには弾性波の定在波の
発生を抑えることが考えられる。
That is, it can be understood that this kind of deterioration of the resonance characteristics is an elastic wave because the frequency interval between the deteriorated portions has a strong correlation with the thickness of the GGG nonmagnetic substrate and the YIG thin film. That is, in this thin-film ferromagnetic resonance resonator, spin precession due to high frequency couples with an elastic wave via a magnetoelastic wave under certain conditions. This elastic wave is GGG
This is probably because the nonmagnetic substrate is reflected on the main surface on the side opposite to the side having the YIG thin film, is coupled again, returns to spin waves, and the phases thereof coincide with each other to cause a resonance phenomenon. Therefore, to avoid such a phenomenon, it is conceivable to suppress the generation of standing waves of elastic waves.

〔課題を解決するための手段〕[Means for solving the problem]

本発明においては、第1図に示すように非磁性基板
(11)の一主面(11a)上に強磁性共鳴共振薄膜(12)
が形成されてなる薄膜強磁性共鳴共振子において、非磁
性基板(11)の他の主面(11b)を平均粗さRa(凹凸の
ピークトゥピークの平均)が1000Å以上の粗面とする。
In the present invention, as shown in FIG. 1, a ferromagnetic resonance thin film (12) is formed on one main surface (11a) of a non-magnetic substrate (11).
Is formed, the other main surface (11b) of the non-magnetic substrate (11) is a rough surface having an average roughness Ra (average of peak-to-peak of unevenness) of 1000 ° or more.

あるいは第2図に示すように、非磁性基板(11)の一
主面(11a)上に強磁性共鳴共振薄膜(12)が形成され
てなる薄膜強磁性共鳴共振子において、その非磁性基板
(11)の一主面(11a)とこれと対向する他の主面(11
b)とを非平行とする。
Alternatively, as shown in FIG. 2, in a thin film ferromagnetic resonance resonator in which a ferromagnetic resonance thin film (12) is formed on one main surface (11a) of a nonmagnetic substrate (11), the nonmagnetic substrate ( 11) One main surface (11a) and the other main surface (11a)
b) and are not parallel.

強磁性共鳴共振薄膜(12)は具体的にはYIG薄膜より
なり非磁性基板(11)は強磁性共鳴共振薄膜(12)とほ
ぼ同等の音響インピーダンスを有する例えばGGGよりな
る。
Specifically, the ferromagnetic resonance thin film (12) is made of a YIG thin film, and the nonmagnetic substrate (11) is made of, for example, GGG having an acoustic impedance almost equal to that of the ferromagnetic resonance thin film (12).

〔作用〕 第1図及び第2図で説明した本発明による薄膜強磁性
共鳴共振子によれば、共振特性の劣化部の発生が抑制さ
れ、使用下限周波数の低減化をはかることができた。こ
れは例えば第1図で示した共振子においては、その非磁
性基板(11)の表面すなわち強磁性共鳴共振薄膜(12)
の被着面とは反対側の主面(11b)を粗面としたことに
よって、強磁性共鳴共振薄膜(12)のスピン歳差運動に
よって発生した弾性波の主面(11b)からの反射が不規
則となって弾性波の定在波が立ちにくくなることによる
と考えられる。
[Operation] According to the thin-film ferromagnetic resonance resonator according to the present invention described with reference to FIGS. 1 and 2, the occurrence of the deteriorated portion of the resonance characteristics is suppressed, and the lower limit use frequency can be reduced. For example, in the resonator shown in FIG. 1, the surface of the nonmagnetic substrate (11), that is, the ferromagnetic resonance thin film (12)
The main surface (11b) on the opposite side to the surface to be adhered is roughened, so that the reflection of the elastic wave generated by the spin precession of the ferromagnetic resonance thin film (12) from the main surface (11b) is reduced. This is considered to be due to irregularity, which makes standing waves of elastic waves difficult to stand up.

また、第2図の構成においても、その非磁性基板(1
1)の両主面(11a)及び(11b)を非平行として両主面
(11a)及び(11b)の間隔を各部において異ならしめた
ことによって同様に弾性波の定在波が立ちにくくなるこ
とによるものと思われる。
In the configuration shown in FIG. 2, the non-magnetic substrate (1
1) The two main surfaces (11a) and (11b) are non-parallel, and the distance between the two main surfaces (11a) and (11b) is different in each part. It seems to be due to.

〔実施例〕〔Example〕

第1図にその断面図を示し、第3図にその平面図を示
すように例えば直径1〜5mmの円板状をなす厚さ数10μ
m〜500μmのGGG基板よりなる非磁性基板(11)上にLP
Eによって数μm〜200μmの厚さにYIG薄膜を成長させ
た。このようにして、基板(11)の一主面(11a)上に
強磁性YIG共鳴共振薄膜(12)を形成するが、この基板
(11)の他方の主面(11b)のYIG薄膜を除去し砥粒によ
る吹き付け,ラッピングあるいは垂直グラインダー,そ
の他の各種粗面化方法によってこの主面(11b)を粗面
化する。第4図はその一例の非磁性基板(11)の主面
(11b)の一部の表面を表面粗度計をもってトレースし
て測定した凹凸度を示したもので、この場合はその平面
粗度Raを1431Åとした場合である。この場合において第
13図で説明したバンドパスフィルタを構成してその周波
数特性を測定した結果を第5図A及びBに示す。これに
よればその挿入損失の劣化すなわち共振特性の劣化部の
発生を低周波側に持ち来すことができ、その使用下限周
波数は300MHz程度にまで低めることができた。
FIG. 1 shows a cross-sectional view thereof, and FIG. 3 shows a plan view thereof.
LP on non-magnetic substrate (11) consisting of GGG substrate
E was used to grow a YIG thin film to a thickness of several μm to 200 μm. Thus, a ferromagnetic YIG resonance resonance thin film (12) is formed on one main surface (11a) of the substrate (11), and the YIG thin film on the other main surface (11b) of the substrate (11) is removed. The main surface (11b) is roughened by spraying with abrasive grains, lapping or a vertical grinder, or other various surface roughening methods. FIG. 4 shows the roughness measured by tracing a part of the main surface (11b) of the non-magnetic substrate (11) as an example using a surface roughness meter. This is the case where Ra is set to 1431Å. In this case the
FIGS. 5A and 5B show the results of measuring the frequency characteristics of the bandpass filter described with reference to FIG. According to this, the deterioration of the insertion loss, that is, the occurrence of the deteriorated portion of the resonance characteristic can be brought to the low frequency side, and the lower limit frequency of use can be reduced to about 300 MHz.

さらにその第1図で説明した非磁性基板(11)の主面
(11b)の粗面度を大とした場合の表面粗度のトレース
の結果を第6図に示す。この場合の平均粗度Raは6392Å
であり、この場合の周波数特性は第7図A及びBとなっ
た。この場合、その使用下限周波数は更に改善されて20
0MHz以上で挿入損失の劣化はみられず、主面(11b)の
面の粗さを増すほど特性改善がはかられている。
Further, FIG. 6 shows the results of tracing the surface roughness when the roughness of the main surface (11b) of the nonmagnetic substrate (11) described in FIG. 1 is increased. The average roughness Ra in this case is 6392Å
The frequency characteristics in this case are shown in FIGS. 7A and 7B. In this case, the lower limit frequency of use is further improved to 20
No deterioration of the insertion loss is observed at 0 MHz or higher, and the characteristics are improved as the roughness of the main surface (11b) increases.

また或いは本発明においては第2図に示すように強磁
性共鳴共振子(12)が形成される非磁性基板(11)の両
主面(11a)及び(11b)を非平行とする。この場合、例
えば直径2.5mmにおいて一直径上の両端の厚み差を数μ
m以上とした。この場合両主面(11a)及び(11b)は鏡
面とされているにもかかわらず、その周波数特性は第8
図A及びBに示すように、その下限周波数を220MHz程度
とすることができた。
Alternatively, in the present invention, as shown in FIG. 2, both main surfaces (11a) and (11b) of the non-magnetic substrate (11) on which the ferromagnetic resonance resonator (12) is formed are non-parallel. In this case, for example, for a diameter of 2.5 mm, the thickness difference between both ends on one diameter is several μm.
m or more. In this case, although both principal surfaces (11a) and (11b) are mirror surfaces, their frequency characteristics are the eighth.
As shown in FIGS. A and B, the lower limit frequency could be set to about 220 MHz.

尚、上述した例においては、非磁性基板(11)の主面
(11b)を粗面化するかあるいは鏡面で主面(11a)及び
(11b)間を非平行面とした場合であるが、両者を同時
にすなわち主面(11a)及び(11b)を非平行にし、かつ
主面(11b)を粗面化することによってより周波数特性
の改善をはかることができる。
In the above-described example, the main surface (11b) of the non-magnetic substrate (11) is roughened or a non-parallel surface is formed between the main surfaces (11a) and (11b) with a mirror surface. The frequency characteristics can be further improved by making them both non-parallel at the same time, that is, making the main surfaces (11a) and (11b) non-parallel, and roughening the main surface (11b).

また、上述した例においては、円板上の非磁性基板
(11)上にその一主面(11a)に全面的に強磁性共鳴共
振薄膜(12)を形成した場合であるが、このような円板
状に限らず、方形等の任意の形状にすることができ、ま
た、非磁性基板(11)とこれの上に形成する強磁性共鳴
共振薄膜(12)とはその輪郭形状を異ならしめることも
できる。また非磁性基板(11)上に所要のパターンをも
って単数もしくは複数の強磁性共鳴共振薄膜(12)をLP
E及びフォトリソグラフィの適用によって形成して例え
ば第9図ないし第11図で説明した磁気共振装置例えば同
調型フィルタ装置あるいは同調型発振装置等を構成する
場合に適用することができる。
Further, in the above-described example, the ferromagnetic resonance thin film (12) is entirely formed on one main surface (11a) of the non-magnetic substrate (11) on the disk. The non-magnetic substrate (11) and the ferromagnetic resonance thin film (12) formed on the non-magnetic substrate (11) are not limited to the disk shape, and may have any shape. You can also. In addition, one or more ferromagnetic resonance thin films (12) are formed on a non-magnetic substrate (11) with a required pattern by LP.
For example, the present invention can be applied to a case where the magnetic resonance device described with reference to FIGS. 9 to 11 is formed by applying E and photolithography, for example, a tunable filter device or a tunable oscillation device.

〔発明の効果〕〔The invention's effect〕

第1図及び第2図で説明した本発明による薄膜強磁性
共鳴共振子によれば、その非磁性基板(11)の表面すな
わち強磁性共鳴共振薄膜(12)の被着面とは反対側の主
面(11b)を粗面としたことによって、或いはその非磁
性基板(11)の両主面(11a)及び(11b)を非平行とし
たことによって共振特性の劣化部の発生が抑制され、使
用下限周波数の低減化をはかることができることから、
各種磁気共振装置例えば同調型フィルタ装置,同調型発
振器等に適用して周波数特性の大幅な改善をはかること
ができる。
According to the thin film ferromagnetic resonance resonator according to the present invention described with reference to FIGS. 1 and 2, the surface of the nonmagnetic substrate (11), that is, the surface opposite to the surface on which the ferromagnetic resonance thin film (12) is attached, is provided. By making the main surface (11b) rough, or by making both the main surfaces (11a) and (11b) of the non-magnetic substrate (11) non-parallel, the occurrence of the deteriorated portion of the resonance characteristics is suppressed, Since the lower limit of use frequency can be reduced,
The present invention can be applied to various magnetic resonance devices, for example, a tunable filter device, a tunable oscillator, and the like, to greatly improve frequency characteristics.

【図面の簡単な説明】[Brief description of the drawings]

第1図及び第2図はそれぞれ本発明による薄膜強磁性共
鳴共振子の各例の略線的断面図、第3図はその平面図、
第4図及び第6図はそれぞれ非磁性基板の表面粗度を示
す測定曲線図、第5図,第7図及び第8図はそれぞれ周
波数特性曲線図、第9図は磁気共振装置の説明に供する
構成図、第10図はその磁気共振装置本体の断面図、第11
図はその磁気共振装置の一例の断面図、第12図はその周
波数特性曲線図、第13図はバンドストップフィルタの説
明に供する略線的平面図、第14図は従来の薄膜強磁性共
鳴共振子を用いたバンドストップフィルタ周波数特性曲
線図である。 (11)は非磁性基板、(11a)及び(11b)はその主面、
(12)は強磁性共鳴共振薄膜である。
1 and 2 are schematic cross-sectional views of respective examples of the thin film ferromagnetic resonance resonator according to the present invention, FIG. 3 is a plan view thereof,
4 and 6 are measurement curve diagrams showing the surface roughness of the non-magnetic substrate, respectively, FIGS. 5, 7, and 8 are frequency characteristic curve diagrams, respectively, and FIG. 9 is a description of the magnetic resonance device. FIG. 10 is a sectional view of the main body of the magnetic resonance apparatus, and FIG.
FIG. 12 is a cross-sectional view of one example of the magnetic resonance device, FIG. 12 is a frequency characteristic curve diagram thereof, FIG. 13 is a schematic plan view for explaining a band stop filter, and FIG. 14 is a conventional thin film ferromagnetic resonance resonance device. FIG. 9 is a frequency characteristic curve diagram of a band stop filter using a filter. (11) is a non-magnetic substrate, (11a) and (11b) are main surfaces thereof,
(12) is a ferromagnetic resonance thin film.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】非磁性基板の一主面上に強磁性共鳴共振薄
膜が形成されてなる薄膜強磁性共鳴共振子において、 上記非磁性基板の他の主面を平均粗さが1000Å以上の粗
面としたことを特徴とする薄膜強磁性共鳴共振子。
1. A thin-film ferromagnetic resonance resonator having a ferromagnetic resonance thin film formed on one main surface of a non-magnetic substrate, wherein the other main surface of the non-magnetic substrate has an average roughness of 1000 ° or more. A thin-film ferromagnetic resonance resonator characterized by having a surface.
【請求項2】非磁性基板の一主面上に強磁性共鳴共振薄
膜が形成されてなる薄膜強磁性共鳴共振子において、 上記非磁性基板の上記一主面とこれに対向する他の主面
とが非平行とされたことを特徴とする薄膜強磁性共鳴共
振子。
2. A thin-film ferromagnetic resonance resonator having a ferromagnetic resonance thin film formed on one main surface of a non-magnetic substrate, wherein the one main surface of the non-magnetic substrate and the other main surface opposing the main surface. And a non-parallel thin film ferromagnetic resonance resonator.
JP1216264A 1989-08-23 1989-08-23 Thin film ferromagnetic resonance resonator Expired - Fee Related JP2775881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1216264A JP2775881B2 (en) 1989-08-23 1989-08-23 Thin film ferromagnetic resonance resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1216264A JP2775881B2 (en) 1989-08-23 1989-08-23 Thin film ferromagnetic resonance resonator

Publications (2)

Publication Number Publication Date
JPH0379103A JPH0379103A (en) 1991-04-04
JP2775881B2 true JP2775881B2 (en) 1998-07-16

Family

ID=16685825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1216264A Expired - Fee Related JP2775881B2 (en) 1989-08-23 1989-08-23 Thin film ferromagnetic resonance resonator

Country Status (1)

Country Link
JP (1) JP2775881B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4491022B2 (en) 2008-04-08 2010-06-30 株式会社タカラトミー Cup toy and a dispenser toy that supplies beverages to the cup toy

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2660747B2 (en) * 1989-05-18 1997-10-08 株式会社村田製作所 Magnetostatic wave device

Also Published As

Publication number Publication date
JPH0379103A (en) 1991-04-04

Similar Documents

Publication Publication Date Title
KR940000428B1 (en) Tuned oscillator
CA1291578C (en) Integratable microwave devices based on ferromagnetic films disposed on dielectric substrates
CN114976543B (en) Interdigital YIG resonant structure and resonator
Murakami et al. A 0.5-4.0-GHz tunable bandpass filter using YIG film grown by LPE
US5568106A (en) Tunable millimeter wave filter using ferromagnetic metal films
JP2775881B2 (en) Thin film ferromagnetic resonance resonator
EP0836276B1 (en) Magnetostatic-wave device
US4777462A (en) Edge coupler magnetostatic wave structures
JPH01236724A (en) Chip for magnetostatic wave element and magnetostatic wave element
JP2619410B2 (en) Magnetostatic wave variable resonator
Poston et al. A new microwave ring resonator using guided magnetostatic surface waves
US5189383A (en) Circuit element utilizing magnetostatic wave
JP2636580B2 (en) Magnetostatic wave device
US5192928A (en) Circuit element having ferrimagnetic film with deviated end surfaces for suppressing spurious magnetostatic wave resonance modes
Murakami et al. A bandpass filter using YIG film grown by LPE
US5345204A (en) Magnetostatic wave resonator having at least one ring conductor
EP0929114A1 (en) Magnetostatic wave device
JP2004537905A (en) Ultrahigh frequency resonant circuits and tunable ultrahigh frequency filters using such resonant circuits
RU2091808C1 (en) Magnetic field sensor
JP2508424B2 (en) Ferromagnetic resonance device
CA1277377C (en) Ferrimagnetic resonator device
GB2194685A (en) Ferromagnetic resonance devices
JP2508424C (en)
JPH01303901A (en) Ferrimagnetic resonator
CA1143444A (en) Single-mode tunable oscillator using magnetostatic waves

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees