JP2775164B2 - Forged titanium product and method for producing the same - Google Patents

Forged titanium product and method for producing the same

Info

Publication number
JP2775164B2
JP2775164B2 JP3565389A JP3565389A JP2775164B2 JP 2775164 B2 JP2775164 B2 JP 2775164B2 JP 3565389 A JP3565389 A JP 3565389A JP 3565389 A JP3565389 A JP 3565389A JP 2775164 B2 JP2775164 B2 JP 2775164B2
Authority
JP
Japan
Prior art keywords
titanium
forging
based alloy
alloy material
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3565389A
Other languages
Japanese (ja)
Other versions
JPH02213453A (en
Inventor
修平 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP3565389A priority Critical patent/JP2775164B2/en
Publication of JPH02213453A publication Critical patent/JPH02213453A/en
Application granted granted Critical
Publication of JP2775164B2 publication Critical patent/JP2775164B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は例えばエンジン部品などに使用されるチタン
の鍛造成形品およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a forged titanium product used, for example, for engine parts and the like and a method for producing the same.

〔従来の技術〕[Conventional technology]

チタン基合金は比強度の高い材料であるために、近年
エンジンのコンロッドやバルブなどの部品に使用される
ようになってきた。
Since titanium-based alloys are materials having high specific strength, they have recently been used for parts such as connecting rods and valves of engines.

ところで、このチタン基合金は950〜990℃においてβ
相の比率がα相に対して急激に増えるように変化する。
そして、一度β相となった組織が徐々に冷却されると粒
界に粗大なα相、すなわちGB−α相が析出し機械的性質
が低下することが知られている。
By the way, this titanium-based alloy has a β
The phase ratio changes so as to increase sharply with respect to the α phase.
It is known that when the structure once in the β phase is gradually cooled, a coarse α phase, ie, a GB-α phase, precipitates at the grain boundaries, and the mechanical properties deteriorate.

そこで、従来、鍛造工程中に加工による温度上昇があ
ってもβ相の比率が急激に増えないようにするために、
鍛造前の加熱工程や、鍛造工程における最高温度を、例
えばTi−6Al−4Vでは950℃程度としそれ以下の温度でチ
タン基合金素材を鍛造するようにしていた。
Therefore, conventionally, even if there is a temperature rise due to processing during the forging process, in order to prevent the ratio of β phase from increasing rapidly,
The maximum temperature in the heating step and the forging step before forging is, for example, about 950 ° C. for Ti-6Al-4V, and the titanium-based alloy material is forged at a temperature lower than that.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、このようなチタンの鍛造成形品の製造方法に
おいては、変形抵抗が大きく塑性加工性が悪いα相の比
率が大きいα+β域で鍛造を行っているために、鍛造金
型が著しく摩耗し金型の寿命を延長するのがきわめて困
難であった。また、所定の高強度を得るために鍛造後
に、溶体化処理が必要になり、熱処理工程が多くなると
共に歪が大きくなるという問題もあった。
However, in such a method of manufacturing a forged titanium product, forging is performed in an α + β region where the deformation ratio is large and the plastic workability is poor, and the ratio of the α phase is large. It was extremely difficult to extend the life of the mold. Further, in order to obtain a predetermined high strength, a solution treatment is required after forging, so that there is a problem that the number of heat treatment steps increases and the strain increases.

そこで、これらの問題を解決すべく発明者はチタンの
金属組織と強度との関係、あるいは鍛造温度や鍛造後の
熱処理の金属組織に及ぼす影響などについて考察し、そ
れに基づいて繰返し実験を行った。その結果、チタン基
合金素材をβトランザス(以下β−Tという)を越える
までに加熱した後に鍛造を行うか、あるいは鍛造中に加
工熱でβ−Tを越える温度にし、かつ鍛造後にMs点以上
の温度から急冷するようにすると、変形抵抗が小さい状
態で鍛造が行えるにも関わらず、α+β域で鍛造を行っ
た場合と略同等の強度が得られることを見出した。ま
た、このように鍛造を行えば、鍛造後の溶体化処理を行
う必要がないことがわかった。
Therefore, in order to solve these problems, the inventor considered the relationship between the metal structure and the strength of titanium, the effect of the forging temperature and the heat treatment after forging on the metal structure, and carried out repeated experiments based on the results. As a result, forging is performed after heating the titanium-based alloy material to a temperature exceeding β Transus (hereinafter referred to as β-T), or a temperature exceeding β-T due to processing heat during forging, and after the forging, the Ms point or more. It has been found that when quenching is performed from the above temperature, although the forging can be performed in a state where the deformation resistance is small, substantially the same strength as when forging is performed in the α + β region can be obtained. Further, it was found that if forging was performed in this manner, it was not necessary to perform a solution treatment after forging.

本発明はこのような事情に鑑みなされたもので、溶体
化処理を不要として熱処理工程を簡素化し、鍛造金型の
寿命を長くすることができるチタン鍛造成形品およびそ
の製造方法を提供するものである。
The present invention has been made in view of such circumstances, and provides a titanium forged molded product capable of simplifying a heat treatment step by eliminating the need for solution treatment and extending the life of a forging die, and a method for producing the same. is there.

〔課題を解決するための手段〕[Means for solving the problem]

本発明に係るチタンの鍛造成形品の製造方法は、加熱
工程あるいは鍛造工程の少なくとも一方の工程において
チタン基合金素材をβ−Tを越える温度にすると共に、
冷却工程においてチタン基合金素材をMs点以上の温度か
ら急冷するものである。また、チタンの鍛造成形品は鍛
流線を有すると共に、マルテンサイトの針状組織が析出
した金属組織を有したものである。
The method for producing a forged titanium product according to the present invention is to raise the temperature of the titanium-based alloy material to a temperature exceeding β-T in at least one of the heating step and the forging step,
In the cooling step, the titanium-based alloy material is rapidly cooled from a temperature not lower than the Ms point. The forged titanium product has a forging line and a metal structure on which a needle-like structure of martensite is precipitated.

〔作用〕[Action]

本発明においては、チタン基合金素材をβ−T以上に
することにより、結晶構造が変化し鍛造時の変形抵抗が
小さくなる。また、鍛造中にβ−Tを通過するか、β−
T通過直後鍛造を行うため結晶粒界に粗大なα相が析出
するのが抑えられると共に、Ms以上からの急冷によりマ
ルテンサイトの針状組織が析出するために強度の低下が
抑えられる。
In the present invention, by setting the titanium-based alloy material to β-T or more, the crystal structure changes and the deformation resistance during forging decreases. In addition, it passes through β-T during forging, or
Since forging is performed immediately after passing through T, precipitation of a coarse α phase at a crystal grain boundary is suppressed, and a decrease in strength is suppressed due to precipitation of a needle-like structure of martensite due to rapid cooling from Ms or more.

〔実施例〕〔Example〕

以下、本発明の一実施例を図により詳細に説明する。
第1図は本発明に係るチタンの鍛造成形品の製造方法に
よるチタン基合金素材の温度変化を示すグラフであり、
横軸に時間Tをとり、縦軸に温度temをとってある。詮
ず、成形品に近い形状、例えばコンロッドの場合は棒状
のチタン基合金素材を用意し、加熱工程aにおいてチタ
ン基合金素材を加熱装置でβ−Tを越える温度に加熱し
チタン基合金素材を変形抵抗が小さいβ単相に結晶構造
を変化させる。実施例においては、チタン基合金素材と
してTi−6Al−4Vが用いられているため、990℃を越える
温度である約1200℃にまで加熱する。ここで、加熱時間
は結晶粒の成長およびスケールの生成を低減するため
に、可及的に短い方が好ましい。また、加熱温度も鍛造
時にチタン基合金素材を変形抵抗が小さい状態に保持で
きる範囲内で可及的に低い方が好ましい。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a graph showing a temperature change of a titanium-based alloy material by a method of manufacturing a forged titanium product according to the present invention,
The horizontal axis indicates time T, and the vertical axis indicates temperature tem. After all, a titanium-based alloy material having a shape close to that of a molded product, for example, a rod-shaped titanium-based alloy material is prepared in the case of a connecting rod, and in the heating step a, the titanium-based alloy material is heated to a temperature exceeding β-T by a heating device to remove the titanium-based alloy material. Changes the crystal structure into a β single phase with low deformation resistance. In the embodiment, since Ti-6Al-4V is used as the titanium-based alloy material, the material is heated to about 1200 ° C., which is a temperature exceeding 990 ° C. Here, the heating time is preferably as short as possible in order to reduce the growth of crystal grains and the formation of scale. Further, it is preferable that the heating temperature is as low as possible within a range where the titanium-based alloy material can be kept in a state of low deformation resistance during forging.

次の鍛造工程bにおいては、チタン基合金素材の温度
が1050℃で鍛造を開始する。すなわち、荒地型を用いて
荒地鍛造を行い、仕上型を用いて仕上鍛造を行う。チタ
ン基合金素材は型のキャビティの形状に沿って鍛流線を
形成するように塑性変形し成形品の形状、例えばコンロ
ッド形状に成形される。鍛造中にチタン基合金素材は温
度が低下し、β−Tを通過してα+β域に入るが、Ms点
(840〜885℃)よりは低くならないようにする。なお、
鍛造中にチタン基合金素材の全体がβ域からβ−Tを通
過することが望ましいが、必ずしも鍛造中にβ−Tを通
過させる必要はない。すなわち、鍛造開始時に表面温度
がβ−T以下、内部温度がβ−T以上であってもよく、
あるいは表面温度がβ−T以下、内部温度がβ−T以下
であってもよい。これは、β−T通過直後であれば、変
形抵抗もさほど大きくならず、仮に、析出したGB−α相
があったとしても鍛造を開始することでその粗大化成長
が抑えられるからである。
In the next forging step b, forging starts when the temperature of the titanium-based alloy material is 1050 ° C. That is, wasteland forging is performed using a wasteland mold, and finish forging is performed using a finish die. The titanium-based alloy material is plastically deformed so as to form a grain flow along the shape of the cavity of the mold, and is formed into a shape of a molded product, for example, a connecting rod shape. During forging, the temperature of the titanium-based alloy material decreases, passes through β-T and enters the α + β region, but does not fall below the Ms point (840 to 885 ° C.). In addition,
It is desirable that the entire titanium-based alloy material passes through β-T from the β region during forging, but it is not necessary to pass β-T during forging. That is, the surface temperature at the start of forging may be β-T or less, and the internal temperature may be β-T or more,
Alternatively, the surface temperature may be β-T or lower, and the internal temperature may be β-T or lower. This is because the deformation resistance does not increase so much immediately after passing through β-T, and even if there is a precipitated GB-α phase, coarsening growth is suppressed by starting forging.

そして、鍛造後、冷却工程cで、前記Ms点以上の温度
である910℃から水あるいは油を溜めた冷却槽中に漬け
て急冷する。
Then, after forging, in a cooling step c, it is immersed in a cooling tank containing water or oil and rapidly cooled from 910 ° C. which is a temperature not lower than the Ms point.

なお、時効処理は鍛造成形品を加熱炉内に保持して行
う。例えば530℃の炉内に4時間保持した後に空冷す
る、あるいは680℃の炉内に1時間保持した後に空冷す
る。鍛造成形品の形状を修正するホットコイニングは、
前記時効処理の処理温度よりも低い温度で行う。
The aging treatment is performed while holding the forged product in a heating furnace. For example, it is air-cooled after being kept in a furnace at 530 ° C. for 4 hours, or air-cooled after being kept in a furnace at 680 ° C. for 1 hour. Hot coining, which corrects the shape of forged products,
The aging treatment is performed at a temperature lower than the processing temperature.

このようなチタンの鍛造成形品の製造方法によれば、
チタン基合金素材をβ−Tを越える温度に加熱したの
で、チタン基合金素材を変形抵抗が小さい状態で鍛造を
行うことができ、荒地型、仕上型に大きな力が作用する
のを防止することができる。そのため、これら鍛造金型
が摩耗するのを軽減し、寿命を延長化することができ
る。また、鍛造後のチタン基合金素材をMs点以上からの
急冷したので、ミクロ組織において結晶粒界に粗大なα
相、すなわちGB−α相が析出するのを抑えることができ
ると共に、マルテンサイトの針状組織を析出させること
ができる。しかも、マクロ組織においては、鍛造時にチ
タン基合金素材がキャビティ形状に塑性変形する際に形
成される鍛流線はそのまま残しておくことができる。
According to such a method of manufacturing a forged titanium product,
Since the titanium-based alloy material is heated to a temperature exceeding β-T, the titanium-based alloy material can be forged with low deformation resistance, preventing large forces from acting on rough terrain and finishing dies. Can be. Therefore, wear of these forging dies can be reduced, and the life can be extended. In addition, since the titanium-based alloy material after forging was quenched from the Ms point or higher, coarse α
The precipitation of the phase, that is, the GB-α phase, can be suppressed, and the needle-like structure of martensite can be precipitated. Moreover, in the macrostructure, the forging line formed when the titanium-based alloy material is plastically deformed into a cavity shape during forging can be left as it is.

第2図は本発明に係るチタンの鍛造成形品の一実施例
であるコンロッドを示す斜視図、第3図は第2図のIII
−III線断面図である。コンロッド1は第3図に中央部
横断面図を示すようにマクロ組織においては、外周面に
沿って鍛流線が存在している。
FIG. 2 is a perspective view showing a connecting rod which is an embodiment of a forged titanium product according to the present invention, and FIG. 3 is III in FIG.
FIG. 3 is a sectional view taken along line III. In the macrostructure of the connecting rod 1 as shown in FIG.

第4図は同じく本発明に係るチタンの鍛造成形品とし
てのコンロッド1の金属組織を示す写真である。
(a),(b)は第3図においてAで示すコンロッドの
表面部の金属組織を示し、(a)は100倍に拡大し、
(b)は400倍に拡大したものである。(c),(d)
は第3図においてBで示す芯部をそれぞれ100倍,400倍
に拡大したものである。これらのミクロ組織を示す写真
において押潰された多角形の輪郭のように見える部分が
結晶粒界であり、この結晶粒界付近に白く見える部分が
GB−α相である。このGB−α相は(d)において顕著に
現れており、(d)の写真の略中央部を左右方向に横断
している。結晶粒界内にねずみ色あるいは黒く見える部
分がマルテンサイトであり、黒く細い筋が多数平行に並
んでいる部分、あるいは筋が交差して網目状に並んでい
る部分がマルテンサイトの針状組織である。なお、
(a)において結晶粒が縦に長くなるように押潰されて
おり、このような結晶粒の変形が鍛流線の発生に影響を
与えていると考えられる。
FIG. 4 is a photograph showing a metal structure of a connecting rod 1 as a forged titanium product according to the present invention.
(A) and (b) show the metal structure of the surface of the connecting rod shown by A in FIG. 3, (a) is enlarged 100 times,
(B) is an enlargement of 400 times. (C), (d)
In FIG. 3, the cores indicated by B in FIG. 3 are enlarged 100 times and 400 times, respectively. In the photographs showing these microstructures, a portion that looks like a crushed polygonal outline is a crystal grain boundary, and a portion that appears white near the crystal grain boundary is
GB-α phase. This GB-α phase is prominently shown in (d), and crosses substantially the center of the photograph in (d) in the left-right direction. The part that looks gray or black in the crystal grain boundaries is martensite, and the part where many thin black stripes are arranged in parallel, or the part where the stripes intersect and form a mesh is the needle structure of martensite. . In addition,
In (a), the crystal grains are crushed so as to be elongated vertically, and it is considered that such deformation of the crystal grains affects the generation of the grain flow line.

第5図は従来の製造方法によって製造したコンロッド
の第4図に相当した金属組織を示す写真である。従来の
コンロッドの金属組織においては、(a)〜(d)の何
れ写真においても粒状のα組織が析出している。
FIG. 5 is a photograph showing a metal structure corresponding to FIG. 4 of a connecting rod manufactured by a conventional manufacturing method. In the metal structure of the conventional connecting rod, a granular α structure is precipitated in any of the photographs (a) to (d).

第6図は本発明に係るチタンの鍛造成形品としてのコ
ンロッドの疲れ試験よる実験値と従来のコンロッドの疲
れ試験による実験値と比較して示すグラフであり、横軸
に破断するまでの応力繰返し回数Nをとり、縦軸に応力
S(MPa)をとってある。グラフにおいて黒色で示す実
験値はβ域まで加熱した本発明のコンロッドで得られる
実験値を示し、白抜きで示す実験値はα+β域で鍛造し
た従来のコンロッドで得られる実験値を示す。また、三
角形は圧延方向(RD)に荷重を加えた場合を示し、正方
形は圧延と直交する方向(TD)に荷重を加えた場合の実
験結果を示す。なお、実験は空気中(AIR)において行
われ、応力比R(σmin/σmax)は−1とされている。
FIG. 6 is a graph showing a comparison between an experimental value obtained by a fatigue test of a connecting rod as a forged product of titanium according to the present invention and an experimental value obtained by a conventional fatigue test of a connecting rod. The number N is taken and the stress S (MPa) is taken on the vertical axis. In the graph, the experimental values shown in black indicate the experimental values obtained with the connecting rod of the present invention heated to the β region, and the experimental values shown in white indicate the experimental values obtained with the conventional connecting rod forged in the α + β region. Triangles indicate the case where a load is applied in the rolling direction (RD), and squares indicate the experimental results when a load is applied in the direction (TD) perpendicular to the rolling. The experiment was performed in air (AIR), and the stress ratio R (σmin / σmax) was set to −1.

この第6図によれば、黒色の実験値と白抜きの実験値
がそれぞれ曲線Cに沿って点在しており、本発明のコン
ロッドが、従来のコンロッドと略同程度の疲れ強度を有
していることがわかる。これは、結晶粒が粗大化するこ
とおよび結晶粒界に粗大なGB−α相が析出するのが抑え
られると共に、マルテンサイトの針状組織が析出するこ
となどによって、強度が低下するのが抑えられるためと
考えられる。また、長手方向に延びた鍛流線が存在する
ため、長手方向に引張応力や圧縮応力を受けるコンロッ
ドの機能に有利に働くと考えられる。
According to FIG. 6, the black experimental value and the white experimental value are scattered along the curve C, and the connecting rod of the present invention has approximately the same fatigue strength as the conventional connecting rod. You can see that it is. This is because the coarsening of the crystal grains and the precipitation of the coarse GB-α phase at the crystal grain boundaries are suppressed, and the decrease in strength due to the precipitation of the martensite acicular structure and the like are suppressed. It is thought that it is. In addition, it is considered that the presence of the grain flow line extending in the longitudinal direction advantageously works on the function of the connecting rod that receives tensile stress and compressive stress in the longitudinal direction.

なお、上記実施例においては、チタン基合金素材を加
熱工程においてβ−Tを越える温度にまで加熱した例に
ついて説明したが本発明はこれに限定されるものではな
く、加熱温度をβ−Tよりも低くし、鍛造工程中の加工
による昇温よってチタン基合金素材をβ−Tを越える温
度にするようにしてもよく、同等な作用効果を得ること
ができる。
In the above embodiment, an example in which the titanium-based alloy material is heated to a temperature exceeding β-T in the heating step has been described, but the present invention is not limited to this, and the heating temperature may be increased from β-T. The temperature of the titanium-based alloy material may be set to a temperature exceeding β-T by raising the temperature during the forging process, and the same operation and effect can be obtained.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、加熱工程あるい
は鍛造工程の少なくとも一方の工程においてチタン基合
金素材をβ−Tを越える温度にすると共に、冷却工程に
おいてチタン基合金素材をMs点以上の温度から急冷する
から、鍛造時の変形抵抗を小さくし、かつ鍛流線および
マルテンサイトの針状組織が析出した金属組織を有し従
来のものと略同等な強度を有するチタンの鍛造成形品を
製造することができる。
As described above, according to the present invention, the temperature of the titanium-based alloy material exceeds β-T in at least one of the heating step and the forging step, and the temperature of the titanium-based alloy material is reduced to the Ms point or higher in the cooling step. Since it is rapidly cooled from the beginning, it produces a forged titanium molded product that has a deformation resistance during forging, has a metal structure in which the needle-like structure of the forging line and martensite is precipitated, and has almost the same strength as the conventional one. can do.

したがって、鍛造金型の摩耗を軽減して寿命を延長す
ることができると共に、鍛造金型の一つの金型当たりの
塑性変形量を多くし鍛造金型の種類を少なくすることも
できる。また、鍛造成形品の鍛造後に従来行われていた
溶体化処理工程を不要にすることができるから、熱処理
工程を簡素化することができるだけでなく、溶体化処理
によって生じていた歪をなくして、鍛造成形品に生じる
歪を小さく抑えることができる。
Therefore, the life of the forging die can be reduced by reducing the wear of the forging die, and the amount of plastic deformation per one die of the forging die can be increased to reduce the number of types of the forging die. In addition, since the solution treatment step conventionally performed after forging of the forged molded article can be made unnecessary, not only can the heat treatment step be simplified, but also the distortion caused by the solution treatment is eliminated, The strain generated in the forged product can be suppressed to a small value.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係るチタンの鍛造成形品の製造方法に
よるチタン基合金素材の温度変化を示すグラフ、第2図
は本発明に係るコンロッドを示す斜視図、第3図は第2
図のIII−III線断面図、第4図は同じくコンロッドの金
属組織を示す写真、第5図は従来の製造方法によって製
造したコンロッドの第4図に相当した金属組織を示す写
真、第6図は本発明に係る鍛造成形品としてのコンロッ
ドの疲れ試験よる実験値と従来のコンロッドの疲れ試験
による実験値とを比較して示すグラフである。 1……コンロッド、a……加熱工程、b……鍛造工程、
c……冷却工程。
FIG. 1 is a graph showing a temperature change of a titanium-based alloy material by a method for producing a forged titanium product according to the present invention, FIG. 2 is a perspective view showing a connecting rod according to the present invention, and FIG.
FIG. 4 is a photograph showing the metal structure of the connecting rod, FIG. 5 is a photograph showing the metal structure corresponding to FIG. 4 of the connecting rod manufactured by the conventional manufacturing method, and FIG. 3 is a graph showing a comparison between experimental values obtained by a fatigue test of a connecting rod as a forged product according to the present invention and experimental values obtained by a conventional fatigue test of a connecting rod. 1 ... connecting rod, a ... heating step, b ... forging step,
c: Cooling step.

フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 682 C22F 1/00 682 683 683 684 684A 691 691B 692 692A 692B 694 694B (58)調査した分野(Int.Cl.6,DB名) C22F 1/00,1/18 B21J 5/00 B21K 1/14Continuation of the front page (51) Int.Cl. 6 identification code FI C22F 1/00 682 C22F 1/00 682 683 683 684 684A 691 691B 692 692A 692B 694 694B (58) Fields investigated (Int. Cl. 6 , DB Name) C22F 1 / 00,1 / 18 B21J 5/00 B21K 1/14

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】チタン基合金素材を加熱する加熱工程と、
加熱されたチタン基合金素材を鍛造成形する鍛造工程
と、成形されたチタン基合金素材を冷却する冷却工程と
からなり、前記加熱工程あるいは鍛造工程の少なくとも
一方の工程においてチタン基合金素材をβトランザスを
越える温度にすると共に、冷却工程においてチタン基合
金素材をMs点以上の温度から急冷することを特徴とする
チタンの鍛造成形品の製造方法。
A heating step of heating a titanium-based alloy material;
A forging step of forging the heated titanium-based alloy material, and a cooling step of cooling the formed titanium-based alloy material. In at least one of the heating step and the forging step, the titanium-based alloy material is subjected to β-transformation. And a quenching of the titanium-based alloy material from a temperature not lower than the Ms point in the cooling step.
【請求項2】鍛流線を有すると共に、マルテンサイトの
針状組織が析出した金属組織を有することを特徴とする
チタンの鍛造成形品。
2. A forged titanium product having a forging line and a metal structure on which a needle-like structure of martensite is precipitated.
JP3565389A 1989-02-15 1989-02-15 Forged titanium product and method for producing the same Expired - Fee Related JP2775164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3565389A JP2775164B2 (en) 1989-02-15 1989-02-15 Forged titanium product and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3565389A JP2775164B2 (en) 1989-02-15 1989-02-15 Forged titanium product and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02213453A JPH02213453A (en) 1990-08-24
JP2775164B2 true JP2775164B2 (en) 1998-07-16

Family

ID=12447836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3565389A Expired - Fee Related JP2775164B2 (en) 1989-02-15 1989-02-15 Forged titanium product and method for producing the same

Country Status (1)

Country Link
JP (1) JP2775164B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2983598B2 (en) 1989-10-23 1999-11-29 キャメロン フォージッド プロダクツ カンパニー Fine grain titanium forgings and method for producing the same
CN101947622A (en) * 2010-08-02 2011-01-19 贵州航天新力铸锻有限责任公司 Mould for forging special connecting pipe of vapor-water separation reheater of nuclear power plant and forging method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69208837T2 (en) * 1991-12-02 1996-10-31 Gen Electric Titanium-aluminum alloys of the gamma type modified with chrome, tantalum and boron
DE69715120T2 (en) * 1996-03-29 2003-06-05 Kobe Steel Ltd HIGH-STRENGTH TIT ALLOY, METHOD FOR PRODUCING A PRODUCT THEREOF AND PRODUCT
JP4999828B2 (en) 2007-12-25 2012-08-15 ヤマハ発動機株式会社 Fracture split type connecting rod, internal combustion engine, transport equipment, and method of manufacturing fracture split type connecting rod

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2983598B2 (en) 1989-10-23 1999-11-29 キャメロン フォージッド プロダクツ カンパニー Fine grain titanium forgings and method for producing the same
CN101947622A (en) * 2010-08-02 2011-01-19 贵州航天新力铸锻有限责任公司 Mould for forging special connecting pipe of vapor-water separation reheater of nuclear power plant and forging method

Also Published As

Publication number Publication date
JPH02213453A (en) 1990-08-24

Similar Documents

Publication Publication Date Title
JP5082483B2 (en) Method for producing aluminum alloy material
CN107250416B (en) The manufacturing method of Ni base superalloy
TWI506149B (en) Production of high strength titanium
EP2868759B1 (en) ALPHA + BETA TYPE Ti ALLOY AND PROCESS FOR PRODUCING SAME
EP3336209B1 (en) Heat-resistant ti alloy and process for producing the same
JPH06172949A (en) Member made of magnesium alloy and its production
EP1466028A1 (en) Method for processing beta titanium alloys
JP6079294B2 (en) Free forging method of Ni-base heat-resistant alloy member
JP2014161861A5 (en)
JP2775164B2 (en) Forged titanium product and method for producing the same
EP1409759A1 (en) High strenght aluminum alloy
JP2003277899A (en) Magnesium alloy member and its production method
KR100219931B1 (en) High strength steel sway bars and method of making
US4533390A (en) Ultra high carbon steel alloy and processing thereof
US7138020B2 (en) Method for reducing heat treatment residual stresses in super-solvus solutioned nickel-base superalloy articles
EP1190109A1 (en) Heat treatment of formed aluminum alloy products
US4616499A (en) Isothermal forging method
JP3362428B2 (en) Processing method of hot-formed product of β-type titanium alloy
JP4442004B2 (en) Method for producing heat-resistant Ti alloy
JP3496289B2 (en) Manufacturing method of martensitic precipitation hardening stainless steel high strength member
JPH11199995A (en) Method for improving creep characteristic of titanium alloy and titanium alloy
JPH1112675A (en) Production of aluminum alloy for hot forging and hot forged product
JPS63130755A (en) Working heat treatment of alpha+beta type titanium alloy
JPS5826425B2 (en) Manufacturing method for high-strength aluminum alloy with excellent mechanical properties in the thickness direction
JPH0726184B2 (en) Method for producing hot-worked material of α + β-type titanium alloy having ultrafine grain structure

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees