JP2774586B2 - Fθ lens system in optical scanning device - Google Patents

Fθ lens system in optical scanning device

Info

Publication number
JP2774586B2
JP2774586B2 JP18010289A JP18010289A JP2774586B2 JP 2774586 B2 JP2774586 B2 JP 2774586B2 JP 18010289 A JP18010289 A JP 18010289A JP 18010289 A JP18010289 A JP 18010289A JP 2774586 B2 JP2774586 B2 JP 2774586B2
Authority
JP
Japan
Prior art keywords
polygon mirror
lens system
scanned
lens
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18010289A
Other languages
Japanese (ja)
Other versions
JPH0344614A (en
Inventor
彰久 板橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP18010289A priority Critical patent/JP2774586B2/en
Publication of JPH0344614A publication Critical patent/JPH0344614A/en
Application granted granted Critical
Publication of JP2774586B2 publication Critical patent/JP2774586B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光走査装置におけるfθレンズ系に関す
る。
The present invention relates to an fθ lens system in an optical scanning device.

[従来の技術] 光走査装置は、光束の走査により上方の書き込みや読
み取りを行う装置として知られ、レーザープリンターや
ファクシミリ等に使用されている。
[Prior Art] An optical scanning device is known as a device for writing and reading upward by scanning a light beam, and is used for a laser printer, a facsimile, and the like.

このような光走査装置のうちに、光源装置からの略平
行な光束を主走査対応方向に長い線像に結像させ、その
線像の結像位置の近傍に反射面を有する回転多面鏡によ
り上記光束を等角速度的に偏向させ、この偏向光束を結
像レンズ系により被走査面上にスポット状に結像させて
被走査面を光走査する方式の装置がある。
Among such optical scanning devices, a substantially parallel light flux from the light source device is formed into a long linear image in the main scanning corresponding direction, and a rotating polygon mirror having a reflecting surface near an image forming position of the linear image is used. There is an apparatus of a system in which the light beam is deflected at a constant angular velocity, the deflected light beam is formed into a spot on the surface to be scanned by an imaging lens system, and the surface to be scanned is optically scanned.

回転多面鏡を用いる光走査装置には所謂面倒れの問題
があり、また、偏向される光束は回転多面鏡の角速度が
一定であるため通常のf・tanθレンズを用いたのでは
被走査面の走査が定速的に行われない。そこで等速走査
するための工夫が必要となる。fθレンズ系は、この被
走査面の定速的な走査を光学的に実現する様にしたレン
ズ系であり、レンズ光軸に対してθなる角をもって入射
する光束の像高が焦点距離をfとしてfθとなるように
するfθ機能を有する。
An optical scanning device using a rotating polygon mirror has a problem of so-called tilting, and a light beam to be deflected has a constant angular velocity of the rotating polygon mirror. Scanning is not performed at a constant speed. Therefore, a device for scanning at a constant speed is required. The fθ lens system is a lens system that optically realizes constant-speed scanning of the surface to be scanned, and the image height of a light beam incident at an angle θ with respect to the lens optical axis indicates a focal length of f Has an fθ function to be fθ.

また、面倒れの問題を解決する方法としては、回転多
面鏡と被走査面との間に設けられるレンズ系をアナモフ
ィック系とし、副走査方向に関して、回転多面鏡の反射
位置と被走査面とを共役関係に結び付ける方法が知られ
ている。
As a method for solving the problem of surface tilt, a lens system provided between the rotating polygon mirror and the surface to be scanned is an anamorphic system, and the reflection position of the rotating polygon mirror and the surface to be scanned are defined in the sub-scanning direction. There is known a method of connecting to a conjugate relationship.

[発明が解決しようとする課題] fθレンズ系自体をアナモフィックとし、定速的な走
査と面倒れの問題の解決とを図ったものは種々知られて
いる。例えば、特開昭63−19617号公報には2枚構成の
ものが開示されている。
[Problems to be Solved by the Invention] There are various known fθ lens systems that use an anamorphic lens to perform constant-speed scanning and solve the problem of surface tilt. For example, Japanese Patent Application Laid-Open No. 63-19617 discloses a two-sheet configuration.

しかしこのfθレンズ系は像面湾曲の補正が必ずしも
十分ではなく、被走査面上に於ける結像スポットの径が
走査位置によりかなり大きく変動するので、高密度の光
走査の実現が困難である。また、特開昭61−120112号公
報には像面湾曲を良好に補正するために所謂鞍型トーリ
ック面を使用した2枚構成のfθレンズ系が開示されて
いるが、このfθレンズ系は非球面を2面用いているた
めに加工が難しいという問題がある。
However, this fθ lens system does not always sufficiently correct the curvature of field, and the diameter of the imaging spot on the surface to be scanned fluctuates considerably depending on the scanning position. Therefore, it is difficult to realize high-density optical scanning. . Japanese Patent Application Laid-Open No. 61-120112 discloses a two-element fθ lens system using a so-called saddle-shaped toric surface in order to satisfactorily correct the curvature of field, but this fθ lens system is not available. There is a problem that processing is difficult because two spherical surfaces are used.

本発明は、上述した事情に鑑みてなされたものであっ
て、主・副走査方向の像面湾曲の十分な補正と、回転多
面鏡における面倒れの問題の解決とを可能ならしめた新
規なfθレンズ系の提供を目的とする。
The present invention has been made in view of the above-described circumstances, and is a novel technique that enables a sufficient correction of the curvature of field in the main and sub-scanning directions and a solution to the problem of tilting of the rotating polygon mirror. The objective is to provide an fθ lens system.

[課題を解決するための手段] 以下、本発明を説明する。[Means for Solving the Problems] Hereinafter, the present invention will be described.

本発明のfθレンズ系は、「光源装置からの略平行な
光束を主走査対応方向に長い線像に結像させ、その線像
の結像位置の近傍に反射面を有する回転多面鏡により上
記光束を等角速度的に偏向させ、この偏向光束を結像レ
ンズ系により被走査面上にスポット状に結像させて被走
査面に略等速的に光走査する光走査装置において、回転
多面鏡により偏向された光束を被走査面上に結像させる
結像レンズ系」であって、「副走査方向に関しては、回
転多面鏡の反射位置と被走査面とを幾何学的に略共役な
関係に結び付ける機構」を持ち、「主走査方向に関して
は、fθ機能」を有する。
The fθ lens system according to the present invention is configured such that “a substantially parallel light beam from the light source device is formed into a long line image in the main scanning corresponding direction, and the above-described rotation polygon mirror having a reflecting surface near the image forming position of the line image is used. A rotating polygon mirror is used in an optical scanning device that deflects a light beam at a constant angular velocity, forms an image of the deflected light beam in a spot shape on a surface to be scanned by an imaging lens system, and optically scans the surface to be scanned substantially uniformly. An imaging lens system that forms an image of the light beam deflected by the laser beam on the surface to be scanned, and "in the sub-scanning direction, the geometrically substantially conjugate relationship between the reflection position of the rotary polygon mirror and the surface to be scanned" And a “fθ function with respect to the main scanning direction”.

また、このfθレンズ系は、回転多面鏡の側から被走
査面側へ向かって第1、第2の順に配備される、第1お
よび第2のレンズにより構成される2群・2枚構成であ
り、回転多面鏡の側から数えて各レンズ面を第1乃至第
4面とするとき、これらのレンズ面の偏向面内での形状
が第1面から第4面に向かって順次「円弧、円弧、直
線、円弧」である。
The fθ lens system has a two-group, two-lens configuration including first and second lenses arranged in a first and second order from the rotating polygon mirror toward the surface to be scanned. When each lens surface is defined as a first surface to a fourth surface counted from the side of the rotating polygon mirror, the shapes of these lens surfaces in the deflection surface are sequentially changed from the first surface to the fourth surface in the form of “arc, Arc, straight line, arc ".

上記第1面は「偏向直交面内の曲率半径が光軸から離
れるに従い大きくなる鞍型トーリック面」、第2面は
「凸の球面」、第3面は「偏向直交面内にのみ屈折力を
持つ凹のシリンダー面」、第4面は「偏向直交面内に強
い曲率を持つ凸のトーリック面」である。
The first surface is "a saddle-shaped toric surface whose radius of curvature in the plane orthogonal to the deflection increases with distance from the optical axis", the second surface is a "convex spherical surface", and the third surface is a refractive power only in the plane orthogonal to the deflection. The fourth surface is a "convex toric surface having a strong curvature in a plane orthogonal to the deflection".

偏向直交面内における第1乃至第4面の曲率半径をそ
れぞれ▲r ▼,▲r ▼,▲r ▼,▲r
▼とし、回転多面鏡の反射位置から第1面までの距離を
d0とすると、これらは (I) 0.85<|[{(1/▲r ▼)−(1/▲r ▼)}+{(1/▲r
▼)−(1/▲r ▼)}] ・d0|<1.4 なる条件を満足する。
Each of the first to the radius of curvature of the fourth surface in the deflecting plane orthogonal ▲ r '1 ▼, ▲ r ' 2 ▼, ▲ r '3 ▼, ▲ r' 4
And the distance from the reflection position of the rotating polygon mirror to the first surface
When d 0, they (I) 0.85 <| [{ (1 / ▲ r '1 ▼) - (1 / ▲ r' 2 ▼)} + {(1 / ▲ r '
3 ▼) - (1 / ▲ r '4 ▼)}] · d 0 | satisfies <1.4 becomes conditions.

ここで第1図を参照して、本発明のfθレンズ系の各
レンズ面を説明する。
Here, each lens surface of the fθ lens system of the present invention will be described with reference to FIG.

なお、本明細書中に於いて「偏向面」とは、回転多面
鏡により理想的に偏向された光束の主光線が掃引するこ
とにより形成される面を言い、「偏向直交面」とはfθ
レンズ系の光軸に平行で上記偏向面に直交する面を言
う。
In the present specification, the “deflection surface” refers to a surface formed by sweeping a principal ray of a light beam ideally deflected by a rotating polygon mirror, and the “deflection orthogonal surface” is fθ
A plane parallel to the optical axis of the lens system and orthogonal to the deflection plane.

第1図に於いて、図の左側は回転多面鏡の側、右側は
被走査面の側であり、従ってレンズは左側が第1のレン
ズ、右側が第2のレンズを表しており、レンズ面は左か
ら右へ向かって順次第1乃至第4面である。
In FIG. 1, the left side of the figure is the side of the rotating polygon mirror, and the right side is the side of the surface to be scanned. Therefore, the left side of the figure shows the first lens and the right side shows the second lens. Are the first to fourth surfaces sequentially from left to right.

また、第1図の上側の面は、fθレンズ系の偏向面内
でのレンズ形状を表し、下側の図は光軸を含む偏向直交
面内でのレンズ形状を表している。
The upper surface in FIG. 1 shows the lens shape in the deflection plane of the fθ lens system, and the lower surface shows the lens shape in the plane orthogonal to the deflection including the optical axis.

偏向面はその被走査面との交線が理想的な主走査方向
に対応するので、第1図の上の図は「主」と表示してあ
る。同様に、上記偏向直交面は副走査方向と対応するの
で第1図の下の図は「幅」と表示してある。
Since the intersection of the deflection surface with the surface to be scanned corresponds to the ideal main scanning direction, the upper drawing of FIG. 1 is indicated as "main". Similarly, since the plane orthogonal to the deflection corresponds to the sub-scanning direction, the drawing below FIG. 1 is indicated as "width".

偏向面内におけるレンズ面形状は、第1図の上の図の
ように第1ないし第4レンズ面が、順に円弧、円弧、直
線、円弧である。偏向面に平行な面内での屈折力は、第
1のレンズが負であり、第2のレンズが正である。
As for the lens surface shape in the deflecting surface, the first to fourth lens surfaces are an arc, an arc, a straight line, and an arc in this order as shown in the upper part of FIG. The refractive power in a plane parallel to the deflecting surface is negative for the first lens and positive for the second lens.

第1図にはまた、上記偏向面、偏向直交面内でのレン
ズ機能が「凸」であるか「凹」であるかを表示してあ
る。
FIG. 1 also indicates whether the lens function in the deflecting surface and the deflecting orthogonal surface is “convex” or “concave”.

[作用] 上記条件(I)に付き説明する。[Operation] The condition (I) will be described.

上記の如きレンズ面構成でfθレンズ系を構成するこ
とにより主・副走査方向の像面湾曲の良好な補正が可能
になる。
By configuring the fθ lens system with the above-described lens surface configuration, it is possible to favorably correct the curvature of field in the main and sub scanning directions.

しかし、主走査方向の像面湾曲を良好に補正した状態
に於いて、副走査方向の像面湾曲を有効に補正するに
は、さらに上記条件(I)の充足が必要となる。
However, in a state where the curvature of field in the main scanning direction is well corrected, in order to effectively correct the curvature of field in the sub-scanning direction, the above condition (I) must be further satisfied.

即ち、上記の面構成でレンズ構成して面倒れの補正を
行った場合、条件(I)の下限を越えると副走査方向の
像面湾曲がオーバー側に発生し、上限を越えるとアンダ
ー側に発生する。従って、条件(I)を外れると結像性
能が低下し、副走査方向の光スポット径の変動が大きく
なり、良好な光走査を実現するのが困難となる。逆に、
上記条件(I)を満足する場合は、第1面の鞍型トーリ
ック面の、副走査方向の像面湾曲補正機能が良好に発揮
される。
That is, in the case where the lens is formed with the above-described surface configuration and the surface tilt is corrected, the curvature of field in the sub-scanning direction occurs on the over side when the lower limit of the condition (I) is exceeded, and on the under side when the upper limit is exceeded. Occur. Therefore, if the condition (I) is not satisfied, the imaging performance is degraded, the fluctuation of the light spot diameter in the sub-scanning direction becomes large, and it is difficult to realize good optical scanning. vice versa,
When the above condition (I) is satisfied, the function of correcting the curvature of field of the saddle-shaped toric surface of the first surface in the sub-scanning direction is favorably exhibited.

次に第2図を参照すると、この図はfθレンズ系を用
いた光走査装置の1例を説明図的に略示している。ま
た、第3図は、第2図の光学配置を副走査方向から見た
状態、即ち、偏向面内での様子を示している。
Next, referring to FIG. 2, this figure schematically illustrates an example of an optical scanning apparatus using an fθ lens system. FIG. 3 shows a state of the optical arrangement of FIG. 2 viewed from the sub-scanning direction, that is, a state in a deflection plane.

第2図に於いて、光源もしくは光源と集光装置とから
なる光源装置1からの平行光束は線像結像光学系たるシ
リンダーレンズ2により、回転多面鏡3の反射面3aの近
傍に偏向面の略平行な線像LIとして結像する。この線像
の長手方向は主走査対応方向である。
In FIG. 2, a parallel light beam from a light source or a light source device 1 comprising a light source and a condensing device is deflected by a cylinder lens 2 as a line image forming optical system to a position near a reflecting surface 3a of a rotary polygon mirror 3. Is formed as a substantially parallel line image LI. The longitudinal direction of this line image is a main scanning corresponding direction.

回転多面鏡3により反射された光束は、fθレンズ系
により被走査面6上にスポット状に結像され、回転多面
鏡3の矢印方向への等速回転に従い、被走査面6を等速
的に走査する。
The light beam reflected by the rotating polygon mirror 3 is formed into an image of a spot on the surface 6 to be scanned by the fθ lens system. Scan.

fθレンズ系は第1のレンズ4と第2のレンズ5とに
より構成され、レンズ4は回転多面鏡3の側、レンズ5
は被走査面6の側にそれぞれ配設される。偏向面内で見
ると第3図に示すように、レンズ4,5によるfθレンズ
系は光源装置側の無限遠と被走査面6の位置とを幾何光
学的な共役関係に結び付けている。
The fθ lens system includes a first lens 4 and a second lens 5, and the lens 4 is located on the side of the rotary polygon mirror 3 and the lens 5.
Are disposed on the side of the surface 6 to be scanned. As viewed in the deflection plane, as shown in FIG. 3, the fθ lens system including the lenses 4 and 5 links the infinity on the light source device side and the position of the surface 6 to be scanned to a geometrical conjugate relationship.

これに対し偏向直交面内で見ると、即ち副走査方向に
関してはfθレンズ系は回転多面鏡3の反射位置と被走
査面6とを幾何光学的に略共役な関係に結び付けてい
る。従って、第4図に示すように反射面3aが符号3a′で
示すように面倒れを生じてもfθレンズ系による、被走
査面6上の結像位置は、副走査方向(第4図上下方向)
には殆ど移動しない。従って面倒れは補正される。
On the other hand, when viewed in the plane orthogonal to the deflection, that is, in the sub-scanning direction, the fθ lens system links the reflection position of the rotary polygon mirror 3 and the surface 6 to be scanned to a substantially optically conjugate relationship. Therefore, even if the reflecting surface 3a is tilted as shown by reference numeral 3a 'as shown in FIG. 4, the imaging position on the surface 6 to be scanned by the fθ lens system is in the sub-scanning direction (up and down in FIG. 4). direction)
Hardly move to. Therefore, the tilting is corrected.

さて、回転多面鏡3が回転すると反射面3aは軸3Aを中
心として回転するため、第5図に示すように反射面の回
転に伴い線像の結像位置Pと反射面3aとの間に位置ずれ
ΔXが生じ、fθレンズ系による線像の共役像の位置
P′は被走査面6からΔX′だけずれる。
When the rotary polygon mirror 3 rotates, the reflecting surface 3a rotates about the axis 3A. Therefore, as shown in FIG. 5, the reflecting surface 3a rotates between the imaging position P of the line image and the reflecting surface 3a. A position shift ΔX occurs, and the position P ′ of the conjugate image of the line image by the fθ lens system is shifted from the scanned surface 6 by ΔX ′.

このずれ量ΔX′はfθレンズ系の副走査方向の横倍
率をβとして、周知の如くΔX′=β・ΔXで与えら
れる。
The shift amount ΔX ′ is given by ΔX ′ = β 2 × ΔX, as is well known, where β is the lateral magnification of the fθ lens system in the sub-scanning direction.

偏向面内で、fθレンズ系のレンズ光軸と偏向光束の
主光線とのなす角をθとする時、θと上記ΔXとの関係
を示したのが第6図及び第7図である。第6図は固有入
射角α(第8図参照)を90度とし、回転多面鏡3の内接
円半径R′をパラメーターとして描いている。また、第
7図では上記内接円半径R′を40mmとし、固有入射角α
をパラメーターとして描いている。
FIGS. 6 and 7 show the relationship between θ and ΔX when the angle between the lens optical axis of the fθ lens system and the principal ray of the deflected light beam is θ in the deflection plane. FIG. 6 depicts the specific incident angle α (see FIG. 8) as 90 degrees and the radius R ′ of the inscribed circle of the rotating polygon mirror 3 as a parameter. In FIG. 7, the radius R 'of the inscribed circle is 40 mm, and the specific incident angle α
Is drawn as a parameter.

第6,7図から分かるように、ΔXは内接円半径R′が
大きいほど、また固有入射角αが小さいほど大きくな
る。
As can be seen from FIGS. 6 and 7, ΔX increases as the radius of the inscribed circle R ′ increases and as the specific incident angle α decreases.

また、反射面の回転に伴う線像の位置と反射面との相
対的な位置ずれは、偏向面内で2次元的に生じ、且つレ
ンズ光軸に対しても非対象に移動する。従って、第2図
の如き光走査装置ではfθレンズ系の主、副走査方向の
像面湾曲を良好に補正する必要がある。また、主走査方
向に関してはfθ特性が良好に補正されねばならないこ
とは言うまでもない。
Further, the relative displacement between the position of the line image and the reflecting surface due to the rotation of the reflecting surface occurs two-dimensionally in the deflecting surface and moves asymmetrically with respect to the lens optical axis. Therefore, in the optical scanning device as shown in FIG. 2, it is necessary to satisfactorily correct the field curvature of the fθ lens system in the main and sub scanning directions. Needless to say, the fθ characteristic must be corrected well in the main scanning direction.

ここで前述の固有入射角αにつき説明すると、第8図
において、符号aは回転多面鏡に入射する光束の主光線
を示し、符号bはfθレンズ系の光軸を示している。固
有入射角αは、図の如く主光線aと交軸bの光角として
定義される。
Here, the specific incident angle α will be described. In FIG. 8, a symbol a indicates a principal ray of a light beam incident on the rotating polygon mirror, and a symbol b indicates an optical axis of the fθ lens system. The specific incident angle α is defined as the light angle between the principal ray a and the cross axis b as shown in the figure.

主光線aと光軸bの交点の位置を原点として図のごと
くX,Y軸を定め、回転多面鏡3の回転軸位置の座標をXc,
Ycとする。
The X and Y axes are determined as shown in the figure, using the position of the intersection of the principal ray a and the optical axis b as the origin, and the coordinates of the rotation axis position of the rotary polygon mirror 3 are represented by Xc and
Yc.

前述した、線像位置と反射面との位置ずれ量のΔXの
変動をなるべく少なくする為には周知のごとく、Rを回
転多面鏡の外接円半径として 0<Xc<Rcos(α/2) 0<Yc<Rsin(α/2) なる条件をXc,Ycに課せばよい。
As is well known, R is defined as the radius of the circumscribed circle of the rotary polygon mirror, as described above, in order to minimize the variation in ΔX of the positional shift amount between the line image position and the reflecting surface, as described above. 0 <Xc <Rcos (α / 2) 0 The condition of <Yc <Rsin (α / 2) may be imposed on Xc and Yc.

また、入射光束の主光線aが有効主走査領域外に存在
し、被走査面6からの戻り光がゴースト光として被走査
面の主走査領域に再入射しないようにするには、回転多
面鏡3の面数をN、偏向角をθとして、上記αに対し、 θ<α<(4π/N)−θ なる条件を課すれば良い。
In order to prevent the principal ray a of the incident light beam from existing outside the effective main scanning area and prevent the return light from the scanned surface 6 from re-entering the main scanning area on the scanned surface as ghost light, a rotating polygon mirror must be used. Assuming that the number of surfaces is N and the deflection angle is θ, a condition of θ <α <(4π / N) −θ may be imposed on α.

次に、本発明の特徴の一端をなす鞍型トーリック面に
付き説明する。
Next, the saddle-shaped toric surface forming one end of the features of the present invention will be described.

良く知られているようにトーリック面とは、円弧を、
「この円弧を含む平面内にあって円弧の曲率中心を通ら
ない直線」の回りに回転して得られる面である。
As is well known, a toric surface is an arc,
This is a surface obtained by rotating around a "straight line that is within a plane including this arc and does not pass through the center of curvature of the arc".

第9図を参照するとAVBを通る曲線は位置C1を曲率中
心とする円弧である。この円弧を、円弧と同一面内にあ
る直線X1Y1を軸として回転させると第10図に示すような
鞍型の曲面STが得られる。この面STが鞍型トーリック面
である。
Curve passing through AVB Referring to FIG. 9 is a circular arc whose center of curvature position C 1. When this arc is rotated around a straight line X 1 Y 1 in the same plane as the arc, a saddle-shaped curved surface ST as shown in FIG. 10 is obtained. This surface ST is a saddle-shaped toric surface.

なお、第4面の凸のトーリック面では円弧が光軸を含
む偏向直交面内にあり、回転軸はこの面内で副走査方向
に平行で円弧の曲率中心に関して円弧と反対側にある。
従って、このトーリック面は光軸を含む偏向直交面内に
強い曲率を持つ。
In the convex toric surface of the fourth surface, the arc is in the plane orthogonal to the deflection including the optical axis, and the rotation axis is in this plane parallel to the sub-scanning direction and on the opposite side to the arc with respect to the center of curvature of the arc.
Therefore, this toric surface has a strong curvature in a plane orthogonal to the deflection including the optical axis.

X1Y1軸に直交する面内における鞍型トーリック面の曲
率半径を見ると、これはC2点を軸方向に離れるに従って
小さくなっており、この曲率半径は軸X1Y1と円弧AVBと
の距離に等しい。
Looking at the radius of curvature of the saddle type toric surface in X 1 Y 1 perpendicular to the axis to the plane, which is smaller with increasing distance to C 2 points in the axial direction, the radius of curvature the axis X 1 Y 1 and arc AVB Equal to the distance to

本発明では、第1面の鞍型トーリック面に於いて、軸
X1Y1の方向を偏向面内で主走査方向と平行にするのであ
る。
In the present invention, the first saddle-shaped toric surface has a shaft.
The direction of X 1 Y 1 is made parallel to the main scanning direction in the deflection plane.

[実施例] 以下、具体的な実施例を8例挙げる。EXAMPLES Hereinafter, eight specific examples will be given.

各実施例においてfMはfθレンズ系の主走査方向に関
する合成焦点距離、即ち偏向面に平行な面内における合
成焦点距離を表し、この値は100に規格化される。またf
Sは偏向直交面内での合成焦点距離即ち副走査方向に関
する合成焦点距離を表す。2θは偏向角(単位:度)、
αは上記固有入射角(単位:度)、βは偏向直交面内の
横倍率を表す。
In each embodiment, f M represents a combined focal length in the main scanning direction of the fθ lens system, that is, a combined focal length in a plane parallel to the deflection surface, and this value is normalized to 100. Also f
S represents a combined focal length in the plane orthogonal to the deflection, that is, a combined focal length in the sub-scanning direction. 2θ is the deflection angle (unit: degree),
α represents the above-mentioned specific incident angle (unit: degree), and β represents the lateral magnification in the plane orthogonal to the deflection.

rixは回転多面鏡の側から数えてi番目のレンズ面の
偏向面内の曲率半径、即ち第1図各図で「主」と表示さ
れた図に現れたレンズ面形状の曲率半径、riYはi番目
のレンズ面の偏向直交面内の曲率半径、即ち第1図各図
で「副」と表示された図に現れたレンズ面形状の曲率半
径であり、特にr1Y,r2Y,r3Y,r4Yは条件(I)に関連し
て▲r ▼乃至▲r ▼として説明したものであ
る。また第1面に関しr1xは第9図のVC1間の距離、r1Y
はVC2間の距離を表す。diはi番目のレンズ面間距離、d
0は回転多面鏡の反射位置から第1レンズ面までの距
離、njはj番目のレンズの屈折率を表す。
r ix is the radius of curvature in the deflection plane of the i-th lens surface counted from the side of the rotating polygon mirror, that is, the radius of curvature of the lens surface shape appearing in the figures indicated as “main” in each of FIGS. iY is the radius of curvature of the i-th lens surface in the plane orthogonal to the deflection, that is, the radius of curvature of the lens surface shape that appears in the figures indicated as "sub" in each of FIGS. 1A and 1B, particularly r 1Y , r 2Y , r 3Y and r 4Y are described as (r 1 ) to (r 4 ) in relation to the condition (I). For the first surface, r 1x is the distance between VC 1 in FIG. 9 and r 1Y
Represents the distance between the VC 2. d i is the distance between the i-th lens surfaces, d
0 represents the distance from the reflection position of the rotating polygon mirror to the first lens surface, and n j represents the refractive index of the j-th lens.

さらに、Kをもって上記条件(I)における |[{(1/▲r ▼)−(1/▲r ▼)}+{(1/▲r ▼)−(1/▲
▼)}]・d0| を表す。
Furthermore, with the K in the condition (I) | [{(1 / ▲ r '1 ▼) - (1 / ▲ r' 2 ▼)} + {(1 / ▲ r '3 ▼) - (1 / ▲
r 4 ▼)}] · d 0 |.

実施例 1 第11図に、実施例1にする収差図・fθ特性図を示
す。像面湾曲図は、回転多面鏡の回転に伴うものであ
り、破線は主走査方向のもの、実線が副走査方向のもの
を表している。
Example 1 FIG. 11 shows an aberration diagram and an fθ characteristic diagram according to the first embodiment. The curvature of field diagram is associated with the rotation of the rotary polygon mirror. The broken line indicates the one in the main scanning direction, and the solid line indicates the one in the sub-scanning direction.

また、fθ特性は理想像高をfM・θ、実際の像高をh
とするとき、(h−fM・θ)・100/(fM・θ)で定義さ
れる。
In the fθ characteristic, the ideal image height is f M · θ, and the actual image height is h M
When a is defined by (h-f M · θ) · 100 / (f M · θ).

実施例 2 第12図に、実施例2に関する収差図・fθ特性図を示
す。
Example 2 FIG. 12 shows an aberration diagram and an fθ characteristic diagram for the second embodiment.

実施例 3 第13図に、実施例3に関する収差図・fθ特性図を示
す。
Example 3 FIG. 13 shows an aberration diagram and an fθ characteristic diagram for the third embodiment.

実施例 4 第14図に、実施例4に関する収差図・fθ特性図を示
す。
Example 4 FIG. 14 shows an aberration diagram and an fθ characteristic diagram for the fourth embodiment.

実施例 5 第15図に、実施例5に関する収差図・fθ特性図を示
す。
Example 5 FIG. 15 shows an aberration diagram and an fθ characteristic diagram for the fifth embodiment.

実施例 6 第16図に、実施例6に関する収差図・fθ特性図を示
す。
Example 6 FIG. 16 shows an aberration diagram and an fθ characteristic diagram for the sixth embodiment.

実施例 7 第17図に、実施例7に関する収差図・fθ特性図を示
す。
Example 7 FIG. 17 shows an aberration diagram and an fθ characteristic diagram for the seventh embodiment.

実施例 8 第18図に、実施例8に関する収差図・fθ特性図を示
す。
Example 8 FIG. 18 shows an aberration diagram and an fθ characteristic diagram for the eighth embodiment.

各実施例とも、収差が良好であり特に、像面湾曲は主
・副走査方向とも極めて良好に補正されている。またf
θ特性も良好である。
In each of the embodiments, the aberration is good, and particularly, the curvature of field is corrected very well in both the main and sub-scanning directions. Also f
The θ characteristics are also good.

[発明の効果] 以上、本発明によれば新規なfθレンズ系を提供でき
る。このfθレンズ系は、上述の如き構成となっている
ので、回転多面鏡の面倒れを良好に補正しつつ、主・副
走査方向の像面湾曲を良好に補正して光走査を実現で
き、従って高密度の光走査が可能になる。
[Effects of the Invention] As described above, according to the present invention, a novel fθ lens system can be provided. Since this fθ lens system has the above-described configuration, it is possible to realize optical scanning by satisfactorily correcting surface tilt of the rotating polygon mirror and satisfactorily correcting field curvature in the main and sub scanning directions. Therefore, high-density optical scanning becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明のfθレンズ系の形状を説明するため
の図、第2図乃至第8図は光走査装置を説明するための
図、第9図および第10図は鞍型トーリック面を説明する
ための図、第11図乃至第18図は、各実施例に関する収差
図・fθ特性図である。 1……光源装置、2……シリンダーレンズ、3……回転
多面鏡、4,5……fθレンズ系を構成する第1および第
2レンズ
FIG. 1 is a view for explaining the shape of the fθ lens system of the present invention, FIGS. 2 to 8 are views for explaining an optical scanning device, and FIGS. 9 and 10 are saddle-shaped toric surfaces. 11 to 18 are aberration diagrams and fθ characteristic diagrams according to the respective embodiments. DESCRIPTION OF SYMBOLS 1 ... Light source device, 2 ... Cylinder lens, 3 ... Rotating polygon mirror, 4, 5 ... 1st and 2nd lens which comprises ftheta lens system

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光源装置からの略平行な光束を主走査対応
方向に長い線像に結像させ、その線像の結像位置の近傍
に反射面を有する回転多面鏡により上記光束を等角速度
的に偏向させ、この偏向光束を結像レンズ系により被走
査面上にスポット状に結像させて被走査面を略等速的に
光走査する光走査装置において、回転多面鏡により偏向
された光束を被走査面上に結像させる結像レンズ系であ
って、 副走査方向に関して回転多面鏡の反射位置と被走査面と
を幾何光学的に略共役な関係に結び付ける機能を持つと
ともに、主走査方向に関してfθ機能を有し、 回転多面鏡の側から被走査面側へ向かって第1、第2の
順に配備される、第1および第2のレンズにより構成さ
れる2群・2枚構成であり、 上記回転多面鏡の側から数えて各レンズ面を第1乃至第
4面とするとき、これらのレンズ面の偏向面内での形状
が第1面から第4面に向かって順次、円弧、円弧、直
線、円弧であり、 上記第1面は偏向直交面内の曲率半径が光軸から離れる
に従い大きくなる鞍型トーリック面、第2面は凸の球
面、第3面は偏向直交面内にのみ屈折力を持つ凹のシリ
ンダー面、第4面は偏向直交面内に強い曲率を持つ凸の
トーリック面であり、 偏向直交面内における上記第1乃至第4面の曲率半径を
それぞれ▲r ▼,▲r ▼,▲r ▼,▲r
▼、上記回転多面鏡の反射位置から上記第1面までの
距離をd0とするとき、これらが 0.85<|[{(1/▲r ▼)−(1/▲r ▼)}+{(1/▲r ▼)−
(1/▲r ▼)}] ・d0|<1.4 なる条件を満足することを特徴とするfθレンズ系。
1. A method according to claim 1, further comprising the step of: forming a substantially parallel light beam from the light source device into a long linear image in the direction corresponding to the main scanning, and rotating the light beam at a constant angular velocity by a rotary polygon mirror having a reflecting surface near an image forming position of the linear image. In a light scanning device that forms a spot on the surface to be scanned by the imaging lens system and optically scans the surface to be scanned at a substantially constant speed, the light is deflected by the rotating polygon mirror. An imaging lens system that forms an image of a light beam on a surface to be scanned.The imaging lens system has a function of coupling the reflection position of the rotary polygon mirror and the surface to be scanned in a sub-scanning direction to a substantially optically conjugate relationship. A two-group, two-lens configuration having first and second lenses that has an fθ function in the scanning direction and is provided in the first and second order from the side of the rotary polygon mirror toward the surface to be scanned. And each lens surface is counted from the side of the rotating polygon mirror. When the first to fourth surfaces are used, the shapes of these lens surfaces in the deflection surface are, in order from the first surface to the fourth surface, an arc, an arc, a straight line, and an arc. A saddle-shaped toric surface whose radius of curvature increases with distance from the optical axis, a second surface is a convex spherical surface, a third surface is a concave cylinder surface having a refractive power only in a plane orthogonal to the deflection, and a fourth surface is a deflection surface. a toric surface of a convex having a strong curvature in the orthogonal plane, respectively a radius of curvature of the first to fourth surface in the deflecting plane orthogonal ▲ r '1 ▼, ▲ r ' 2 ▼, ▲ r '3 ▼, ▲ r '
4 ▼, assuming that the distance from the reflection position of the rotating polygon mirror to the first surface is d 0 , these are 0.85 <| [r (1 / ▲ r 1 ▼) − (1 / ▲ r 2 ▼) )} + {(1 / ▲ r '3 ▼) -
(1 / ▲ r 4 ▼)}] · d 0 | <1.4 An fθ lens system characterized by satisfying the following condition:
JP18010289A 1989-07-12 1989-07-12 Fθ lens system in optical scanning device Expired - Lifetime JP2774586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18010289A JP2774586B2 (en) 1989-07-12 1989-07-12 Fθ lens system in optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18010289A JP2774586B2 (en) 1989-07-12 1989-07-12 Fθ lens system in optical scanning device

Publications (2)

Publication Number Publication Date
JPH0344614A JPH0344614A (en) 1991-02-26
JP2774586B2 true JP2774586B2 (en) 1998-07-09

Family

ID=16077466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18010289A Expired - Lifetime JP2774586B2 (en) 1989-07-12 1989-07-12 Fθ lens system in optical scanning device

Country Status (1)

Country Link
JP (1) JP2774586B2 (en)

Also Published As

Publication number Publication date
JPH0344614A (en) 1991-02-26

Similar Documents

Publication Publication Date Title
JPH0782157B2 (en) Scanning optical system with surface tilt correction function
JP2718735B2 (en) Fθ lens system in optical scanning device
JP3061829B2 (en) Fθ lens system in optical scanning device
JP2804512B2 (en) Fθ lens system in optical scanning device
JP2776465B2 (en) Fθ lens system in optical scanning device
JP2550153B2 (en) Optical scanning device
JP2834793B2 (en) Fθ lens system in optical scanning device
JPH07119897B2 (en) Optical scanning device
JP2774586B2 (en) Fθ lens system in optical scanning device
EP0444603A2 (en) Optical beam scanning system
JP2738857B2 (en) Fθ lens system in optical scanning device
JP2790839B2 (en) Fθ lens system in optical scanning device
JP2877457B2 (en) Fθ lens system in optical scanning device
JP2718743B2 (en) Fθ lens system in optical scanning device
JP2695208B2 (en) Fθ lens system in optical scanning device
JP2877390B2 (en) Fθ lens system in optical scanning device
JP2986949B2 (en) Imaging lens system in optical scanning device
JP2774546B2 (en) Fθ lens system in optical scanning device
JP3214944B2 (en) Optical scanning device
JP3034648B2 (en) Optical scanning optical system and optical scanning device
JP2927846B2 (en) Fθ lens system in optical scanning device
JP3719301B2 (en) Optical scanning device
JP2790845B2 (en) Fθ lens system in optical scanning device
JPH0375719A (en) Ftheta lens system for optical scanner
JP2856491B2 (en) Fθ lens for optical scanning device