JP2774713B2 - 超電導素子 - Google Patents

超電導素子

Info

Publication number
JP2774713B2
JP2774713B2 JP3245536A JP24553691A JP2774713B2 JP 2774713 B2 JP2774713 B2 JP 2774713B2 JP 3245536 A JP3245536 A JP 3245536A JP 24553691 A JP24553691 A JP 24553691A JP 2774713 B2 JP2774713 B2 JP 2774713B2
Authority
JP
Japan
Prior art keywords
superconductor
normal conductor
normal
junction
conductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3245536A
Other languages
English (en)
Other versions
JPH0590651A (ja
Inventor
宏 久保田
正之 砂井
二朗 吉田
公一 水島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3245536A priority Critical patent/JP2774713B2/ja
Publication of JPH0590651A publication Critical patent/JPH0590651A/ja
Application granted granted Critical
Publication of JP2774713B2 publication Critical patent/JP2774713B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、超電導近接効果を利用
した超電導素子に関する。
【0002】
【従来の技術】超電導体/常伝導体/超電導体接合で
は、これを構成する常伝導体中に両側の超電導体より及
ぼされる超電導近接効果によって、超電導電流を流すこ
とができる。このような接合を有する素子は、いわゆる
SNS接合型のジョセフソン素子として動作する。近
年、このような超電導体接合において、超電導体として
Y系酸化物超電導体を用いると共に、常伝導体として Y
系酸化物超電導体の Yを一定の割合でPrに置換した電気
伝導性酸化物を用いることが試みられている。
【0003】このような、超電導体として酸化物高温超
電導体のみを用いた超電導素子は、液体窒素温度での動
作が可能であり、実用化に向けて研究が進められてい
る。その中でも、上述した超電導体として Y系酸化物超
電導体を用い、かつ常伝導体として Y系酸化物超電導体
の Yの一部をPrで置換した電気伝導性酸化物を用いた接
合は、格子定数の差がほとんどなく、界面近傍の格子の
乱れが極めて少ないために、このような材料の組合せで
超電導素子を作製する研究が活発になってきている。
【0004】しかし、上記したような Y系酸化物超電導
体/(Y,Pr)系電気伝導性酸化物/ Y系酸化物超電導体に
よるSNS接合は、一般に臨界電流Ic の値は大きくと
れるものの、常伝導抵抗Rn が小さいため、結果的に素
子の出力であるIc ・Rn 積を大きくすることができな
いという問題を有していた。このため、上記した材料の
組合せを超電導素子に応用することは困難であった。
【0005】このような問題を改善するためには、臨界
電流Ic または常伝導抵抗Rn を増やせばよいわけであ
るが、臨界電流密度は超電導現象の特性で最大値が決っ
ており、大幅に増やすことは不可能であることから、I
c ・Rn 積を大きくするためには、常伝導抵抗Rn を大
きくする必要がある。例えば、常伝導体として金属等を
用いる場合には、常伝導体中に不純物を入れる等して、
電子の不純物散乱を増やし、これによって常伝導抵抗R
n を増やす方法が試みられてきた。
【0006】しかしながら、上記したような方法は、上
述した(Y,Pr)系の電気伝導性酸化物の場合にはその結晶
性により不純物を入れることが困難であり、適用するこ
とができない。また、Prによる置換率を一様に上げて、
常伝導抵抗Rn を高めることも考えられているが、この
方法では接合の臨界電流Ic が大きく減少してしまうた
め、常伝導抵抗Rn は増えるものの、接合のIc ・Rn
積はかえって減少してしまう。
【0007】
【発明が解決しようとする課題】上述したように、 Y系
酸化物超電導体とその Yの一部をPrで置換した電気伝導
性酸化物とを用いた、従来の超電導体/常伝導体/超電
導体接合は、その常伝導抵抗Rn が小さいという欠点を
有しており、また常伝導体として金属等を用いた場合に
使用されてきた常伝導抵抗Rn を高める方法も適用でき
ないという問題があった。そこで、常伝導体層として
(Y,Pr)系電気伝導性酸化物を用いる場合に、臨界電流I
c を大きく減少させることなく、常伝導抵抗Rnを大き
くし、接合のIc ・Rn 積を増大させることを可能にす
ることが強く望まれていた。
【0008】本発明は、このような課題に対処するため
になされたもので、超電導体としてY系酸化物超電導体
を用い、かつ常伝導体層として Y系酸化物超電導体の Y
の一部をPrに置換した(Y,Pr)系電気伝導性酸化物を用い
る場合に、臨界電流Ic の減少を抑制した上で常伝導抵
抗Rn を増加させ、接合のIc ・Rn 積を増大させた超
電導素子を提供することを目的としている。
【0009】
【課題を解決するための手段】すなわち本発明の超電導
素子は、 Y系酸化物超電導体と、前記 Y系酸化物超電導
体の Yの少なくとも一部をPrで置換した常伝導体とを用
いて、超電導体/常伝導体/超電導体接合を構成した超
電導素子において、前記常伝導体層内の前記Prによる置
換割合が、前記超電導体層と常伝導体層との界面近傍か
ら該常伝導体層の内部に向けて減少していることを特徴
としている。
【0010】本発明に用いられる Y系酸化物超電導体
は、 Y-Ba-Cu-Oを基本構成元素とし、ペロブスカイト構
造を有する酸化物超電導体であり、実質的に下記の (1)
式で組成が表されるものである。
【0011】 式: YBa2 Cu3 O 7-δ ………(1) (式中、δは酸素欠損を表し、通常 1以下の数)ただ
し、各元素の比率は、製造条件等により数モル%程度の
割合で変動可能であり、また超電導特性を劣化させない
範囲で、 Yの一部は他の希土類元素と、またBaの一部は
他のアルカリ土類元素と置換可能である。
【0012】また、本発明に用いられる常伝導体は、上
記した Y系酸化物超電導体の Yの少なくとも一部をPrで
置換した電気伝導性酸化物であり、実質的に下記の (2)
式で組成が表されるものである。
【0013】 式:(Y1-x Prx )Ba2 Cu3 O 7-δ ………(2) (式中、 xは 0.4≦ x≦ 1を満足する数を示す)そし
て、本発明の超電導素子における常伝導体層は、上記
(2)式で実質的に表される(Y,Pr)系電気伝導性酸化物中
のPrによる置換割合を、超電導体層/常伝導体層の界面
近傍から常伝導体層の内部に向けて減少させたものであ
る。このPrの置換率は、一様な勾配をもたせてもよい
し、また段階的に置換率を変化させてもよい。また、Pr
による置換率の勾配は、接合の臨界電流Ic と常伝導抵
抗Rn とを考慮して適宜設定するものであるが、例えば
超電導体層/常伝導体層の界面近傍におけるPrによる置
換割合を最大に設定する部分は、上記 (2)式における x
の値を 0.8〜 1程度とし、常伝導体層内部は xの値を
0.4〜 0.8程度とすることが好ましい。
【0014】
【作用】一般に、超電導体/常伝導体の界面抵抗が増え
ると、超電導体/常伝導体/超電導体接合の臨界電流I
c が減少するため、従来は超電導体/常伝導体の接合部
では臨界電流を減らさないよう、界面抵抗の小さい界面
を作ることが試みられてきた。しかし、図6に見られる
ように、界面抵抗の大きさが適当な範囲内にあれば、界
面抵抗が小さい場合よりも、かえってIc ・Rn 積を大
きくすることができる。具体的な値は、超電導体および
常伝導体の状態密度、フェルミ速度の値、常伝導体層の
厚さによって異なるが、その傾向は同じである。
【0015】この現象は、次のように理解できる。SN
S接合の臨界電流Ic は界面抵抗の小さいうちは、ほぼ
N層の性質で決まるため、界面抵抗を増やしても臨界電
流はあまり減らない。その結果、界面抵抗を増やすこと
により、Ic ・Rn 積を増加させることができる。しか
し、ある値を超えて界面抵抗を大きくしすぎると、臨界
電流Ic が接合面によって大きく抑制されるようにな
り、界面抵抗を増やしても臨界電流の減少分が優って、
結局Ic ・Rn 積は減ってしまうようになる。
【0016】これらのことから、超電導体/常伝導体の
界面近傍に、適当な大きさの界面抵抗が生じる部分を介
在させれば、接合のIc ・Rn 積を増大させることがで
きることが分かる。一方、量子力学で知られているよう
に、電子はポテンシャルやフェルミ速度等の物理状態が
急激に変化する界面があると、古典力学では反射されな
いような界面においても反射され、界面抵抗を増大させ
る。このように、界面抵抗を増大させるためには、系の
物理的性質を急激に変化させればよい。このためには、
(Y,Pr)-Ba-Cu-O系電気伝導性酸化物の電気伝導度がPrの
置換率の変化と共に 2桁以上も変化することを利用し
て、Prの置換率が高い部分を介在させればよい。しか
し、Prの置換率を一定の割合で高くした常伝導体層を用
いた場合に、臨界電流の著しい減少があることからも明
らかなとおり、望む常伝導抵抗Rn を得ると共に、臨界
電流Ic の減少を抑制するには、その後、Prの置換率を
減少させることが必要となる。これらのことから、本発
明のように、常伝導体層として(Y,Pr)-Ba-Cu-O系電気伝
導性酸化物を用いると共に、常伝導体層内のPrによる置
換割合を超電導体層/常伝導体層の界面近傍から常伝導
体層の内部に向けて減少させることによって、臨界電流
c の減少を抑制した上で、常伝導抵抗Rn を増大させ
ることができることが明らかであろう。そして、これに
より接合のIc・Rn 積を増大させることが可能とな
る。
【0017】
【実施例】以下、本発明の実施例について図面を参照し
て説明する。
【0018】実施例1 図1は、本発明の一実施例の積層型超電導素子の要部を
示す断面図である。下部超電導体層としては、 SrTiO3
基板1上に多元スパッタ法により成膜したY-Ba-Cu-O系
酸化物超電導体膜2を用いた。その上に常伝導体層とし
て、Prによる置換率を変化させると共に、超電導体/常
伝導体の界面近傍でPrの割合が最も高くなるように設定
した、(Y,Pr)-Ba-Cu-O系電気伝導性酸化物膜3を30nm程
度の厚さで形成した。このように、Prによる置換率を連
続的に変えるためには、例えば多元スパッタ法により、
YとPrのスパッタパワーを連続的に変えて(Y,Pr)-Ba-Cu
-O膜を成膜すればよい。さらに上記常伝導体層3上に、
上部超電導体層としてY-Ba-Cu-O系酸化物超電導体膜4
を多元スパッタ法により成膜した。この後、成膜装置よ
り取り出し、フォトレジスト(図示せず)をマスクと
し、イオンミリング等の方法を用いて、上部 Y-Ba-Cu-O
系酸化物超電導体膜4、(Y,Pr)-Ba-Cu-O系電気伝導性酸
化物膜3を順次エッチングし、下部 Y-Ba-Cu-O系酸化物
超電導体膜2に対する電極を形成した。このようにして
作製したSNS接合の大きさは、この実施例では10μm
×10μm とした。
【0019】このようにした得た積層構造体の深さ方向
への元素分析をイオンマイクロアナライザにより行っ
た。その結果を図2に示す。図2から分かるように、Pr
の割合は、下部超電導体層2/常伝導体層3および常伝
導体層3/上部超電導体層4の界面近傍から常伝導体層
3の内部に向けて減少している。
【0020】また、上記によって得た下部 Y-Ba-Cu-O系
酸化物超電導体層2/(Y,Pr)-Ba-Cu-O系電気伝導性酸化
物層3/上部 Y-Ba-Cu-O系酸化物超電導体層4構造のS
NS接合を有する超電導素子の、液体窒素温度(77K) に
おけるI−V特性を測定した。その結果を図3に示す。
図3から明らかなように、明瞭なジョセフソン特性が得
らた。また、上記接合の臨界電流Ic の値は 1.8mAで、
常伝導抵抗Rn の値は60mΩであり、接合のIc ・Rn
積として 0.108mVを得た。
【0021】また、本発明との比較のために、常伝導体
層として Y-Ba-Cu-O系酸化物超電導体の Yの 80%をPrで
置換したものを用いる以外は、上記実施例と同一条件
で、超電導体/常伝導体/超電導体接合を作製したとこ
ろ、臨界電流Ic の値は 1.9mAで、常伝導抵抗Rn の大
きさは5mΩであり、接合のIc ・Rn 積は0.0095mVであ
った。
【0022】このように、上記実施例による超電導素子
は、常伝導体層としての(Y,Pr)-Ba-Cu-O系電気伝導性酸
化物膜中のPrによる置換率を連続的に変化させたことに
よって、接合のIc ・Rn積を著しく増大させることが
できた。
【0023】実施例2 図4は、本発明の他の実施例の超電導素子の要部を示す
断面図である。この実施例では、まず適当な段差を有す
る SrTiO3 基板5上に、多元スパッタ法等により、互い
に電気的に絶縁された Y-Ba-Cu-O系酸化物超電導体膜
6、7を成膜した。これら Y-Ba-Cu-O系酸化物超電導体
膜6、7が下部超電導体および上部超電導体層となる。
これらの上に、上記段差を越えて連続させ、かつその上
方にいくほどPrの割合が減少させた(Y,Pr)-Ba-Cu-O系電
気伝導性酸化物膜8を、50nmの厚さで常伝導体層として
形成した。
【0024】この後、成膜装置より取り出してフォトレ
ジストをマスクとし、イオンミリング等の方法を用い
て、段差を挟んで10μm 幅を残してエッチングした。さ
らに、Y-Ba-Cu-O系酸化物超電導体膜6、7にそれぞれ
電極を取る目的で、(Y,Pr)-Ba-Cu-O系電気伝導性酸化物
膜8を幅10μm だけ残してエッチングした。
【0025】このようにした得た接合の常伝導体層から
超電導体層方向への元素分析結果を図5に示す。Prの置
換率は、常伝導体層と超電導体層との界面近傍から常伝
導体層内部に向けて減少していることが分かる。この接
合も液体窒素温度(77K)において、良好なジョセフソン
素子として動作した。また、上記接合の臨界電流Ic
値は0.53×10-4A で、常伝導抵抗Rn の値は 1.9Ωであ
り、接合のIc ・Rn 積は 100.7μV であった。
【0026】また、本発明との比較のために、常伝導体
層として Y-Ba-Cu-O系酸化物超電導体の Yの 80%をPrで
置換したものを用いる以外は、上記実施例と同一条件
で、超電導体/常伝導体/超電導体接合を作製したとこ
ろ、臨界電流Ic の値は0.67×10-4A で、常伝導抵抗R
n の大きさは 0.2Ωであり、接合のIc ・Rn 積は13.4
μV であった。
【0027】
【発明の効果】以上説明したように、本発明の超電導素
子によれば、超電導体/常伝導体の界面近傍部にPrの割
合が高い部分が存在すると共に、Prの割合を常伝導体層
内部で減少させているため、臨界電流を大きく減らすこ
となく、界面抵抗により常伝導抵抗を増大させることが
できる。よって、再現性よくIc ・Rn 積を増やすこと
が可能となる。
【図面の簡単な説明】
【図1】本発明の一実施例による超電導素子の要部を示
す断面図である。
【図2】図1に示す超電導素子のイオンマイクロアナラ
イザによる深さ方向の元素分析結果を示す図である。
【図3】図1に示す超電導素子の液体窒素温度における
I−V特性を示す図である。
【図4】本発明の他の実施例による超電導素子の要部を
示す断面図である。
【図5】図4に示す超電導素子のイオンマイクロアナラ
イザによる深さ方向の元素分析結果を示す図である。
【図6】超電導体/常伝導体/超電導体接合における界
面抵抗を変化させた際のIc ・Rn 積の変化の理論計算
値を示す図である。
【符号の説明】
1…… SrTiO3 基板 2、6…下部 Y-Ba-Cu-O系酸化物超電導体膜 3、8…Prの割合を変化させた(Y,Pr)-Ba-Cu-O系電気伝
導性酸化物膜 4、7…上部 Y-Ba-Cu-O系酸化物超電導体膜 9……段差を有する SrTiO3 基板
───────────────────────────────────────────────────── フロントページの続き (72)発明者 水島 公一 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝 総合研究所内 (56)参考文献 特開 平2−21676(JP,A) 特開 平3−196686(JP,A) 特開 平4−192381(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 39/22 ZAA H01L 39/24 ZAA H01L 39/00 ZAA

Claims (1)

    (57)【特許請求の範囲】
  1. 【請求項1】 Y系酸化物超電導体と、前記 Y系酸化物
    超電導体の Yの少なくとも一部をPrで置換した常伝導体
    とを用いて、超電導体/常伝導体/超電導体接合を構成
    した超電導素子において、 前記常伝導体層内の前記Prによる置換割合が、前記超電
    導体層と常伝導体層との界面近傍から該常伝導体層の内
    部に向けて減少していることを特徴とする超電導素子。
JP3245536A 1991-09-25 1991-09-25 超電導素子 Expired - Fee Related JP2774713B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3245536A JP2774713B2 (ja) 1991-09-25 1991-09-25 超電導素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3245536A JP2774713B2 (ja) 1991-09-25 1991-09-25 超電導素子

Publications (2)

Publication Number Publication Date
JPH0590651A JPH0590651A (ja) 1993-04-09
JP2774713B2 true JP2774713B2 (ja) 1998-07-09

Family

ID=17135158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3245536A Expired - Fee Related JP2774713B2 (ja) 1991-09-25 1991-09-25 超電導素子

Country Status (1)

Country Link
JP (1) JP2774713B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6128178A (en) * 1998-07-20 2000-10-03 International Business Machines Corporation Very thin film capacitor for dynamic random access memory (DRAM)

Also Published As

Publication number Publication date
JPH0590651A (ja) 1993-04-09

Similar Documents

Publication Publication Date Title
US5106823A (en) Josephson junctions made with thin superconductive layers
US5627139A (en) High-temperature superconducting josephson devices having a barrier layer of a doped, cubic crystalline, conductive oxide material
US5106822A (en) Transistor with superconducting collector, base, and emitter separated by non-superconducting barrier layers
JP2774713B2 (ja) 超電導素子
EP0458013B1 (en) Superconducting device structures employing anisotropy of the material energy gap
EP0534854B1 (en) Superconducting thin film formed of oxide superconductor material, superconducting current path and superconducting device utilizing the superconducting thin film
JP2825374B2 (ja) 超電導素子
JPS63299281A (ja) 超伝導素子
JP2831967B2 (ja) 超電導素子
JP2955407B2 (ja) 超電導素子
JP3155558B2 (ja) 酸化物超電導線材
JP2829173B2 (ja) 超電導素子
JP2862706B2 (ja) 超電導素子
Meltzow et al. Doped-type coplanar junctions in the Bi/sub 2/Sr/sub 2/Ca/sub 1/Cu/sub 2/O/sub 8+/spl delta//system
JP2955641B2 (ja) イン サイチュー型ジョセフソン接合構造
Finnemore et al. Magnetic impurity scattering in in situ superconductors
JP3076503B2 (ja) 超電導素子およびその製造方法
JP2679610B2 (ja) 超電導素子の製造方法
JP2829201B2 (ja) 超電導素子
JPH0484469A (ja) 三端子デバイス
JPH02194667A (ja) 超伝導トランジスタおよびその製造方法
JP2515930B2 (ja) 超電導素子
JP3155641B2 (ja) 超伝導トンネル接合デバイス
JP2856577B2 (ja) 超電導素子
JP2950958B2 (ja) 超電導素子の製造方法

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980324

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees